
Data and text mining

GSEApy: a comprehensive package for performing gene

set enrichment analysis in Python

Zhuoqing Fang 1, Xinyuan Liu 2 and Gary Peltz 1*

1Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA and
2Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA

*To whom correspondence should be addressed.

Associate Editor: Zhiyong Lu

Received on August 17, 2022; revised on November 4, 2022; editorial decision on November 20, 2022; accepted on November 22, 2022

Abstract

Motivation: Gene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression
changes. However, the currently available tools used to perform GSEA have a limited ability to analyze large data-
sets, which is particularly problematic for the analysis of single-cell data. To overcome this limitation, we developed
a GSEA package in Python (GSEApy), which could efficiently analyze large single-cell datasets.

Results: We present a package (GSEApy) that performs GSEA in either the command line or Python environment.
GSEApy uses a Rust implementation to enable it to calculate the same enrichment statistic as GSEA for a collection
of pathways. The Rust implementation of GSEApy is 3-fold faster than the Numpy version of GSEApy (v0.10.8) and
uses >4-fold less memory. GSEApy also provides an interface between Python and Enrichr web services, as well as
for BioMart. The Enrichr application programming interface enables GSEApy to perform over-representation ana-
lysis for an input gene list. Furthermore, GSEApy consists of several tools, each designed to facilitate a particular
type of enrichment analysis.

Availability and implementation: The new GSEApy with Rust extension is deposited in PyPI: https://pypi.org/project/
gseapy/. The GSEApy source code is freely available at https://github.com/zqfang/GSEApy. Also, the documentation
website is available at https://gseapy.rtfd.io/.

Contact: gpeltz@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene set enrichment analysis (GSEA) (Subramanian et al., 2005) is a
commonly used method for assessing whether a gene expression pat-
tern measured in a test set of cells or tissues is similar to one previ-
ously found in other cell types, disease conditions or treatment
responses. For example, GSEA has been used to identify genes/path-
ways associated with treatment response or disease prognosis
(Verstockt et al., 2019; Wang et al., 2019; Labrecque et al., 2019),
and to identify stem cell signatures in human cancer tissues (Merlos-
Suarez et al., 2011; Corominas-Faja et al., 2013). We previously
used GSEA to demonstrate that the collagen-producing myofibro-
blasts in mutated hepatic organoids were similar to those in fibrotic
liver tissue obtained from patients with liver cancer or commonly
occurring fibrotic liver diseases (Guan et al., 2021). GSEA calculates
a normalized enrichment score (NES), which indicates how similar
the differentially expressed gene sets are between the test and com-
parator datasets. However, single-cell RNA-sequencing (scRNA-
Seq) is now commonly used for transcriptomic characterization of
cells, organoids and tissues. When the datasets generated from
scRNA-Seq are huge and provide large amounts of information, the

computational challenges associated with them increase (Kiselev
et al., 2019; Lakkis et al., 2019). Although there have been several
different implementations can be used for GSEA analysis, such as
GSEA-R (Subramanian et al., 2005), GSEA-P (Subramanian et al.,
2007), fGSEA (Korotkevich et al., 2021), only GSEApy (released in
early 2017) and a recently published tool, named blitzGSEA
(Lachmann et al., 2022), are available for Python computing envir-
onment. Furthermore, GSEApy ships with additional features that
facilitate enrichment analysis, including an application program-
ming interface (API) to Enrichr web service (Chen et al., 2013;
Kuleshov et al., 2016; Xie et al., 2021), an API to BioMart web ser-
vice (Durinck et al., 2005), the single sample GSEA methodology
(Barbie et al., 2009) and a utility for gene set over-representation
analysis. GSEApy was implemented by Numpy with process-based
parallel computing support initially. However, this implementation
is not well optimized in speed and has limited utility for analyzing
larger scRNA-seq datasets that require memory of more than 32 GB
(Lachmann et al., 2022).

To enable enrichment analysis to be performed on large-scale
data, we re-implemented GSEApy in a high-performance program-
ming language (Rust). It provides better memory security,

VC The Author(s) 2022. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 39(1), 2023, btac757

https://doi.org/10.1093/bioinformatics/btac757

Advance Access Publication Date: 25 November 2022

Applications Note

https://orcid.org/0000-0002-7418-1313
https://orcid.org/0000-0002-9754-0593
https://orcid.org/0000-0001-6191-7697
https://pypi.org/project/gseapy/
https://pypi.org/project/gseapy/
https://github.com/zqfang/GSEApy
https://gseapy.rtfd.io/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac757#supplementary-data
https://academic.oup.com/


comparable speed to that of C/Cþþ and the same API as the previous
version (� v0.10.8). Furthermore, the Rust extension of GSEApy can
take full advantage of modern computers’ multi-threading parallel
computing capabilities because Python’s global interpreter lock was
released. When small gene set libraries are analyzed (e.g. 278 path-
ways in this article), it runs 3-fold faster but with four times less mem-
ory usage (Supplementary Fig. S1A). For large gene set libraries (e.g.
2860 pathways in this article), it can run 80-fold faster without much
more memory (Supplementary Fig. S1B).

