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Abstract

Motivation: Technological advances have enabled us to profile single-cell multi-omics data from the same cells,
providing us with an unprecedented opportunity to understand the cellular phenotype and links to its genotype. The
available protocols and multi-omics datasets [including parallel single-cell RNA sequencing (scRNA-seq) and single-cell
ATAC sequencing (scATAC-seq) data profiled from the same cell] are growing increasingly. However, such data are
highly sparse and tend to have high level of noise, making data analysis challenging. The methods that integrate the
multi-omics data can potentially improve the capacity of revealing the cellular heterogeneity.

Results: We propose an adaptively weighted multi-view learning (scAWMYV) method for the integrative analysis of
parallel scRNA-seq and scATAC-seq data profiled from the same cell. scAWMV considers both the difference in
importance across different modalities in multi-omics data and the biological connection of the features in the
scRNA-seq and scATAC-seq data. It generates biologically meaningful low-dimensional representations for the
transcriptomic and epigenomic profiles via unsupervised learning. Application to four real datasets demonstrates
that our framework scAWMYV is an efficient method to dissect cellular heterogeneity for single-cell multi-omics data.
Availability and implementation: The software and datasets are available at https:/github.com/pengchengzeng/
scAWMV.

Contact: zhixianglin@cuhk.edu.hk

Supplementary information: Supplementary data are available at Bioinformatics online.

et al., 2018), SCALE (Xiong et al., 2019), cisTopic (Gonzalez-Blas
et al., 2019) and other methods. However, the aforementioned meth-
ods are all designed for analyzing one type of genomic feature.

1 Introduction

The recent advances in single-cell technologies have enabled us to

probe multiple biological layers. These technologies include single-cell
RNA sequencing (scRNA-seq) that profiles transcription, single-cell
ATAC sequencing (scATAC-seq) that profiles accessible chromatin
regions (Macaulay ez al., 2017; Mezger et al., 2018) and other meth-
ods. There are increasing demands for computationally efficient meth-
ods for processing and analyzing the datasets (Rotem et al., 2015;
Rozenblatt-Rosen et al., 2017) brought by these technologies. For ex-
ample, clustering methods that group similar cells into sub-populations
are often used as the first step in the analysis of single-cell genomic
data. The clustering methods for scRNA-seq data include SIMLR
(Wang et al., 2017), SC3 (Kiselev et al., 2017), SAFE-clustering (Yang
et al., 2018), SOUP (Zhu et al., 2019), SHARP (Wan et al., 2020) and
other methods. The clustering methods for scATAC-seq data include
Cusanovich 2018 (Cusanovich ef al., 2018), scABC (Zamanighomi
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Recently, the technological advances have enabled us to profile
high-dimensional multi-omics data at an unprecedented resolution,
and the available protocols and multi-omics datasets are growing at
an increasing pace. For example, scM&T-seq (Angermueller ez al.,
2016) links transcriptional and epigenetic heterogeneity, scNMT-
seq (Clark et al., 2018) enables joint profiling of chromatin accessi-
bility, DNA methylation and transcription in single cells, and more
protocols have been developed for joint profiling of chromatin and
transcriptome, including sci-CAR-seq (Cao et al., 2018), scCAT-seq
(Liu et al., 2019), Paired-seq (Zhu et al., 2019), SNARE-seq (Chen
et al., 2019), SHARE-seq (Ma et al., 2020) and Paired-Tag (Zhu
et al., 2021). The resulting single-cell multi-omics datasets can pro-
vide insights into the cell’s phenotype and links to its genotype
(Macaulay ez al., 2017). However, such data tend to have high level
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of noise and are highly sparse (Colomé-Tatché and Theis, 2018).
These characteristics bring challenges for analyzing the multi-omics
single-cell data. In order to analyze the complex biological process
varying across cells, we need to integrate different types of genomic
features via flexible but rigorous computational methods. The meth-
ods of data integration are growing recently, and they can be divided
into three categories: (i) Non-negative matrix factorization (NMF)-
based methods. coupleNMF (Duren et al., 2018) is based on exten-
sions of NMF, and the connection between chromatin accessibility
and gene expression builds upon prediction models trained from
bulk data with diverse cell types. LIGER (Welch et al., 2019) imple-
ments integrative NMF to infer a shared low-dimensional space in
multiple single-cell datasets. scAl (Jin et al., 2020) aggregates epige-
nomic data in cell subpopulations that exhibit similar gene expres-
sion and epigenomic profiles through iterative learning in an
unsupervised manner. JSNMF (Ma et al., 2022) is based on jointly
semi-orthogonal NMF and it enables effective and accurate integra-
tive analysis of single-cell multiomics data. (ii) Methods based on
probabilistic generative models. scACE (Lin ez al., 2019) is a model-
based approach to jointly cluster single-cell chromatin accessibility
and single-cell gene expression data. It does not rely on training data
to connect the two data types and allows for statistical inference of
the cluster assignment. MOFA+ (Argelaguet et al., 2020) is based
on extensions of factor analysis model and was designed to deal
with increasingly large-scale multi-omics datasets. scAMACE
(Wangwu et al., 2021) is a model-based approach to the joint ana-
lysis of single-cell data on chromatin accessibility, gene expression
and methylation, and it develops an efficient expectation-maximiza-
tion algorithm to perform statistical inference. (iii) Other machine
learning-based methods. Seurat (version 3) (Stuart et al., 2019)
anchors diverse datasets together with the capability of integrating
single-cell measurements not only across scRNA-seq technologies,
but also across different data modalities, that is, data types within
single cells, for example, scRNA-seq data, scATAC-seq data and
DNA methylation data. coupleCoC (Zeng et al., 2020) and
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coupleCoC+ (Zeng and Lin, 2021) are transfer learning methods
based on the information-theoretic co-clustering framework for the
integrative analysis of single-cell genomics data. Seurat (version 4)
(Hao et al., 2021) introduces the ‘weighted nearest neighbor’ ana-
lysis to learn the relative utility of each genomic feature in each cell,
enabling an integrative analysis of multi-omics data.

