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Abstract

Genetic structure in host species is often used to predict disease spread. However, host and 

pathogen genetic variation may be incongruent. Understanding landscape factors that have 

either concordant or divergent influence on host and pathogen genetic structuring is crucial for 

wildlife disease management. Devil facial tumor disease (DFTD) was first observed in 1996 

and has spread throughout almost the entire Tasmanian devil geographic range, causing dramatic 

population declines. Whereas DFTD is predominantly spread via biting among adults, devils 

typically disperse as juveniles, which experience low DFTD prevalence. Thus, we predicted 

little association between devil and tumor population structure and that environmental factors 

influencing gene flow differ between devils and tumors. We employed a comparative landscape 

genetics framework to test the influence of environmental factors on patterns of isolation-by-

resistance (IBR) and isolation-by-environment (IBE) in devils and DFTD. Although we found 

evidence for broad-scale co-structuring between devils and tumors, we found no relationship 
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between host and tumor individual genetic distances. Further, the factors driving the spatial 

distribution of genetic variation differed for each. Devils exhibited a strong IBR pattern driven 

by major roads, with no evidence of IBE. By contrast, tumors showed little evidence for IBR 

and a weak IBE pattern with respect to elevation in one of two tumor clusters we identify 

herein. Our results warrant caution when inferring pathogen spread using host population 

genetic structure and suggest that reliance on environmental barriers to host connectivity may 

be ineffective for managing the spread of wildlife diseases. Our findings demonstrate the utility 

of comparative landscape genetics for identifying differential factors driving host dispersal and 

pathogen transmission.

Introduction

Infectious diseases are a major driver of wildlife population dynamics and can contribute 

to extinction (De Castro & Bolker, 2005). Thus, considerable effort is devoted to detecting 

diseases and identifying the processes influencing their transmission and spread. Traditional 

epidemiological approaches rely on direct estimates of disease prevalence, host movement, 

and host contact rates for model parameterization, but these estimates are logistically 

challenging to obtain from wildlife populations (Craft, 2015; Craft, Volz, Packer, & Meyers, 

2009; Hamede, Bashford, McCallum, & Jones, 2009). Further, there is often uncertainty 

as to whether observed contacts and movements reflect actual pathogen transmission and 

spread (Craft, 2015). In contrast, the spatial distribution of genetic variation contains 

signatures of past dispersal (in the case of the host) or spread (in the case of the pathogen) 

and often can be linked with environmental or ecological factors at fine spatial scales 

(Archie, Luikart, & Ezenwa, 2009; Biek & Real, 2010; Blanchong, Robinson, Samuel, 

& Foster, 2016; Hemming-Schroeder, Lo, Salazar, Puente, & Yan, 2018; Kozakiewicz et 

al., 2018). Knowledge of these relationships is critical to predicting the spread of wildlife 

diseases and can inform management strategies aimed at mitigating their impact.

Spatial patterns of genetic variation are routinely used to understand patterns of connectivity 

and movement in wildlife, and a number of studies have extended this framework for 

predicting the spread of wildlife diseases resulting from host movement. For example, 

estimates of host genetic variation have been used to explain and forecast the prevalence 

and distribution of pathogens (e.g., Blanchong et al., 2008; Guivier et al., 2011; Robinson, 

Samuel, Rolley, & Shelton, 2013), the transmission potential of different host species (e.g., 

Paquette, Talbot, Garant, Mainguy, & Pelletier, 2014; Vander Wal et al., 2013) or of different 

sexes within species (e.g., Cote, Garant, Robert, Mainguy, & Pelletier, 2012; Talbot, Garant, 

Paquette, Mainguy, & Pelletier, 2012), and to improve the predictive power of models of 

disease spread (e.g., Davy, Martinez-Nunez, Willis, & Good, 2015; Kozakiewicz et al., 

