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Abstract

Motivation: Virus mutation is one of the most important research issues which plays a critical role in disease pro-
gression and has prompted substantial scientific publications. Mutation extraction from published literature has be-
come an increasingly important task, benefiting many downstream applications such as vaccine design and drug
usage. However, most existing approaches have low performances in extracting virus mutation due to both lack of
precise virus mutation information and their development based on human gene mutations.

Results: We developed ViMRT, a text-mining tool and search engine for automated virus mutation recognition using
natural language processing. ViMRT mainly developed 8 optimized rules and 12 regular expressions based on a de-
velopment dataset comprising 830 papers of 5 human severe disease-related viruses. It achieved higher perform-
ance than other tools in a test dataset (1662 papers, 99.17% in F1-score) and has been applied well to two other
viruses, influenza virus and severe acute respiratory syndrome coronavirus-2 (212 papers, 96.99% in F1-score).
These results indicate that ViMRT is a high-performance method for the extraction of virus mutation from the bio-
medical literature. Besides, we present a search engine for researchers to quickly find and accurately search virus
mutation-related information including virus genes and related diseases.

Availability and implementation: ViMRT software is freely available at http://bmtongji.cn:1225/mutation/index.

Contact: xyzhang@tongji.edu.cn or nadger_wang@139.com

1 Introduction

Viruses cause many human diseases including cancers by persistent
chronic infection and induce public health insecurity (Escandon

et al., 2021; Zapatka et al., 2020). Viral mutation is the ultimate
source of viral genetic diversity and evolution which plays a key role
in the relationship between the virus and disease progression
(Sanjuan and Domingo-Calap, 2016). For example, the point muta-
tions of hepatitis B virus (HBV) surface are closely related to im-
mune and vaccine escape, resulting in active viral replication and the
development of hepatocellular carcinoma (Zhao et al., 2021). Severe
acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants
can cause a very high risk of infection (Araf et al., 2022). Substantial

virus research has been prompted by the importance of virus muta-
tion across many diverse clinical and basic research fields and
reported in PubMed with constant updates, which provides an

invaluable resource for obtaining key information about virus gen-
omic variants. Therefore, it is of great significance for clinical diag-
nosis and treatment to perform extraction and relationship analysis
of virus-related mutations, genes and disease entities by the efficient
use of the rich literature.

However, those unstructured texts are limited by the insufficient
feasibility of traditional manual curation in utilization, as it cannot
be carried out on all of the available literature. Furthermore, due to
the inconsistency of virus mutations and the lack of standard muta-
tion nomenclature, the conventional ‘Keyword Search’ may be
difficult to quickly and non-redundantly get desired mutation infor-
mation from literature in PubMed. As such, extracting, mining and
integrating virus mutation-related information from those extremely
large amounts of literature has become an increasingly important
task in many downstream applications, such as virus mutation data-
base development (Davey et al., 2014; Wang et al., 2022), immune
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escape mechanism exploration (Huang et al., 2020), vaccine design
and updating (Xie et al., 2021), drug resistance mutation analysis
and assistance in clinical personalized medicine (Chen et al., 2020;
Yeo et al., 2020).

With the wide application of text mining and natural language
processing in the biomedical field, many named-entity recognition
and named-entity normalization tools for mutation have been suc-
cessively developed to overcome the problem of mutation recogni-
tion from the biomedical literature (Lee et al., 2021). For example,
MutationFinder uses about 700 regular expressions to identify indi-
vidual nucleotide or amino acid point mutations or the mutations in
simple natural language forms (Caporaso et al., 2007). Extractor of
mutation can identify insertions or deletion mutations in addition to
point mutations based on regular expression (Doughty et al., 2011).
tmVar comprehensively uses conditional random fields (CRF) with
regular expression for mutation recognitions (Wei et al., 2013).
AVADA is another machine learning and regular expression-based
mutation extraction tool which improved gene-mutation mapping in
full-text papers (Birgmeier et al., 2020). nala mines natural language
processing mutations from the literature (Cejuela et al., 2017).
However, those tools aimed at identifying human gene mutation.
The accuracy and recall largely reduce when they are applied to
identify virus mutation due to the specific written forms of virus mu-
tation significantly differing from human mutation. For example,
most written forms often contain slash symbols resulting from
occurring multiple mutations at a single site, e.g. E138A/G/K/Q/R/S
in human immunodeficiency virus (HIV) reverse transcriptase region
(Martin-Alonso et al., 2020). The other popular form of virus vari-
ant nomenclature includes the lowercase virus gene at the beginning,
e.g. sG145R in the HBV S gene (Chen et al., 2020). Consequently,
developing a tool for virus mutation from free text is promising but
remains a challenge especially for a variety of writing styles and the
shortage of a unified nomenclature as shown by the human genome
variation society (HGVS) (den Dunnen et al., 2016). Moreover,
extracting the relationship of virus mutation-related entities is also
of great biological and clinical application in virus research, espe-
cially in genes and diseases (Araf et al., 2022; Soulie et al., 2020).
There are several semantic search engines for linking genomic vari-
ant data, such as LitVar (Allot et al., 2018), PubTator (Wei et al.,
2019), but their information focuses on human mutations or
keyword-based search, which hinders quality improvement (sensitiv-
ity and specificity) of search results.