2 Implementation

The GSEApy internal is written in Rust, and it consists of six tools:

• gsea: Perform enrichment analysis using the GSEA statistical

methodology.
• prerank: Pre-ranked GSEA, particularly for datasets with a small

number of replicates.
• ssgsea: Single sample GSEA (ssGSEA) methodology.
• replot: Re-generate enrichment plots from the GSEA-P output

files.
• enrichr: Perform an over-representation analysis on a list of

genes. It supports several organisms, including human, mouse,

fly, yeast, zebrafish and C.elegans.
• biomart: Convert gene ids with the BioMart API.

The GSEApy will automatically obtain gene set libraries from the
Enrichr web service for analysis. To facilitate the interpretation of en-
richment results, GSEApy provides several visualization methods
(gseaplot, heatmap, dotplot, barplot and ringplot). We also provide a
complete documentation website, including a user guide describing all
of these tools, examples and frequently asked questions.

3 Results

3.1 Computational efficiency improvement by Rust
The most computationally expensive part of GSEA is generating the
null distribution of Enrichment Scores (ES) for the P-value

calculation. GSEA performs random permutations of either the sam-
ples or the gene labels to obtain the null distribution. One thousand
permutations are set as the default parameter, which produces 1000
ES. An observed ES is then compared with the 1000 shuffled ES to
calculate a P-value. We previously implemented a Numpy version
that performed the GSEA. However, the Numpy version consumed
a huge amount of memory while using multi-CPUs, an issue
reported by many GSEApy users. To address this, we re-
implemented the GSEA algorithm in Rust. When we compared the
time and memory cost between the Numpy (v0.10.8) and Rust ver-
sion with a gene permutation experiment (22 922 genes, 278 or
2860 pathways, 1000 permutations), we found that the Rust imple-
mentation was 3- to 80-fold faster in run time with one thread
(Supplementary Fig. S1A). The run time with eight threads was
decreased to a few minutes for both versions, but the Rust version
was still 2-fold faster, and the memory cost was reduced from 50
GB to 1.4 GB (for the 2860 pathways) (Supplementary Fig. S1B).
We also compared the execution speed of fGSEA, blitzGSEA,
GSEA-P, GSEA-R and GSEApy on a single thread (Supplementary
Fig. S1C). While it took over 1 hour for GSEA-R to calculate the sta-
tistics for 2860 pathways, GSEA-P and GSEApy took 3.7 and
5.1 minutes, respectively. fGSEA and blitzGSEA outperformed the
other tools since their execution time was <1 minute. In a sample
permutation experiment, the Rust binding version was almost 3-fold
faster than GSEA-R (Supplementary Fig. S1D), and the Numpy and
Rust versions had similar memory costs for small datasets
(Supplementary Fig. S1E).

3.2 Enrichment analysis and data visualization
The improvement in computational efficiency enables GSEApy to
perform enrichment analysis for large-scale samples. To illustrate
how GSEApy could be used for biological discovery, we analyzed a
publicly available scRNA-seq dataset (GSE96583) of peripheral
blood mononuclear cells (PBMCs) obtained from control and inter-
feron b-treated subjects (Kang et al., 2018). After generating the log
normalized counts using Scanpy (Wolf et al., 2018), we analyzed the
annotated subset of CD14þ monocytes (2215 control and 2147
stimulated cells). We performed GSEA (1000 permutations, sample
permutation and 6036 pathways) on the 4362 transcriptomes of the
CD14þ monocytes. The interferon b production pathway was sig-
nificantly enriched (P-value < 0.01, False Discovery Rate (FDR) <

Fig. 1. An example of enrichment analysis performed using GSEApy. (A) GSEA enrichment plot of the regulation of interferon-beta production pathway. (B) A heatmap shows

the leading-edge genes that appear in the ranked list at or before the point at which the running ES reaches its maximum deviation from zero identified in (A). (C, D) over-rep-

resentation analysis shows the top 10 significantly enriched pathways of up-regulated genes (C) and down-regulated genes (D), respectively. % Path is DEGs, the percentage of

DEGs that overlapped with the pathway of interest. Combined score is defined by the Enrichr (Xie et al., 2021)

2 Z.Fang et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac757#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac757#supplementary-data


0.01, NES¼3.262) in the stimulated CD14þ monocytes (Fig. 1A
and B). Next, we identified 1717 differentially expressed genes
(DEGs) (Wilcoxon test with FDR < 0.05) using the rank_ge-
nes_groups function in Scanpy. An over-representation analysis
(GSEApy’s Enrichr API) was performed on the 687 up-regulated
and the 1030 down-regulated DEGs. The up-regulated genes indi-
cated that the interferon signature was activated in the interferon b-
stimulated cells (Fig. 1C), while the down-regulated genes were
associated with general cellular functions, such as protein transla-
tion (Fig. 1D). This analysis confirms the effect of interferon treat-
ment, which indicates that this dataset can be used for subsequent
investigations.