2018; Robinson et al., 2013; Wilder, Kunz, & Sorenson, 2015). However, pathogen genetic 

structure does not necessarily reflect that of the host, and pathogen transmission may be 

disconnected from patterns of host gene flow. Such a disconnect may be due to factors 

including multiple host/vector species, pathogen persistence in environmental reservoirs, 

transmission via nonreproducing hosts, or host life history characteristics resulting in 

reduced susceptibility at dispersal age (Mazé-Guilmo, Blanchet, Mccoy, & Loot, 2016; 

Talbot, Vonhof, Broders, Fenton, & Keyghobadi, 2017). Therefore, comparative approaches, 
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ideally incorporating the relative influence of environmental or ecological factors, are 

necessary for understanding the extent to which host and pathogen genetic structure are 

related and to disentangle the factors influencing each. One approach that is ideally suited 

for the comparative study of host and pathogen genetic variation is landscape genetics.

Landscape genetics is an analytical framework for testing the influence of environmental 

heterogeneity on patterns of gene flow and population genetic structure (Manel & 

Holderegger, 2013; Manel, Schwartz, Luikart, & Taberlet, 2003; Storfer et al., 2007). Most 

landscape genetics studies have focused on single species, but there are a growing number 

of comparative, multi-species studies (e.g., Cleary, Waits, & Finegan, 2017; Goldberg & 

Waits, 2010; Petren, Grant, Grant, & Keller, 2005; Trumbo, Spear, Baumsteiger, & Storfer, 

2013; Zancolli, Rödel, Steffan-Dewenter, & Storfer, 2014). Even fewer multi-species studies 

have employed landscape genetics methods to study the dynamics of infectious diseases 

in wildlife systems (Biek & Real, 2010; Hemming-Schroeder et al., 2018; Kozakiewicz et 

al., 2018). Such comparative landscape genetics frameworks can provide valuable insights 

into how host-pathogen interactions shape patterns of disease transmission and spread across 

heterogeneous landscapes (Leo, Gonzalez, Millien, & Cristescu, 2016; Schwabl et al., 2017; 

Talbot et al., 2017).

Tasmanian devils (Sarcophilus harrisii) and their transmissible cancer provide a highly 

appropriate study system to test for host-pathogen co-structuring in a comparative landscape 

genetics framework. In 1996, devil facial tumor disease (DFTD) was discovered in 

northeastern Tasmania, Australia. DFTD is one of only a few documented transmissible 

cancers (Metzger & Goff, 2016; Ostrander, Davis, & Ostrander, 2016; Storfer et al., 2017) 

and since its emergence, has spread across almost the entire geographic range of the 

Tasmanian devil (Save the Tasmanian Devil Programme, 2019) (Figure 1). With a nearly 

100% mortality rate, DFTD has caused an estimated 80% population decline across the 

species range, with localized declines exceeding 90% (Lazenby et al., 2018; McCallum et 

al., 2007).

Devil facial tumors are transmitted as an allograft through biting, a common occurrence 

during social interactions among devils (Hamede, Mccallum, & Jones, 2013; Hamilton et 

al., 2019). Direct transmission of DFTD among devils means that its spatial spread is 

inextricably tied to the movements of devils – a relationship which leads to the assumption 

of genetic co-structuring among host and pathogen (Criscione, 2008; Jarne & Théron, 2001; 

Mazé-Guilmo et al., 2016). Yet, for co-structuring to occur, pathogen dispersal must be 

synchronized with host dispersal and subsequent reproduction. In other words, individuals 

must disperse while infected and reproduce thereafter. This requirement has been identified 

previously but is often overlooked in studies that use host movements to predict disease 

spread. In devils, gene flow typically occurs through individuals that dispersed away from 

their natal sites as juveniles, whereas DFTD transmission occurs primarily during the adult 

life stage. Juvenile dispersal is likely to take place over greater distances than the typical 

movements of adult devils because adults maintain high fidelity to their established home 

ranges, which are typically 5–30 km2 (Lachish, Miller, Storfer, Goldizen, & Jones, 2011; 

Pemberton, 1990). Yet, genetic spatial autocorrelation distances are up to 100 km in eastern 

Tasmania (Lachish et al., 2011) and 60 km in western Tasmania (Storfer et al., 2017). On 
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this basis, we would hypothesize that co-structuring among devils and tumors is weak and 

that devil gene flow should be less geographically constrained than the spread of DTFD.