To address the above difficulties and challenges, this study devel-
oped a novel localization recognition tool of virus mutation to ex-
tract and standardize mutation data from available literature, and
further integrated the co-occurrence information of virus mutation
between viral gene and human disease, with an attempt to design a
user-friendly search engine to serve the requirement of researchers to
quickly search and download mutation related information, thereby
aiding experimental design and clinical guidelines.

2 System and methods

An overview of ViMRT is summarized in Figure 1, including virus
dataset preparation, mutation recognition tool development, per-
formance evaluation and web construction.

2.1 Virus dataset preparation
The gold standard file of virus mutation was collected from our pre-
viously developed ViMIC database (Wang et al., 2022), consisting
of mutation-related literature in five viruses, HBV, HIV, human
papillomavirus (HPV), human T-cell lymphotropic virus type-1
(HTLV1) and Epstein-Barr virus. In this study, the positive samples
consisted of 1246 abstracts containing virus mutation information.
To balance the positive and negative samples, 1246 abstracts with
no virus mutation information were selected as the negative samples.
All collected virus literature was divided into a development dataset
and a test dataset on a scale of 1:2. In total, 415 positive abstracts
and 415 negative abstracts were used as the development dataset,
and 831 positive abstracts and 831 negative abstracts were used as

the independent test dataset. All virus datasets are available at:
http://bmtongji.cn:1225/mutation/dataset.

2.2 Mutation recognition tool development
ViMRT has two independent modules to identify mutations as
follows:

2.2.1 Module 1: Optimizing the recognition result of tmVar by

rule patterns

In this module, we first used the tmVar (Wei et al., 2013) to obtain
mutation information and then we built eight rule patterns to cor-
rect and standardize mutation identification of tmVar based on the
site of mutation in the original sentences and mutation displacement
(Table 1). This mainly included two aspects: negative results (identi-
fied entities are not actual virus mutations) and positive results
(identified entities are actual virus mutations). For negative results,
our rules mainly dealt with three recognition errors: multiple muta-
tions linked with a slash (‘A1762T/G1764A’ was identified as
‘A1762T/G’ by tmVar), non-sense mutation (‘Q118R/Stop’ was
identified as ‘Q118R/S’ by tmVar) and the three-letter abbreviation
of amino acid (‘Pro130Ile/Thr/Ser’ was identified as ‘Pro130Ile/T’
by tmVar). The mentioned errors resulted from incomplete extrac-
tions of words. Thus, the recognition result can be optimized by
completing words in sentences, and the incorrect recognition part
was excluded after optimization. For example, ‘A1762T/G’ by
tmVar will be extended into ‘A1762T/G1764A’ and normalized as
‘A1762T’ and ‘G1764A’, without the negative result ‘A1762G’. For
positive results, our rules mainly standardized five written forms:
mutation with lowercase viral gene (rtM204V), simple natural lan-
guage written form with a linking preposition (a mutation from T to
G at nucleotide 178), mutation written form with ‘>’ (8403A>G), a
word beginning with mutation level (p.Lys316Glu) and a special
written form of HPV mutant (E-C109G).