Two important issues should be taken into account while inte-
grating single-cell multi-omics data. The first issue is how much
weight should be assigned to each data modality. The information
carried by different types of genomic features are complementary
and it is desirable to integrate them. However, the data from differ-
ent types of genomic features can have different levels of noise. As
an example, consider the setting where scRNA-seq and scATAC-seq
are profiled on the same cells. scATAC-seq data tend to have higher
level of noise and higher degree of sparsity, and it will be intuitive to
give smaller weight to scATAC-seq data compared with scRNA-seq
data, while integrating the two data modalities. Another issue is
how to link data from multiple omics in a way that is biologically
meaningful. In the above setting, a subset of features in scATAC-seq
data are linked with scRNA-seq data, because promoter accessibil-
ity/gene activity score are directly linked with gene expression.
Effectively connecting the linked features is expected to be helpful in
the integrative analysis of multi-omics data.

In this work, we present scAWMV—an adaptively weighted
multi-view learning framework to integrate scRNA-seq data and
scATAC-seq data measured from the same cells. Utilizing a unified
matrix factorization model, our framework not only automatically
assigns a weight to each modality of multi-omics data, but also con-
nects the linked features across data types by adding a constraint
(Fig. 1A). Unsupervised learning of this framework will result in bio-
logically meaningful low-rank matrices that represent the transcrip-
tomic and epigenomic profiles. These matrices allow for inferring
low-dimensional representations (Fig. 1B), the identification of
factor-specific marker genes (Fig. 1C) and the identification of cell
types (Fig. 1D). In comparison with the recent multi-omics data
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Fig. 1. Overview of scAWMUV. (A) The sketch of the objective function in scAWMYV, which is minimized via finding the optimal matrix factorization. It includes four components:
(1) reconstruction errors by NMF for the data matrices from scRNA-seq and scATAC-seq, and each factorization is assigned an adaptive weight; (2) the regularization toward a
common consensus for all the cell loading matrices; (3) the constraint on the gene loading matrices obtained from the NMF of the linked data, that is, gene expression data matrix in
scRNA-seq and gene activity score matrix in scATAC-seq; (4) the penalty term for the adaptive weights. (B) Based on the common latent structure from (A), scAWMYV uses Louvain
clustering and groups the cells in the same clusters in the heatmap of the common latent structure. (C) scAWMYV ranks genes based on the gene loading matrix for scRNA-seq data
from (A). For example, genes 1-9 are labeled with the highest loadings. (D) scAWMYV assigns cell type labels to cell clusters with known marker genes
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integration methods in four published datasets, we demonstrate that
our framework is efficient in revealing cellular heterogeneity.

2 The methodology

In this section, we first introduce the frameworks of single-view
NMF (Wang and Zhang, 2013) and multi-view NMF (Liu et al.,
2013), and then extend them to our framework of adaptively
weighted multi-view NMF for single-cell multi-omics data. We treat
scATAC-seq data and scRNA-seq data that are measured from the
same cells as two views of the single-cell genomic data. We assume
that a subset of the features, that is, gene activity score in scATAC-
seq data is linked with the gene expression in scRNA-seq data; and
the other features, that is, accessibility of distal peaks in scATAC-
seq data, are not directly linked with the genes in scRNA-seq data.
We expect to improve the clustering performance of the cells by (i)
integrating these views of data for uncovering the common shared
structure; (ii) automatically assigning weights for adjusting for the
importance of each view and (iii) adding a constraint to the linked
features across data types for considering the biological dependency
across different types of genomic features.