An alternative hypothesis is that DFTD disperses more rapidly and shows less genetic 

structure than devils because opportunities for transmission occur more frequently than 

devil reproduction. That is, whereas the biting contacts required for DFTD transmission 

are a common social behavior occurring throughout the year (albeit more frequently during 

the mating season), devils generally mate between February and May (Hamede et al., 

2009, 2013; Hamilton et al., 2019). Furthermore, the potential effect of a single dispersing 

individual on genetic structure is less in devils than for tumors. This is because a single 

tumor may proliferate into a large, clonal lineage that dramatically shifts the overall genetic 

structure of tumors in its new population. High mobility of DFTD tumors is supported by 

the fact that DFTD has spread from the northeastern corner of Tasmania to the west coast 

of Tasmania in just over 20 years (Epstein et al., 2016; Storfer et al., 2017) (Figure 1). It 

is unclear which of these competing hypotheses is best supported, exemplifying the need to 

understand the extent to which host and pathogen movements are linked and whether they 

are subject to the same environmental constraints.

Herein, we employ a comparative landscape genetics framework to test these competing 

hypotheses. Specifically, we test whether Tasmanian devil population structure predicts 

DFTD tumor population structure and whether host gene flow and pathogen spread are 

dictated by distinct environmental factors. We use 6,478 SNPs in devils and 1,595 SNPs 

in tumors genotyped using RAD-capture (Ali et al., 2016; Margres et al., 2018) to 

reveal broad-scale population structure as well as fine-scale patterns of genetic variation. 

Individual-level estimates of genetic variation were analyzed using complementary 

landscape genetic approaches to investigate the relative roles of isolation-by-environment 

(IBE) and isolation-by-resistance (IBR) in influencing genetic structure in both devils and 

DFTD. In short, IBE occurs due to the environment at sample locations, whereas IBR 

occurs due to the environment intervening sample locations. IBR approaches allow us to 

quantify how environmental heterogeneity across entire landscapes can affect functional 

connectivity (McRae, 2006), and distinguish these effects from the classical isolation-by-

distance model (IBD; Wright, 1943). In contrast, IBE describes the effect of divergent 

environments on genetic differentiation (Wang & Bradburd, 2014) and can occur for various 

reasons, including population-specific adaptation to local environmental conditions (and 

thus maladaptation of and selection against migrants) or natal habitat preference induction 

leading to habitat-biased dispersal (Wang & Bradburd, 2014).

Methods

Study system

Tasmanian devils are carnivorous marsupials endemic to the island of Tasmania, Australia, 

where they are apex predators. Tasmania comprises a total land mass of 68,401 km2 and 

encompasses a dramatic east-to-west climatic gradient and a high degree of topographic 

variability. Devils prefer eucalypt and sclerophyll forests and coastal scrub lands, but they 

can also be found near to human developments and agricultural land (Guiler, 1970; Hawkins 

et al., 2006; James et al., 2019). Previous work indicates up to six genetic populations 
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island-wide, including a clear distinction between individuals sampled from northwestern 

Tasmania and those from elsewhere on the island (Brüniche-Olsen, Jones, Austin, Burridge, 

& Holland, 2014; Fraik et al., 2020; Hendricks et al., 2017; Miller et al., 2011; Storfer et 

al., 2017). The cause of this east-to-west spatial genetic heterogeneity remains unclear, with 

previous landscape genetics work implementing least-cost path modelling and microsatellite 

loci unable to identify any landscape factors driving this variation (Storfer et al., 2017).