2.2.2 Module 2: Developing regular expression patterns to

recognize virus mutation

Based on the development dataset and false positive results of tmVar,
we classified the written form of virus mutation into three signatures
for nucleotide and amino acid mutation: standard mutation (SM:
written form of mutation with no punctuation), semi-standard muta-
tion (SSM: written form of mutation containing punctuation) and nat-
ural language mutation (NLM: written form of mutation with the
natural language) and then constructed corresponding regular expres-
sion patterns (Table 2). Finally, we combined the united results of the
above two modules as the final recognition result of ViMRT with a
standardized written format which consisted of the wild type with
uppercase letter, the location number of the mutation and the mutated
type with uppercase letter.

2.3 Performance evaluation
To evaluate the performance of ViMRT, we compared ViMRT with
three other classic tools (tmVar, MutationFinder and nala).
Moreover, we used the additional dataset including the abstracts of
influenza virus (IV) and SARS-CoV-2 to further evaluate the recog-
nition effect in other viruses. We calculated three different parame-
ters: Precision, Recall and F1-score. The three parameters were
defined as follows:

Precision ¼ TP

TPþ FP
; (1)

Recall ¼ TP

TPþ FN
; (2)

F1� score ¼ 2�Precision�Recall

Precisionþ Recall
; (3)

where TP, FP and FN represent the numbers of true positive (identi-
fied entities are actual virus mutation), false positive (identified
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entities are not actual virus mutation) and false negative (identified

non-virus mutation entities are actual virus mutation), respectively.

2.4 Web construction
2.4.1 Virus genes extraction

We first built the virus gene corpus from PubMed and the NCBI
gene database (https://www.ncbi.nlm.nih.gov/gene/) due to the par-

ticularity of different viral genes and then developed Python scripts
to identify the virus genes from the sentences including virus
mutation.

2.4.2 Virus mutation related diseases annotation

We used the Stanza natural language processing (NLP) library
(https://github.com/stanfordnlp/stanza) for many human languages
to identify the diseases from the sentences including virus mutation
and further developed Python scripts to extract related-disease infor-
mation based on disease corpus collected from CTD (http://ctdbase.
org).

2.4.3 Web search engine development

To quickly search and find the interactions of virus mutation and
related information for researchers, we used ViMRT to identify

Fig. 1. A schematic overview of the ViMRT project. There are four major parts: dataset preparation (development dataset and test dataset construction), virus mutation recog-

nition tool development (rule-based optimization and developed regular expression), evaluation and comparison (conventional method and additional dataset) and web con-

struction (virus gene recognition, disease recognition and web interface design)

Table 1. The optimization rules of virus mutation recognized by tmVar

Result type Rule patterns Examples

False positive Include ‘\df1,g\Df1,g\df1,gj[/,]’ & no lowercase letters and not

end with an ‘S’

A1762T/G1764T (A1762T/Ga)

End with an ‘S’ & include ‘STOPjstopjStopjSt’ Q118R/Stop (Q118R/Sa)

Include the three characters of 20 amino acids Pro130Ile/Thr/Ser (Pro130Ile/Ta)

True positive Include abbreviation of virus gene rtM204V (M204Vb)

Natural language include ‘tojwithjbyj[-
]jforjinsjdeljNonjDeltajofjat’

A mutation from T to G at nucleotide 178

(T178Gb)

Include ‘>’ and not include lowercase ‘ljujsjpjrjyjhjijnjejojmjv’ 8403A>G (A8403Gb)

Begin with mutation levels (c.jg.jp.) p.Lys316Glu (K316Eb)

Special written form of HPV mutant and include ‘AjCjEjGjT’ E-C109G (C109Gb)

aThe identification errors. For example, A1762T/G1764T are identified A1762T/G; This will be mistaken for A1762T and A1762G in the final identification results.
bThe normalized mutation written forms.
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virus mutations, genes and diseases from the 9629 PubMed abstracts
and 3160 PMC full-text articles and calculated the co-occurrence
correlation of the variant and disease in sentences by the Fisher’s
test. We finally constructed the user-friendly web pages for visual
search and display using Django 3.2.6.

3 Results

3.1 Virus mutation dataset
Viral mutation gold data contained 1246 abstracts on five viruses
(2349 mutations) from the ViMIC database. The development data-
set and test dataset were allocated in a ratio of 1:2. In total, SM
accounted for 62.60% of total annotations. SSM was 36.45% and
the fraction of NLM was only 0.95% (Fig. 2A). The fraction of mu-
tation signatures in the corpus of different viruses is shown in
Figure 2B.