2.1 Single-view NMF

Let X be a p by n data matrix, representing the data on p features of
samples. A NMF X = WHT gives us a ‘soft’ clustering of the samples
(Duren et al., 2018): the ith column of basis matrix W gives the mean
vectors of the ith cluster of samples and the jth row of coefficient ma-
trix H gives the assignment weights of the jth sample to the clusters.
The goal of NMF framework (Wang and Zhang, 2013) is to obtain the
factorizations by solving the following optimization problem:

argmin ||X — WHT |2, (1)
W>0,H>0

where || - || is the Frobenius norm and W > 0, H > 0 stand for the
constraints that all elements in the matrix are non-negative.

2.2 Multi-view NMF

Assume that the data have # views, and let {X(, X® ... X} de-
note the data of all the views. Here, for each view X*), we have the
single-view NMF: X = W® (H®)T, For different views, we have
the same number of samples but allow for different number of fea-
tures. Thus, H")s are of the same shape but W*)s may differ along
row dimension across multiple views. To integrate information from
multiple views in clustering, Liu et al. (2013) developed multi-view
NMF framework to cluster multiple views simultaneously to un-
cover the common latent structure shared by multiple views. A sam-
ple in different views would be assigned to the same cluster with
high likelihood, thus the coefficient matrices H, H® ... H®"
learnt from these views would be required to be softly regularized
toward a common consensus H*. The goal of multi-view NMF
framework (Liu et al., 2013) is to obtain the factorizations in mul-
tiple views by solving the following optimization problem:

argmin (XY = WO H)|2 + A HY QW — H|[}),
W®>0HY>0, v=1
H*">0
)
where Q) = Diag(z W,(VI),Z"W) 1; . Z ,K) is a diag-

onal matrix; K denotes the number of clusters of the samples; Wi_k)
represents the element of the ith row and the kth column in the ma-
trix W® and p® denotes the number of features for the vth view.
Here, O is a normalization term for making H®) in multiple views
comparable at the same scale (Liu et al., 2013). The hyperparameter

v) gives the relative weight between the standard NMF reconstruc-
tion error || X® — W (H®)T|12 and the disagreement between the
coefficient matrix and the consensus matrix [[H® QW — H*||% for
the vth view.

2.3 The proposed framework
We now extend the multi-view NMF (Liu et al., 2013) to model single-
cell multi-omics data. The gene activity score in scATAC-seq data is
linked with gene expression in scRNA-seq data, and the accessibility of
distal peaks in scATAC-seq data is not directly linked with the genes in
scRNA-seq data. We use the index symbols (v, 1) and (v,2) to represent
the linked part and the unlinked part of data in the vth view, respective-

X(u.l)
|: X(v.Z)
p® = p@ 4 p@2)  representing the sum of the number of features in
the linked matrix X 1) and that in the unlinked matrix X“2), Here, we
assume that [X( ]p 11y, (i.e. gene expression) is directly linked with
[X@D] ey, (L€ gene activity score) and [X(12 >] 12y, (€. gene ex-
press10n) is not directly linked with [X(22)] 22 (1 e acce551b1l1ty of dis-
tal peaks). We consider these submatrices X , X2 X2 and
X(©22) a5 the four views of single-cell genomic datasets. We propose the
following optimization problem (illustrated in Fig. 1A):

argmin

WD >0,HD >0, ZZ (w®D]|x@h —

H" >0,v,l=1,2=11=

ly. We write the vth view of data as X®) = } , where
PV xn

vl)(H(v,l))TH%

+ 2 DHED QD — H[[7) + W — WD

2 2
) CT )
7

+ g Ew Inw'™" (3)

v=1 =1

2 2
s.t.ZZw(”'l) =1

where Q) D1ag(z ,1 7ZP<L ] ,gl . ZPM ), and
W}\ZJ) represents the element of the ith row and the kth column in
the matrix W®9, Note that W(1'1) and W) have the same number
of rows, that is, pt') = pD under the assumption that X1 s
directly linked to X1, and the number of columns of both W(1.)
and W21 is equal to the number of factors K.

The naive integration of different views by multi-view NMF does
not consider the difference in the relative importance across different
v1ews Therefore, we assign each view X w1th an adaptlve weight

o®) in our framework (Equation 3). yzy | Zl oDlnw®? repre-
sents the penalty term for these weights. 7 is the hyperparameter which
controls the distribution of the adaptive weight: when y is smaller, the
view that has less reconstruction error NMF (which suggests that the
factors carry more effective information) will be given higher weight.
More details for the intuition of y and the weights are provided in
Section 2.4. The features in the linked data X' and X" are con-
nected, because gene expression is positively associated with gene activ-
ity. We further encourage the difference between the basis matrices
WD and W to be small. It accounts for the dependence between
gene expression in single-cell transcriptomic data and gene activity
score in single-cell chromatin accessibility data. The hyper Earameter B
controls the strength of the constraint [|[W1D) — W& ||, The rules
for choosing the hyperparameters 2*Y (v,1 = 1,2), ﬁ, y and the num-
ber of factors K will be discussed in Section 2.5. We call this adaptively
weighted multi-view learning framework scAWMYV for short.