The transmissible tumor first identified in 1996 is now present across nearly the entire 

devil geographic range, with all extant cases having a common origin. However, in 2014, a 

second transmissible cancer of devils, devil facial tumor disease 2 (DFT2), was discovered 

in southern Tasmania, independent in origin from the first (Pye et al., 2016). DFT2 remains 

geographically restricted; yet, insights gained into the transmission of the first tumor may 

help inform the management of DFT2 and any subsequent transmissible tumors, as well as 

other directly transmitted diseases. Herein, we focus on the first tumor, to which we refer 

exclusively in this study as “DFTD” or “tumors”, with any references to the second tumor, 

DFT2, specified as such. No cases of DFT2 were included in this study.

DFTD infection is typically observed in adult devils, most likely due to limited injurious 

biting contact until adulthood (Hamede et al., 2013) and changes in immune system function 

at sexual maturity (Cheng et al., 2017). Nonetheless, tumors are occasionally observed 

in juveniles, with a long latent period likely biasing detectability toward adults (Hamede 

et al., 2013, 2015; Lazenby et al., 2018). DFTD replicates clonally, with no evidence of 

recombination among tumors. However, cancer lineages accumulate somatic mutations over 

time, thus generating genetic differences among locations that reflect how a given lineage 

has spread spatially (Murchison et al., 2012; Schwartz & Schäffer, 2017; Stammnitz et al., 

2018). Therefore, characterization of DFTD genetic structure enables us to infer how it has 

spread among devil populations with respect to geographic and environmental factors.

Sample collection

We collected georeferenced Tasmanian devil ear and tumor tissue samples using a 3 mm 

biopsy punch from wild devils over a 12-year period. A detailed description of field trapping 

protocols can be found in Hawkins et al. (2006) and Hamede et al. (2015). Two hundred and 

seventeen devil samples and 177 tumor samples, of which 87 were paired samples with both 

tumor and host tissue taken from the same individual, were collected from an approximately 

12,000 km2 area in northwest Tasmania between 2004 and 2016 (Figures 1 and 2). We 

focused on this area because it contains a high degree of environmental and topographic 

variation and overlaps with a broad-scale genetic discontinuity among devil populations 

identified in previous studies (Brüniche-Olsen et al., 2014; Hendricks et al., 2017; Miller 

et al., 2011; Storfer et al., 2017), suggesting potential environmental/landscape constraints 

on devil movements. Sampling across this region was relatively consistent throughout the 

sample period and coincided with the arrival and spread of DFTD in this region (Figure 1).

RAD-capture array

We used a Restriction site Associated DNA (RAD) capture (i.e., “Rapture”) array (Ali et al., 

2016) to target loci across the devil and tumor genome. The capture array was developed 
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from RAD sequencing of 360 devils (Epstein et al., 2016); 15,898 of the 90,000 RAD 

loci from this earlier study were used to make a targeted array using the myBaits for 

high throughput population genomics studies kit (Arbor Biosciences, Ann Arbor, MI) as 

described in Margres et al. (2018). Targeted loci met one or more of the following criteria: 

1) genotyped in ≥ 50% of individuals, contained ≤ 3 non-singleton SNPs with a minor 

allele frequency (MAF) ≥ 0.05, and was ≥ 20 kb away from other targeted loci to increase 

genome coverage (7,108 loci); 2) located within 50 kb of an immune related gene, with 

≤ 4 non-singleton SNPs, and genotyped in ≥ 67% of the individuals (6,315 loci); and, 3) 

showing some preliminary evidence of association with DFTD susceptibility and having ≤ 5 

non-singleton SNPs (3,316 loci).