3.2 Evaluation and comparison with existing tools on

different datasets
To evaluate the performance of ViMRT, we compared recognition
results with three other conventional tools, tmVar, nala and
MutationFinder in the test dataset. Notably, Table 3 shows that
ViMRT outperformed three other methods with the best two evalu-
ation metrics (Recall: 98.95%, F1-score: 99.17%) and the precision
also reached 99.39%. ViMRT displays the state-of-art performance
to recognize the mutation of five viruses from the literature used in
this study. To further estimate the application of our model in other
viral contexts, we manually annotated 212 mutation-related
abstracts of SARS-CoV-2 and IV. Figure 2C shows the fraction of

mutation signatures. The recognition results are presented in
Table 4. The performance of our method was higher than that of the
three other methods, which also shows the feasibility and effective-
ness of our method.

3.3 Recognition comparison with existing tools on SM,

SSM and NLM
We further compared the recognition results of four methods in
three mutation signatures (Table 5). For SM, four methods could
perform well in mutations that resembled the HGVS nomenclature.
However, ViMRT and tmVar could identify the gene mixed-written
form and nonsense mutations that were not identified by nala or
MutationFinder. For SSM, ViMRT, tmVar and nala could identify a
large proportion of written forms, but only ViMRT could correctly
detect SSM which contains more than two slashes. For NLM,
ViMRT, tmVar and nala could discern the mutations in simple writ-
ten form of natural language. Figure 2D shows the percentage of dif-
ferent mutation signatures with true positive results and false
negative results by ViMRT, MutationFinder, nala and tmVar.
ViMRT performed more accurately than the three other tools,
which had the highest percentage of positive results and the lowest
percentage of negative results.

3.4 The ViMRT web search engine
We developed the ViMRT web search engine by identifying muta-
tions in 9629 abstracts and 3160 full texts and covered the annota-
tions of viral genes and related diseases. It can be accessed through
an easy-to-use graphical web interface, as shown in Figure 3. The
web provides two ways to get variant information. One is a simple
search. After users enter a query entity in the select bar on the home

Table 2. Regular expression patterns of virus mutation based on development dataset

Type Signatures Regular expression patterns Examples

Amino acid SM • [AC-IK-NP-TV-Y](/[AC-IK-NP-TV-Y])f0,g
([1-9]\df0,3g)((STOPjstopjStopjSt\.j\*j[AC-IK-NP-TV-Y]))

(/(STOPjstopjStopjSt\.j\*j[AC-IK-NP-TV-Y]))f0,g

M204I

• [AC-IK-NP-TV-Y][1-9]\df1,3g ?(STOPjStopjstopjSt\.j\*) W196stop

• ([AC-IK-NP-TV-Y]j[ACGHILMPSTV][aehilrsy][aeglnoprstuy])

(-?[1-9]\df1,3g-?)([ACGHILMPSTV][aehilrsy][aeglnoprstuy]jStop)(?![-\d])

C144Lys

SSM • [ACGHILMPSTV][aehilrsy][aeglnoprstuy]

(/[ACGHILMPSTV][aehilrsy][aeglnoprstuy])f1,g(-?[1-9]\df1,3g-?)

([ACGHILMPSTV][aehilrsy][aeglnoprstuy]jStop)

(/[ACGHILMPSTV][aehilrsy][aeglnoprstuy]jStop)f1,g

Met204Ile/Val

• ([1-9]\df1,3g-?[AC-IK-NP-TV-Y]j[AC-IK-NP-TV-Y][1-9]\df1,3g)–
(&gt;j>)[AC-IK-NP-TV-Y]’)

555-V–>I

• (A(lajrg)jAs[np]jCysjGl[nuy]jHisjIlejL(eujys)jMetjP
(hejro)jSerjT[hy]rjTrpjVal)-[1-9]\\df1,3g–(&gt;j>) (A(lajrg)jAs[np]

jCysjGl[nuy]jHisjIlejL(eujys)jMetjP(hejro)jSerjT[hy]rjTrpjVal)

Val-555–>Ile

NLM • ([ACGHILMPSTV][aehilrsy][aeglnoprstuy])(\(?)([1-9]\\df1,3g)(\))([-]to[-]j–
(&gt;j>))([ACGHILMPSTV][aehilrsy][aeglnoprstuy])