2.4 Optimization algorithm
We optimize the objective function in Equation (3) by an iterative
update procedure:

oEDXEHED 500 5 YR+ pwi
D (WD (HE)THED), 200 S0 wis) s (HED? + pwiD
”]\' Z)X Z)H[ Zl+/ll 2) Eﬂ lL7)H7k
oD (W Z\(HHZ) H@2), u’\zx 5 sz ”,(H‘ z,) ’

vV=3-vv=12;

(1) (1)
Wi = Wik

(v2) (v.2)
W™ = Wiy

D ((X n) Wy MJF/.M,HM(

HED  geh —, vl=12
ik D (HED (Weh)TWeD) g j6DHED
XD — W (e TR
exp{fl_i‘()lh
(wl) — ! d=1,2;
o XED — we u( HODYT|2 ! '
Z(erl xl{l P\

Nt

2 2 ey )
H = DORED R .
Yo i A

where (:);, represents the element of the ith row and the kth
column in the matrix (-). Both @®% and H* have exact solutions in
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each iteration. The intuition for ®®" and y becomes clear by look-
ing at the update for »?): first, the views that have smaller recon-
struction error in NMF (i.e. ||X®) — W) (H@D)T|12) will be given
higher weight; second, the hyperparameter y acts as a bandwidth
parameter. We stop the iterations when the difference of the loss
function (Equation 3) is less than 107 between two adjacent itera-
tions. The details for the derivation of these updating rules are given
in the Supplementary Materials.

2.5 Selection of hyperparamete[s( )

We firstly obtain the initial solutions W
solving the optimization problems:

and A" (v,l=1,2) by

argmin [|X1 — WOD(HED)T,
Wi ‘H(V./J

v,1=1,2,

using an approach similar to that in Liu et al. (2013), and use them
as the initialization for our optimization problem (Equation 3). We
initialize the adaptive weights ®®" as 1 for v, =1,2. We fix the
value of the hyperparameter 2 as 0.01 for v,/ = 1,2, as suggested
in multi-view NMF by Liu et al. (2013). We choose the
hyperparameter

vl) , ~(vl)

(H

g Saa S o IXE) W

)11

(4)
5, (1,1) =, (2,1)
W — W

5

and choose the hyperparameter

Wl _ W W \T 2
y_maX{HX W_(H ) ||F|;1/,l:l,2 . (5)

lné®9

@)

The number of factors K can be determined using an approach simi-
lar to Brunet et al. (2004). In this work, we set K =20 in all the real
datasets. We will discuss in great detail the sensitivity of the choices
of the hyperparameters in Section 3.4.

2.6 Evaluation of the clustering results

We first compute the cluster of cells by Louvain method (Blondel
et al., 2008) once we obtain the consensus matrix H*, and then
evaluate the clustering performance by three criteria: normalized
mutual information (NMI), adjusted Rand index (ARI) (Christopher
et al., 2008) and the Residual Average Gini Index (RAGI) score
(Chen et al., 2019).

NMI and ARI require the known ground-truth labels of cells,
and we use the cell type labels of gene expression data provided in
the real datasets as the ground-truth labels. Assume that G is the
known cell type labels and P is the predicted clustering assignments,
we then calculate NMI as

1(G; P
E(G)-E(P)’

where I(G; P) represents the mutual information over G and P, and
E(-) represents the entropy. Assume that 7 is the total number of sin-
gle cells, ng; is the number of cells assigned to the ith cluster in Q,
ng, is the number of cells belonging to the jth cell type in G and #;;
is the number of overlapping cells between the ith cluster in Q and
the jth cell type in G. As a corrected-for-chance version of the Rand
index, ARI is calculated as

= (4) [ (9) =) (5]
5 09) = (5] 509 (5 )

Higher values of NMI and ARI indicate better clustering
performance.

RAGI score calculates the difference between the variability of
marker gene expression across cell clusters and the variability of
housekeeping gene expression across cell clusters. We note that no
cell type labels are required when computing RAGI score on

scRNA-seq data. First, we manually find the marker genes using the
CellMarker database developed by Zhang et al. (2019) and find the
housekeeping genes using the HRT Atlas v1.0 database developed
by Hounkpe et al. (2021). Second, we compute Gini index (Gini,
1997) for each marker gene and each housekeeping gene. The Gini
index measures how imbalanced the expression of a gene is across
cell clusters. Third, based on the sets of Gini index values for marker
genes and housekeeping genes, we calculate the difference between
the mean Gini index for marker genes and the mean Gini index for
housekeeping genes, that is, the RAGI score. Higher RAGI score
represents better separation of the cell clusters.