Because the myBaits array was developed for devils and not DFTD, we tested whether 

the array could successfully capture RAD loci from tumor samples by aligning whole 

genome tumor samples (sequenced at 90x coverage; from Margres et al., 2020) to the devil 

reference genome (downloaded from Ensembl June 2014; Murchison et al., 2012) using 

Burrows-Wheeler Aligner v0.7.12 (option MEM; Li & Durbin, 2009). We measured tumor 

coverage across each Rapture region using Bedtools v2.27.0 (Quinlan & Hall, 2010). Only 

10 genomic regions covered on the capture array showed low coverage (< 10x), illustrating 

that 99.9% of the baits should capture tumor DNA.

Sequencing and data processing

We extracted DNA from tissue biopsies using the Qiagen DNeasy Blood & Tissue Kit, 

doubling the recommended amount of proteinase K to maximize lysis efficiency. DNA was 

digested using the Pst1 restriction enzyme and the RAD-capture libraries were sequenced 

on an Illumina HiSeq 4000 at the Genomics Sequencing Laboratory at the University of 

California, Berkeley. We processed the raw data as previously described (Margres et al., 

2018). Briefly, reads were de-multiplexed and low-quality reads as well as potential PCR 

duplicates were removed using Stacks v1.21 (Catchen, Hohenlohe, Bassham, Amores, & 

Cresko, 2013). Reads were then aligned to the reference genome using bowtie2 v2.3.4 

(Langmead & Salzberg, 2012) with the --sensitive, --end-to-end, and -X 900 settings.

Variant calling

To identify variants, we used HaplotypeCaller in GATK v3.8 (DePristo et al., 2011; 

McKenna et al., 2010), with devils and tumors genotyped separately. For each, we removed 

SNPs and indels matching any of the following criteria: quality by depth < 2.0, strand 

bias Phred-scaled p-value > 60.0, root mean square of the mapping quality < 40.0, 

mapping quality rank sum test approximation of 12.5, and a read position rank sum test 

approximation of eight.

We removed non-targeted regions from the dataset using Bcftools isec (Li, 2011), followed 

by removal of SNPs with a minimum depth < 5, minimum genotype quality < 25, missing 

data > 50%, and MAF < 0.01 using VCFtools v0.1.15 (Danecek et al., 2011). Then, to 

identify tumor-specific somatic SNPs and account for possible host contamination during 

tumor biopsy, we again used Bcftools isec to remove any SNP in the tumor dataset that was 
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also identified in the host samples. Following filtering, we retained 6,478 devil and 1,595 

tumor SNPs for analysis.

Population structure

We investigated both host and tumor population genetic structure using two complementary 

approaches, following best practices recommended by (Janes et al., 2017). First, we 

performed a discriminant analysis of principal components (DAPC) using adegenet 
(Jombart, 2008) in R version 3.6.3 (R Development Core Team, 2013). Briefly, we used 

the find.clusters function to perform k-means estimation of the best-fit number of genetic 

clusters (K) as determined by the Bayesian Information Criterion (BIC), followed by the 

DAPC function to estimate probabilities of membership to each cluster for each tumor 

sample. Second, we evaluated population structure using STRUCTURE v2.3.4 (Pritchard, 

Stephens, & Donnelly, 2000). We tested all values of K between 1 and 5, performing ten 

replicate runs per K. Each run comprised 1,000,000 Markov chain Monte Carlo iterations 

following a burn-in of 50,000 iterations. Although STRUCTURE is inappropriate for clonal 

populations, we performed this analysis for tumors to maintain consistency with the host 

analysis and to complement the more suitable DAPC analysis. Because there are no recorded 

observations of recombination among tumors, we specified the admixture-free model in 

STRUCTURE. The most likely K was determined using ΔK according to the Evanno 

method (Evanno, Regnaut, & Goudet, 2005), implemented in STRUCTURE HARVESTER 

(Earl & VonHoldt, 2012; Van Rossum & Drake Jr, 1995), and assessment of mean estimated 

natural logarithm of the probability of the data [LnPr(X|K)] values. To identify possible 

hierarchical population structure, we repeated analyses of population structure on individual 

genetic clusters identified in initial runs until no further additional genetic clusters were 

identified.