Leu (526)-to-Met

• ([ACGHILMPSTV][aehilrsy][aeglnoprstuy])(?P<site>[1-9]\df1,3g)([-]to[-]j–
(&gt;j>))([ACGHILMPSTV][aehilrsy][aeglnoprstuy])(?P¼site)

Val184-to-Ala184

Nucleotide SM • [ACGT](/[ACGT])f0,g([1-9]\df2,4g)[ACGT](/[ACGT])f0,g G1613A

SSM • [1-9]\df2,4g[a-z\( ]*?[ACGT]–(&gt;j>)[ACGT][\)]? 1762 (A–>T)

• [1-9]\df2,4g \([ACGT]\-[ACGT]\) 1896 (G-A)

NLM • [ACGT][-]to[-][ACGT] .*?at .*?nt.*?[1-9]\df2,4g G-to-A mutation at nucleotide (nt)

1896

Note: Classification of mutation signatures as found in the literature.

SM, standard mutation; SSM, semi-standard mutation; NLM, natural language mutation.
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page, including virus mutation, gene or disease (Fig. 3a), the web
will return the best match entity results in its database (Fig. 3b),
which includes a list of publications containing highlighted entities,
sorted by publication date. Another is co-occurrence correlation
rank to search if the aim of users is not very clear. Users can firstly
click ‘To search the relationship’ button on the home page, which
will return co-occurrence correlation of mutation and disease
including seven viruses by the histogram chart and table, and click
‘View’ to get detailed information (Fig. 3c). Those processes have
three main features:

First, for each result, it returns the searched entity with a red
background as well as other entities with different colors including
diseases, genes and other mutations (Fig. 3b), which can very effi-
ciently catch the entity information and research work. Second,

users can filter the other co-occurrence entities by the table and the
filter box at the left (Fig. 3c and d) which are useful to find potential
relations (e.g. C1653T mutation of HBV HBx/core promoter region
is strongly associated with an increased risk of hepatocellular carcin-
oma and reported in many literatures). Third, users can also filter
literature information through ‘Year’, ‘Position’ and ‘PMID’ of pub-
lication (Fig. 3e). The ‘Dataset’ page and ‘Docs’ page of the web
provide the download to easily get complete mutation information
of seven viruses and the local usage of ViMRT with a detailed script,
respectively (Fig. 3f).

3.5 The localization usage of ViMRT
The usage of ViMRT can realize three recognitions: virus mutation
recognition, virus gene recognition and disease recognition. Firstly,
virus mutation recognition includes downloading literature, opti-
mizing the recognition results of tmVar by rule patterns and recog-
nizing virus mutation by regular expression patterns. Secondly, the
virus gene is identified by virus gene vocabulary and a gene match
program. Thirdly, disease recognition is based on Stanza 1.4.0 and a
normalizing script written by Python (v3.8.5). Full usage of ViMRT
is minutely displayed on the ‘Docs’ page: http://bmtongji.cn:1225/
mutation/Docs.

4 Discussion

This study is the first to gather abundant virus mutation information
and develop ViMRT to identify virus mutation by precise rules and
regular expressions. It has achieved a higher performance for virus
mutation recognition than other conventional tools. At the same
time, we are the first to develop a search engine web about a variety
of viruses for researchers to quickly search mutation-specific infor-
mation that includes virus gene and related diseases as reported in
the biomedical literatures.

ViMRT displays some notable advantages in identifying virus
mutation recognition. Firstly, ViMRT curated and created virus mu-
tation information from five viruses closely related to human disease
from the literature to comprehensively cover the majority of written
forms. Next, based on that information, we designed rule patterns
to optimize recognition results of tmVar, and further summarized
three mutation signatures termed SM, SSM, NLM which character-
ized the written form preference of virus mutation in different litera-
tures. Then we developed regular expressions to recognize
mutations for each mutation signatures (Table 2). As we have
observed, ViMRT showed state-of-art performance compared to
three other conventional tools (Table 3), especially for the written
form of virus mutation containing punctuation or gene. We also

Table 3. Performance evaluation of mutation recognition using dif-

ferent tools on test dataset

Tool Precision (%) Recall (%) F1-score (%)

ViMRT 99.39 98.95 99.17

tmVar 91.50 69.10 78.74

Nala 93.81 68.80 79.38

MutationFinder 99.81 59.26 74.37

The bold values indicate the best value per metric.

