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Abstract

Summary: scFates provides an extensive toolset for the analysis of dynamic trajectories comprising tree learning,
feature association testing, branch differential expression and with a focus on cell biasing and fate splits at the level
of bifurcations. It is meant to be fully integrated into the scanpy ecosystem for seamless analysis of trajectories from
single-cell data of various modalities (e.g. RNA and ATAC).

Availability and implementation: scFates is released as open-source software under the BSD 3-Clause ‘New’
License and is available from the Python Package Index at https://pypi.org/project/scFates/. The source code is avail-
able on GitHub at https://github.com/LouisFaure/scFates/. Code reproduction and tutorials on published datasets are
available on GitHub at https://github.com/LouisFaure/scFates_notebooks.

Contact: igor.adameyko@meduniwien.ac.at

Supplementary information: Supplementary data are available at Bioinformatics online.

Pseudotime analysis is a concept first introduced in the early days of
single-cell analysis for microarray data (Magwene et al., 2003).
Derived from the idea that the temporal structure of gene expression
can be retrieved by looking at its geometry (Rifkin and Kim, 2002),
pseudotime analysis consists in ordering cells in a single-dimensional
value meant to recapitulate the underlying transcriptional transition.
The advent of more sensitive scRNAseq methods was accompanied
by the development of two main classes of high-resolution trajectory
analysis tools. One relies on fate probability mapping of the cells,
with tools such as Palantir (Setty et al., 2019), and CellRank (Lange
et al., 2022). Such approaches have the advantages of being flexible
and efficient in finding terminal states, with the possibility for man-
ual selection of these. However, the results do not lead to an easily
interpretable tree as each cell is given a probability value for each
fate, without clearly defined branches or segments. The other class
of tools relies on principal graph learning, with the most used tool
being Monocle3 (Cao et al., 2019). Principal graph derives from the
concept of principal manifold, which is defined as a group of surfa-
ces or lines that goes across the ‘middle’ of the data (Hastie, 1984).
Principal graph represents a skeleton of the data that aims to capture
major geometric structures, usually involving nodes connected by
edges, whose both positions are optimized within the reduced
dimensions to approximate the underlying expression manifold
based on the positions of cells within the same expression dimen-
sions. Reconstructing a principal graph enables generating discrete

segments and bifurcations, allowing easier interpretation. However,
Monocle3 learns the principal graph on Uniform Manifold
Approximation and Projection (UMAP) embedding, a low-
dimensional representation highly sensitive to parameters and which
can represent a highly distorted view of the data (Zhai, 2022).
Among general pseudotime toolsets, both Monocle3 and STREAM
(Chen et al., 2019) have functions for gene-pseudotime association
testing, with STREAM going even further by providing branch dif-
ferential expression (DE) related functions. However, no tool per-
forms statistical analysis of the bifurcation point, including the
discovery of early cell fate biasing factors (Bargaje et al., 2017).

Here, we introduce scFates, a python package to streamline the
whole process of pseudotime analysis, with flexible tree learning
options, advanced feature extraction tasks and specific functions
focused on bifurcation analysis. scFates was initially based on cres-
tree R package, developed for the analysis of cell fate dynamics in
development (Faure et al., 2020; Krivanek et al., 2020; Soldatov
et al., 2019). While the initial R version included a tree inference ap-
proach inspired by SimplePPT (Mao et al., 2015). scFates addition-
ally implements ElPiGraph, another method for principal graph
learning (Albergante et al., 2020), allowing investigators to impose
topological constraints on trajectories to fit single curves or circular
trajectories. scFates is fully compatible with the scanpy ecosystem
(Wolf et al., 2018) by using the anndata format and provides
Graphics Processing Unit (GPU) and multicore accelerated functions
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for faster and more scalable inference. scFates is divided into three
main parts: (i) trajectory learning and graph operations, (ii) feature
(transcript counts, ATAC peaks,. . .) significance over pseudotime
testing and clustering and (iii) bifurcation analysis. All three parts
implement publication-grade plotting capabilities to visualize the
results.

The trajectory learning can be performed on processed single-cell
data at different stages of analysis, such as on normalized transcript
count matrix, principal components or diffusion maps. The user has
the choice of running either ElPiGraph or SimplePPT algorithms to
learn a principal graph. ElPiGraph generates more robust structures
by taking advantage of graph grammars and multiple topologies
exploration at each iteration, at the cost of a lower scaling with the
number of nodes (up to 50). When the transition is known to be

non-bifurcating, simpler constrained curves can be learned instead.
For example, a principal circle can be inferred for cell cycle analysis.
While ElPiGraph can be used for higher number of nodes (up to
1000) by checking only one topology per iteration, we found that
SimplePPT scales better with similar heuristics for trees with a
higher number of nodes (up to 2000, Supplementary Fig. S1A), at
the expense of the possibility of a less consistent tree output. To le-
verage the advantages of probabilistic mapping, scFates can also
learn a principal graph on CellRank output by considering the com-
bination of the absorption probabilities of each fate and calculated
pseudotime as a manifold reduction, from which can be applied
SimplePPT. The latter is relevant in cases where CellRank is more
successful in capturing terminal fates than principal graph methods.
The resulting trajectory, composed of connected principal points,

Tree learning

Pre-processed data

SimplePPT

Elpigraph

cell projection and annotation                pseudotime:

CellRank

F differential expression 

significant

non significant

condition X condition Y

E covariate testing

A

CB

A schematic of trajectory building pipeline

D deviation from linearity

pseudotime

cells

PCA

Diffusion maps

UMAP

...