4 Conclusion

GSEApy provides a fast and straightforward way to perform enrich-
ment analysis. It requires minimal arguments, provides clear output
and operates from both the command line and Python environment,
which maximizes the ease of use, accommodates novice pro-
grammers and supports large-scale dataset analysis. It also can
quickly generate high-quality, publication-ready plots. GSEApy will
be one of the fundamental packages for enrichment analysis in
Python.

Funding

This work was supported by a National Institute of Health (National Institute

for Drug Addiction) award [5U01DA04439902 to G.P.]

Conflict of Interest: The authors declare that they have no competing

interests.

Data availability

The GSEApy source code is freely available at https://github.com/
zqfang/GSEApy.

References

Barbie,D.A. et al. (2009) Systematic RNA interference reveals that oncogenic

KRAS-driven cancers require TBK1. Nature, 462, 108–112.

Chen,E.Y. et al. (2013) Enrichr: interactive and collaborative HTML5 gene

list enrichment analysis tool. BMC Bioinformatics, 14, 128.

Corominas-Faja,B. et al. (2013) Stem cell-like ALDH(bright) cellular states in

EGFR-mutant non-small cell lung cancer: a novel mechanism of acquired re-

sistance to erlotinib targetable with the natural polyphenol silibinin. Cell

Cycle, 12, 3390–3404.

Durinck,S. et al. (2005) BioMart and bioconductor: a powerful link between

biological databases and microarray data analysis. Bioinformatics, 21,

3439–3440.

Guan,Y. et al. (2021) A human multi-lineage hepatic organoid model for liver

fibrosis. Nat. Commun., 12, 6138.

Kang,H.M. et al. (2018) Multiplexed droplet single-cell RNA-sequencing

using natural genetic variation. Nat. Biotechnol., 36, 89–94.

Kiselev,V.Y. et al. (2019) Challenges in unsupervised clustering of single-cell

RNA-seq data. Nat. Rev. Genet., 20, 273–282.

Korotkevich,G. et al. (2021) Fast gene set enrichment analysis. bioRxiv.

https://doi.org/10.1101/060012.

Kuleshov,M.V. et al. (2016) Enrichr: a comprehensive gene set enrichment

analysis web server 2016 update. Nucleic Acids Res., 44, W90–W97.

Labrecque,M.P. et al. (2019) Molecular profiling stratifies diverse phenotypes

of treatment-refractory metastatic castration-resistant prostate cancer.

J. Clin. Invest., 129, 4492–4505.

Lachmann,A. et al. (2022) blitzGSEA: efficient computation of gene set enrich-

ment analysis through gamma distribution approximation. Bioinformatics,

38, 2356–2357.

Lakkis,J. et al. (2021) A joint deep learning model enables simultaneous batch

effect correction, denoising and clustering in single-cell transcriptomics.

Genome Res., 31, 1753–1766.

Merlos-Suarez,A. et al. (2011) The intestinal stem cell signature identifies colo-

rectal cancer stem cells and predicts disease relapse. Cell Stem Cell, 8,

511–524.

Subramanian,A. et al. (2007) GSEA-P: a desktop application for gene set en-

richment analysis. Bioinformatics, 23, 3251–3253.

Subramanian,A. et al. (2005) Gene set enrichment analysis: a

knowledge-based approach for interpreting genome-wide expression pro-

files. Proc. Natl. Acad. Sci. USA, 102, 15545–15550.

Verstockt,B. et al. (2019) Expression levels of 4 genes in Colon tissue might be

used to predict which patients will enter endoscopic remission after vedoli-

zumab therapy for inflammatory bowel diseases. Clin. Gastroenterol.

Hepatol., 18, 1142–1151.

Wang,Z. et al. (2019) Identification of seven-gene signature for prediction of

lung squamous cell carcinoma. Onco. Targets Ther., 12, 5979–5988.

Wolf,F.A. et al. (2018) SCANPY: large-scale single-cell gene expression data

analysis. Genome Biol., 19, 15.

Xie,Z. et al. (2021) Gene set knowledge discovery with Enrichr. Curr. Protoc.,

1, e90.

GSEApy 3

https://github.com/zqfang/GSEApy
https://github.com/zqfang/GSEApy
https://doi.org/10.1101/060012