Table 4. Performance evaluation of mutation recognition using dif-

ferent tools on SARS-CoV-2 and IV dataset

Tools Precision (%) Recall (%) F1-score (%)

ViMRT 99.11 94.95 96.99

tmVar 96.96 92.72 94.79

nala 97.15 84.59 90.44

MutationFinder 100 78.25 87.80

The bold values indicate the best value per metric.
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Fig. 2. The percentage of different mutation signatures in our corpus and comparison

of recognition results. (A) The percentage of different mutation signatures in the total

corpus (1246 abstracts). (B) The percentage of different mutation signatures in the cor-

pus of different viruses. (C) The percentage of different mutation signatures in SARS-

CoV-2 and IV corpus (212 abstracts). (D) The percentage of false negative and true

positive mutation signatures in the test dataset by ViMRT, MutationFinder, nala and
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Table 5. Comparison of different tools on the recognition ability of

SM, SSM and NLM

Signatures Examples ViMRT tmVar nala Mutation-Finder

SM M204I; Asp8Asn Yes Yes Yes Yes

rtI233V Yes Yes* No No

Y225del; 7434CIns Yes Yes Yes No

W182 stop; C69* Yes Yes* No No

SSM 145G>T; C2288A/T Yes Yes Yes Yes*

L180MþM204V Yes Yes Yes No

Y143R/C/D/G; A12S/

P33S/P46S

Yes Yes* Yes* No

NLM Asn116-to-Thr116 Yes Yes Yes Yes*

Alanine 206 had been

replaced by a serine

Yes Yes Yes No

G-A transition at pos-

ition 5503

Yes Yes No Yes*

*The methods can incompletely recognize the examples listed.

SM, standard mutation; SSM, semi-standard mutation; NLM, natural lan-

guage mutation.

ViMRT 5

http://bmtongji.cn:1225/mutation/Docs
http://bmtongji.cn:1225/mutation/Docs


developed a specific search engine for seven viruses to realize muta-
tion information visualization and mined the buried co-occurrence
relationships with related diseases in the original paper, which can
contribute to more quickly and accurately retrieving evidence aiding
both basic research and clinical application compared to LitVar and
Pubtator.

In addition, we observed that ViMRT showed a slightly decreased
but still good performance (all indicators > 0.9) to recognize the mu-
tation of SARS-CoV-2 and IV compared to five viruses (Table 4),
while the performance of three other tools on the corpus of SARS-
CoV-2 and IV were better than those in the test dataset. The possible
interpretation is that a lower proportion of SSM in SARS-CoV-2 and
IV corpus caused the rise of recall of three other tools (Fig. 2C). Also,
mutation of different viruses in the datasets existed in some particular
written forms, such as nsp6-L3606fs and spike-glycoprotein-V6fs
variants of SARS-CoV-2 (Zekri et al., 2021). Furthermore, we ana-
lyzed false positive results of ViMRT, which was mainly caused by
terms that are highly similar to the written form of virus mutation,
such as human hepatoma cells (C3A) (Nishizawa et al., 2016), where
C3A was misidentified as a mutation.

Several future directions can extend this work. Firstly, future
study is warranted to expand the rules and regular expressions for
more viruses with the emergence of special written forms. With the
rapid growth of literature data, we will continue to expand our cor-
pus of viruses, add more virus types and regularly update the litera-
ture of our search engine. Secondly, due to the particularity of
writing styles of virus mutations, the current version of ViMRT
mainly used the rule-based NLP method. In a preliminary study, we
have explored whether it is possible to perform a binary classifica-
tion task using machine learning models for discriminating sentences
containing the mutation information to reduce the false positive.

Both F1-scores of machine learning methods based on TF-IDF word
embedding and TextCNN model could reach 0.8. In the future, with
continuous updates and expansion of the virus data set constructed
in this study, the state-of-the-art pre-trained language models, such
as BERT (Devlin et al., 2019), BioBERT (Lee et al., 2020),
PubMedBERT (Gu et al., 2020), will be worth attempting. Thirdly,
we will continue to extract and update more buried biological rela-
tionships associated with a viral function such as receptor binding
and drug resistance.
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