principal point

edge

root selection

fitted expression

e
x
p

re
s
s
io

n

e
x
p

re
s
s
io

n
e

x
p

re
s
s
io

n

A

C

B

pseudotime

e
x
p

re
s
s
io

n

A

C

B

high deviation

low deviation

e
x
p

re
s
s
io

n
e

x
p

re
s
s
io

n

branch specififc

non branch specififc

pseudotime

G branch-specific early gene detection 

e
x
p

re
s
s
io

n
e

x
p

re
s
s
io

n

pseudotime

activation

activation

early gene

late gene

early module branch A

e
a

rl
y
 m

o
d

u
le

 b
ra

n
c
h

 B

Correlation to early module A

C
o

rr
e

la
ti
o

n
 t

o
 e

a
rl
y
 m

o
d

u
le

 B

0

cells

module B 

genes

H local inter-intra early module correaltion analysis

window 1 window 2mean expression of 

early modules in cells

pseudotime

gene correlations with modules

root 0

module A 

genes

C fitted features clustering 
cluster 1 pseudotimecluster 2 cluster 3

segments

fitted

expression

significant

non significant

pseudotime

e
x
p

re
s
s
io

n
e

x
p

re
s
s
io

n

B feature association test

cells

fitted

expression

null 

hypothesis

Branch A

     vs

Branch B

progenitor

branch

Fig. 1. Schematic overview of scFates functionalities: (A) Dataset is first pre-processed via commonly used tools such as scanpy, to generate a reduced space where the tree will

be learned using either ElPiGraph, SimplePPT or a combination of CellRank absorption probabilities and SimplePPT. After root selection, pseudotime and segment assignment

is then calculated for each cell. (B) Features are tested for association with that pseudotime ordering using GAM models. (C) Fitted features can be clustered and visualized in

different ways. (D) Transitions can be tested for deviation from linearity, to assess whether the bridge is likely to be an artifact and reveal transient features. (E) When two or

more conditions are present, difference of amplitude or trends between conditions can be tested. (F) Branch-specific features (transcript count, ATAC-peak,. . .) are detected

using GAM models. (G) A branch-specific feature (transcript count, ATAC-peak,. . .) is considered early if it displays activation dynamics prior to fork (left), early gene module

mean expression can be used to detect co-activation of module prior to fork (right). (H) Early biasing analysis is done by calculating local gene-to-gene correlation of the

detected early gene modules, before and around the fork. A separation of the two gene modules before the fork indicates repulsion of gene modules

2 L.Faure et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac746#supplementary-data


can be projected onto any low-dimensional space, such as UMAP or
ForceAtlas2. To orient a reconstructed trajectory, the user can
choose one or two roots manually or according to the value of a fea-
ture, such as the level of expression of a known marker. Pseudotime
positions of individual cells are then determined by projecting cells
according to their position relative to the principal points (Fig. 1A).
To account for uncertainty of a cell’s position along the trajectory,
scFates leverages the soft assignment approach of SimplePPT. For
that, each cell is assigned a probability to each principal point,
which scFates can use to generate several pseudotime mappings to
account for variability. In addition, scFates provides convenient
functions for selecting specific portions of the tree, by selecting start-
ing and endpoints, or by using pseudotime.

We chose generalized additive models (GAM) as a framework
for feature association testing, branch-DE and covariate analyses.
Such models are well suited to capture non-linear gene trends in
single-cell data and can provide amplitude measurement for priori-
tizing markers. Feature (e.g. gene expression and ATAC peaks) asso-
ciation testing is performed in a branch-specific manner for trees
(Fig. 1B). We have performed benchmarks of the GAM model
method for feature testing comparing to the alternative approaches
implemented in STREAM and Monocle3. We found that while
Monocle3’s Moran’s I does not yield amplitude measurements, that
test can run faster as compared to GAM and agrees in terms of the
detected features (Supplementary Fig. S1E and F). We have included
wrappers for Monocle3’s approach to provide a choice to a user for
feature testing. Associated features can be fitted and smoothed over
pseudotime using the same GAM model. Smoothed features can be
visualized and clustered using a distance metric of choice (Fig. 1C).
In some cases, doublets can create transitions or bridges between
two stationary populations. To detect such a situation, scFates
incorporates a test based on deviations from linearity. Such a test
consists of checking whether the expression dynamics observed in
the bridge can be explained by a linear mixture of the flanking popu-
lations (Fig. 1D, Supplementary Fig. S2), such a test can be used to
assure that the bridge is not an artifact, and uncover molecular tran-
sient features associated with these transitions (Kameneva et al.,
2021). Additionally, a function specifically designed for covariate
testing is proposed to test for differential gene expression between
conditions on the same trajectory path. This test includes an ampli-
tude difference part, as well as trend differences (Fig. 1E,
Supplementary Fig. S3).

Finally, scFates implements a set of functions for detailed ana-
lysis of bifurcations. First, early and late gene modules separating
within each branch are detected by testing for differential expression
between branches, and determining the timing of their deviation
relative to the bifurcation (Fig. 1F and G, Supplementary Fig. S5).
scFates then priorities features of early modules that contribute to
cell fate biasing prior to the bifurcation point through backtracking
of their correlations in the progenitor branch (Fig. 1H,
Supplementary Fig. S5).

In conclusion, scFates is a fast and versatile tool for in-depth tree
learning, pseudotime analysis and characterization of bifurcation

dynamics from single-cell data. It can be widely applied in develop-
mental biology, disease trajectory or perturbation analysis.
Moreover, scFates can work with any type of highly dimensional

data, allowing it to use with modalities other than gene expression,
such as single-neuron activity over time.
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