2.7 Data preprocessing and feature selection

In order to get the linked data, we first compute the gene activity
score using the gene scoring approach by Chen et al. (2019): the
distance-weighted sum of reads (peak values in scATAC-seq data)
within or near the region gives the accessibility at each transcription
start site. Second, we extract the set of genes that have both gene ex-
pression and gene activity score, which can be considered as the
linked features. Third, we use the scRNA-seq data to choose 2000
most highly variable genes from this set by R toolkit Seurat (Butler
et al., 2018; Stuart et al., 2019). We then obtain the linked data
[XED],5 000xn and (XD, 0005, We also use the R toolkit Seurat to
choose 2000 most highly variable genes from the set of genes that
are not included in the linked data, and we have the unlinked
scRNA-seq data [X(12)], ;00 . We choose 5000 unlinked features in
scATAC-seq data, corresponding to the top 5000 largest summation
of peak values over all cells, and we have the unlinked scATAC-seq
data [XZ?]; 100..,,- We take log transformation for scRNA-seq data
to alleviate the effect of extreme values in the data matrices. Before
implementing our algorithm, we normalized each of these data
matrices, including [X"D]; 09, X1 0000 [X"2]5 000k and
[X@2)s 500xn» to make different views of data comparable by divid-
ing the sum of all the entries within that data matrix.

3 Results

In this section, we evaluated our methodology in four real datasets
of single-cell multiome ATAC and gene expression, including per-
ipheral blood mononuclear cell (PBMC) from healthy donors—
granulocytes removed through cell sorting (one dataset has 2711
cells and another one has 11 898 cells), frozen healthy human brain
tissue (3233 cells) and fresh frozen lymph node with B-cell lymph-
oma (14 566 sorted nuclei). All of these datasets are processed by
Cell Ranger ARC 2.0.0 and are available at https://www.10xgenom
ics.com/. We compared our method scAWMYV with scAl (Jin et al.,
2020), MOFA+ (Argelaguet et al., 2020), Seurat V4 (Hao et al.,
2021) and multi-NMF (Liu et al., 2013). To check whether the con-
straint on the linked data can improve the clustering performance,
we compared a simplified version of scAWMYV, where the objective
function has no constraint on the linked data (i.e.
BIIWED — W&D||2) compared with that in scAWMYV, and we de-
note it as sScAWMV-no-link. To check whether the adaptive weights
on different views can improve the clustering performance, we com-
pared another simplified version of scAWMYV, where the objective
function has no adaptive weights compared with that in scAWMYV,
and we denote it as scAWMV-no-weights. To check whether the
linked part in the datasets is helpful in clustering the cells, we also
considered the case where the gene activity score of scATAC-seq
data (i.e. X2D) is removed from the input, and we denote it as
scAWMV-no-X@1, Except for Seurat V4 (Hao et al., 2021) which
can produce clusters of cells by itself, we implemented Louvain clus-
tering on the low-dimensional representation of cells after dimen-
sion reduction by the other baseline methods: the cell loading matrix
H given by scAl (Jin et al., 2020), the latent factor Z given by
MOFA+ (Argelaguet et al., 2020) and the consensus V* given by
multi-NMF (Liu et al., 2013). (Here, the notations H, Z and V* are
consistent with that in their original publications.) We used the
NMI, ARI and RAGI to evaluate the clustering results (Table 1).
When computing the cluster memberships of cells in four real
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datasets by all methods except Seurat V4, we set the numbers of
clusters the same as that given by the secondary analysis outputs
from https://www.10xgenomics.com/.

3.1 Example 1: application to PBMCs from healthy

donors

In the first example, we studied the paired single-cell multiome
ATAC and gene expression of cryopreserved human PBMCs from
two healthy female donors (Examples 1A and 1B). The numbers of
cells in Examples 1A and 1B are 2711 and 11 898, respectively. We
set the number of clusters in Example 1A as 9 and set the number of
clusters in Example 1B as 17 when implementing Louvain method
for clustering. These numbers of clusters are given by the analysis of
gene expression data on the 10x Genomics website. Examples 1A
and 1B in Table 1 show the results of clustering the cells. Our
method performs the best in NMI, ARI and RAGI among the eight
methods in Example 1A, and performs the best in NMI and RAGI
among the eight methods in Example 1B. In both Examples 1A and
1B, the value of RAGI given by Seurat V4 ranks the joint first. On
the one hand, both scAWMV-no-link and scAWMV-no-weight have
slightly worse clustering results compared with scAWMYV. This sug-
gests that the removal of the constraint on the linked data or adap-
tive weights in the objective function of scAWMYV has negative
impacts on the clustering performance. On the other hand, when we
excluded the data matrix X2 from the input datasets of our
method, the clustering performance worsens. It suggests that incor-
porating the gene activity score in scATAC-seq data and the connec-
tion between gene activity score and gene expression in scRNA-seq
data are helpful in improving the result of clustering the cells.

We compared the heatmaps of the common latent structure
(H*)T given by scAWMYV and the latent structure H given by scAl in
Figure 2A and B for Example 1A, and in Figure 3A and B for
Example 1B, respectively. They show that the consensus (H*)T given
by scAWMYV can detect more clear patterns than that given by scAl.
In Example s1A and 1B, we assigned the cell type labels for all the
cell clusters based on marker genes (Supplementary Figs S1 and S2).
We then assigned cell types to the factors in the common factor
loading matrix (H*)" by the following rule: we selected the top 200
entries in each row of (H*)", calculated the proportions of the cell-
type labels corresponding to these selected entries and chose the cell
type with the largest proportion as the cell type for the factors.
Factors 1 and 2 in Example 1A correspond to natural killer cells
(proportion = 96%) and B cells (proportion = 97%), respectively.
Factors 1 and 2 in Example 1B correspond to B cells (proportion
=91%) and natural killer cells (proportion = 89%), respectively.
The marker genes for natural killer cells and B cells (Zhang et al.,
2019) also tend to have high scores in the first two factors in W)
and W?1 (Fig. 2C and D for Example 1A and Fig. 3C and D for
Example 1B), which is in agreement with the cell-type annotation

Table 1. The results of clustering the cells in four real datasets for three

examples, evaluated by NMI, ARI and RAGI score

for (H*)T, and demonstrates that the entries in the feature loading
matrices provide biological insight on the factors.

We also studied the gene ontology (GO) enrichment analysis for
the feature loading matrices W11 and W@, which correspond to
gene expression data and gene activity score in chromatin accessibility
data, respectively. We selected the top 200 linked genes with large val-
ues in each column of W1 and W2V and utilized Metascape
(Zhou et al., 2019) to implement GO enrichment analysis. The
enriched biological processes and pathways for gene expression data
and gene activity score tend to be consistent and they agree with the
biological function of the underlying cell types that the factors repre-
sent (Supplementary Tables S1 and S2). Factor 1 in Example 1A corre-
sponds to natural killer cells, which is a type of cytotoxic lymphocyte
critical to the innate immune system that belong to the rapidly expand-
ing family of innate lymphoid cells and represent 5-20% of all
circulating lymphocytes in humans (Arachchige and Shavinda, 2021).
As demonstrated in Supplementary Table S1, the first columns in
WD and WD are both enriched for cell activation’ (log(g-value)
= -14.57 for WV and log(g-value) = =10.75 for W), ‘regulation
of cell activation’ (log(g-value) = —=10.84 for W1 and log(g-value)
= -11.31 for W®@D) and ‘inflammatory response’ (log(g-value)
= —6.24 for W(I'D) and log(g-value) = -8.29 for W), Factor 2 in
Example 1A corresponds to B cells, which functions in the humoral
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Fig. 2. Simultaneously analyzing the paired single-cell multiome ATAC and gene ex-
pression for PBMCs in Example 1A. (A) Heatmap of the common latent structure
(H*)" given by scAWMYV. We grouped the cells in the same clusters based on
Louvain clustering. (B) Heatmap of the latent structure H given by scAl. We
grouped the cells in the same clusters based on Louvain clustering. (C) Ranking of
known cell-type-specific marker genes in factors 1 and 2 from W1 in scAWMV.
(D) Ranking of known cell-type-specific marker genes in factors 1 and 2 from W1
in scAWMV. Note that the marker genes for B cells and natural killer cells in
PBMCs are collected from CellMarker database (Zhang et al., 2019)

Example 1A Example 1B Example 2 Example 3

Clustering methods (n=2711) (n=11898) (n=3233) (n=14 566)

NMI ARI RAGI NMI ARI RAGI NMI ARI RAGI NMI ARI RAGI
scAl 0.65 0.47 0.42 0.62 0.37 0.39 0.64 0.44 0.29 0.47 0.18 0.25
MOFA+ 0.60 0.43 0.45 0.58 0.39 0.39 0.54 0.33 0.28 0.42 0.22 0.25
Seurat V4 0.60 0.39 0.48 0.60 0.43 0.40 0.62 0.40 0.38 0.48 0.31 0.28
multi-NMF 0.68 0.48 0.44 0.61 0.43 0.36 0.64 0.44 0.32 0.42 0.24 0.24
scAWMV-no-link 0.68 0.53 0.47 0.60 0.34 0.36 0.63 0.43 0.31 0.52 0.35 0.26
scAWMV-no-weight 0.69 0.46 0.43 0.59 0.37 0.39 0.64 0.40 0.31 0.43 0.31 0.25
scAWMV-no-X21 0.67 0.50 0.46 0.59 0.45 0.33 0.66 0.47 0.31 0.52 0.30 0.22
SCAWMV 0.71 0.54 0.48 0.64 0.38 0.40 0.69 0.45 0.31 0.54 0.35 0.28

Notes: NMI and ARI were computed by the cell type labels provided by the analysis of gene expression data on the 10x Genomics website. RAGI was com-

puted using marker genes and housekeeping genes. The bold numbers represent the best clustering results.
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Fig. 3. Simultaneously analyzing the paired single-cell multiome ATAC and gene ex-
pression for PBMCs in Example 1B. (A) Heatmap of the common latent structure
(H)T given by scAWMYV. We grouped the cells in the same clusters based on
Louvain clustering. (B) Heatmap of the latent structure H given by scAl. We
grouped the cells in the same clusters based on Louvain clustering. (C) Ranking of
known cell-type-specific marker genes in factors 1 and 2 from W1 in scAWMV.
(D) Ranking of known cell-type-specific marker genes in factors 1 and 2 from W1
in scAWMV. Note that the marker genes for B cells and natural killer cells in
PBMCs are collected from CellMarker database (Zhang et al., 2019)

immunity component of the adaptive immune system (Murphy, 2012).
The second columns in W1 and W& are both enriched for ‘regula-
tion of immune effector process’ (log(g-value) = -5.64 for W1 and
log(g-value) = -9.07 for W21)) and ‘positive regulation of cytokine
production’ (log(g-value) = —4.73 for W'V and log(g-value) = —5.40
for WZ1)), We observed the same trend in the enrichment analysis for
the feature loading matrices W(') and W@ in Example 1B
(Supplementary Table S2). These results suggest that the feature load-
ing matrices W11 and W1 boost GO enrichment analysis and pro-
vide rich information on the biological interpretation of the factors.
Also, the consistent trends in W) and W) indicate the effect of
the constraint || W1 — W(2'1)||§ in scAWMYV (Equation 3).

3.2 Example 2: application to frozen healthy human

brain tissue (3k)

In the second example, we explored the paired single-cell multiome
ATAC and gene expression of flash frozen healthy human brain tis-
sue (cerebellum). The number of cells is 3233. We set the number of
clusters as 8, given by the analysis of gene expression data on the
10x Genomics website. The clustering results in Example 2 from
Table 1 show that scAWMYV performs the best in NMI, scAWMV-
no-X2" performs the best in ARI and Seurat V4 performs the best
in RAGI among the eight methods. The clustering performance by
scAWMYV is slightly better than that by scAWMV-no-link and
scAWMYV-no-weight. In Figure 4A and B, we compared the heat-
maps of the common latent structure (H*)” given by scAWMYV and
the latent structure H given by scAl, respectively. The patterns iden-
tified by (H*)T in scAWMYV are comparable and slightly clearer
than that identified by H in scAl. The feature loading matrices
WD and WD given by scAWMYV have consistent trends and
tend to be enriched for marker genes of the corresponding cell types
(Fig. 4C and D). In Figure 4C and D, the enrichment for the modal-
ity of chromatin accessibility, W), tends to be weaker compared
with the modality of gene expression, W), which is likely due to
the higher level of noise in chromatin accessibility data.

3.3 Example 3: application to fresh frozen lymph node

with B-cell lymphoma (14k)

In the last example, we studied the paired single-cell multiome ATAC
and gene expression of flash frozen intra-abdominal lymph node tumor
from a patient diagnosed with diffuse small lymphocytic lymphoma.
The number of cells is 14 566. We set the number of clusters as 18,
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Fig. 4. Simultaneously analyzing the paired single-cell multiome ATAC and gene ex-
pression for frozen healthy human brain tissue in Example 2. (A) Heatmap of the
common latent structure (H*)" given by scAWMYV. We grouped the cells in the
same clusters based on Louvain clustering. (B) Heatmap of the latent structure H
given by scAL. We grouped the cells in the same clusters based on Louvain cluster-
ing. (C) Ranking of known cell-type-specific marker genes in factors 1 and 2 from
W in scAWMV. (D) Ranking of known cell-type-specific marker genes in factors
1 and 2 from W@ in scAWMYV. Note that the marker genes for excitatory neuron
and inhibitory neuron in human brain are collected from CellMarker database
(Zhang et al., 2019)

given by the analysis of gene expression data on the 10x Genomics
website. Example 3 in Table 1 shows the results of clustering the cells.
Our method scAWMYV performs the best in NMI, ARI and RAGI
among the eight methods, and the value of RAGI given by Seurat V4
ranks the joint first. Compared with scAWMYV, both scAWMV-no-link
and scAWMYV-no-weight have slightly worse clustering results. The re-
sult by scAWMV-no-X®1 shows that the clustering performance of
sSCAWMYV becomes worse when we excluded the data matrix X"
from the input datasets. We compared the heatmaps of the common la-
tent structure (H*)T given by scAWMV and H given by scAl in
Figure SA and B. They show that it is hard to detect very clear patterns
from the heatmaps of (H*)T and H, likely due to the high level of noise
in this dataset. In Figure 5C and D, we chose factors 1 and 2 from coef-
ficient matrices W(t'1) and W@ given by scAWMYV and demonstrate
that known cell type markers tend to have higher rankings in the feature
loading matrices. In Figure 5C and D, the enrichment for the modality
of chromatin accessibility, W), tends to be weaker compared with
the modality of gene expression, W(:1), which is likely due to the higher
level of noise in chromatin accessibility data.

3.4 Discussion

First, we note that the results from ARI, NMI and RAGI are not be
all consistent with each other (Table 1), since the three evaluation
criteria depend on different theories and use different inputs: (i)
NMI, ARI and RAGI are based on Shannon information, pair-
counting and Gini index, respectively, and (ii) both NMI and ARI
need the cell type labels as input while RAGI does not. Instead,
RAGI needs the list of marker genes and housekeeping genes as
input.

Second, in order to study the baseline clustering performance
when only one data type, that is, scRNA-seq or scATAC-seq data, is
used in all these examples, we compared NMF-only-RNA and
NMF-only-ATAC (Supplementary Table S3), which are NMF meth-
ods using only scRNA-seq or scATAC-seq data as input. We also
summarized the adaptive weights obtained by sc AWMV for all
views (Supplementary Table S4). The results in Supplementary
Table S3 show that the clustering performance of both NMF-only-
RNA and NMF-only-ATAC is worse than scAWMYV in all the above
examples. It suggests that the integration of two data types is needed
and adaptive weights need to be adjusted.
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Fig. 5. Simultaneously analyzing the paired single-cell multiome ATAC and gene ex-
pression for fresh frozen lymph node with B-cell lymphoma in Example 3. (A)
Heatmap of the common latent structure (H*)T given by scAWMYV. We grouped
the cells in the same clusters based on Louvain clustering. (B) Heatmap of the latent
structure H given by scAl. We grouped the cells in the same clusters based on
Louvain clustering. (C) Ranking of known cell-type-specific marker genes in factors
1 and 2 from WD in scAWMYV. (D) Ranking of known cell-type-specific marker
genes in factors 1 and 2 from W1 in scAWMV. Note that the marker genes for B
cells and lymphatic endothelial cells in lymph node are collected from CellMarker
database (Zhang et al., 2019)

Third, we studied the sensitivity of the selection of hyperparameters
by scAWMV (Supplementary Figs S3-S7) for the four real datasets in
three examples. Supplementary Figure S3 presents the evaluation curves
(NMLI, ARI and RAGI) as functions of the number of factors K, ranging
from 10 to 30, for the four real datasets in three examples. It shows that
scAWMYV performs more stable for Examples 1B and 3, and less stable
for Examples 1A and 2. Supplementary Figure S4 presents the evaluation
curves with respect to different initializations for the adaptive weights
v= (0D, 012 @) »22) where these initialization values are
listed in the figure caption. It shows that the clustering performance by
scAWMV is stable for all examples except Example 2, and in all exam-
ples, scAWMV has relatively better performance when the adaptive
weights are initialized as (1/4,1/4,1/4,1/4). The value 4 = 0.01 was
suggested in multi-view NMF by Liu et al. (2013). When we tried differ-
ent values of 2, that is, 0.00001,0.0001,0.001,0.01,0.1, 1, sc AWMV
performs the best when 4 = 0.01, as shown in Supplementary Figure S3.
Supplementary Figures S6 and S7 demonstrate the evaluations with re-
spect to the tuning parameters 8 and 7, respectively, where o and y, are
the default values calculated from formulas (4) and (5), respectively. They
show that scAWMYV performs the best when using the default setting § =
By and 7y =7,. For Examples 1A, 1B and 3, the performance of
scAWMYV is more stable when f and y vary; for Example 2, it is less sta-
ble. In summary, except for Example 2, the other three examples are sta-
ble to the initialization for the adaptive weights, and the values of f and 7.

4 Convergence and computational time

The algorithm scAWMYV is guaranteed to converge as the objective
function (Equation 3) is non-increasing in each iteration. It tends to
converge in 30 iterations for the four real datasets. We summarized
the running time (Supplementary Table S5) by five multi-view clus-
tering methods, including multi-NMF, scAWMYV, scAl, MOFA+
and Seurat V4 in each real dataset. The computational costs for
Example 1B (~10K cells) are 36.72 min (multi-NMF), 35.22 min
(scAWMYV), 600.70 min (scAl), 145.44 min (MOFA+) and 3.96
min (Seurat V4). The graph-based method Seurat V4 is the fastest
and our scAWMYV is faster or comparable to other methods based
on matrix factorization (including multi-NMF, MOFA+ and scAl).

5 Conclusion

In this work, we proposed the framework scAWMYV for the integra-
tive analysis of parallel scRNA-seq data and scATAC-seq data from
the same cells. scAWMYV differs from other multi-view learning
methods in two aspects: (i) It automatically assigns different weights
for different views of data while the other methods tend to treat dif-
ferent views of data equally. (ii) It utilized the linked information be-
tween the parallel transcriptomic and epigenomic layers while the
other methods tend to ignore this connection. The gene activity
score in scATAC-seq data and the gene expression in scRNA-seq
data are biologically linked, which may provide useful information
in dissecting cellular heterogeneity. Application to four real-world
datasets demonstrates that scAWMYV is an efficient method to dis-
sect cellular heterogeneity for single-cell multi-omics data.

Data and software availability

The raw datasets are available at 10x Genomics website https://
www.10xgenomics.com/. The software is available at https://github.
com/pengchengzeng/scAWMV.
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