Due to lack of recombination among tumors, we interpreted genetically distinct clusters of 

tumor samples as discrete, non-recombining groups. To ensure confidence in the identified 

clusters, we assigned tumors to a genetic cluster only where DAPC and STRUCTURE 

assignments were concordant. We excluded tumor samples with ambiguous assignment from 

any analysis pertaining to a specific cluster. Once tumor clusters had been identified, we 

performed an Analysis of Molecular Variance (AMOVA; Excoffier, Smouse, & Quattro, 

1992) to quantify the proportion of overall genetic variance explained by differentiation 

between clusters relative to that explained by variation among and within individual tumors. 

AMOVA was performed using the poppr package in R (Kamvar, Tabima, & Grünwald, 

2014) and significance determined using a randomization test with 100 permutations, which 

was performed using ade4 (Dray & Dufour, 2007).

We tested for genetic co-structuring among paired devil-tumor samples using two 

approaches. Firstly, we conducted a Mantel test comparing host genetic distances and tumor 

genetic distances. Individual genetic distances were calculated as 1 – Dps, where Dps is the 

proportion of shared alleles between paired samples, using adegenet. Secondly, we fitted 

a logistic regression to determine if STRUCTURE assignment probabilities for hosts were 

predictive of the genetic cluster to which a given host’s tumor was assigned. We also used a 
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logistic regression to determine whether sample date was predictive of the genetic cluster of 

each tumor.

Landscape genetics

We conducted landscape genetic analyses to identify how environmental factors influence 

patterns of devil and tumor genetic structure within both IBR and IBE frameworks. All 

landscape genetic analyses were conducted separately for host and tumor. In addition to 

analyzing all tumors together, we also conducted landscape genetic analyses separately for 

each of the identified tumor clusters (as identified by the above described population genetic 

approaches) to account for differences in environmental associations among clusters.

We selected six continuous and two categorical variables to test in our landscape genetic 

analyses based on habitat preferences observed through prior devil mark-recapture studies 

(Guiler, 1970; Hawkins et al., 2006), radio collaring studies (M.E. Jones, unpublished 

data), and a previous landscape genetic study of Tasmanian devils (Storfer et al., 

2017). The continuous variables comprised elevation, elevation relief ratio (a measure 

of relative altitudinal relief between two points; Pike & Wilson, 1971), annual mean 

temperature, temperature annual range (the difference between the average 24-hour 

maximum temperature of the hottest month and the average 24-hour minimum temperature 

of the coldest month), annual precipitation, and precipitation seasonality (the coefficient of 

precipitation variation; Feng, Porporato, & Rodriguez-Iturbe, 2013). Categorical variables 

were land cover type and roads. Land cover types were derived from the TASVEG 3.0 

vegetation communities dataset (DPIPWE, 2013) and partitioned according to the ten broad 

vegetation categories defined by TASVEG 3.0, with agriculture and urban areas/exotic 

vegetation forming a further two categories. Roads data were downloaded from Geoscience 

Australia (data.gov.au) and classified as principal, secondary, and minor roads, to which 

we refer as highways, major roads, and minor roads, respectively. Elevation data were 

downloaded from Geoscience Australia and elevation relief ratio was calculated from the 

elevation data using the raster calculator in ArcGIS v10.7 (ESRI, 2011). Climatic data were 

downloaded from WorldClim v2 (Fick & Hijmans, 2017). We assessed multicollinearity 

among environmental rasters using Variance Inflation Factors (VIF), retaining only variables 

with VIF < 10 (Table S1). Annual mean temperature had a VIF score exceeding this 

threshold and was subsequently removed from all analyses.

Pairwise individual genetic distances were interpreted for devils and tumors as a relative 

proxy for genetic connectivity and used as a response variable for landscape genetic 

analyses.

Isolation-by-resistance: effects of landscape heterogeneity intervening sites—
We tested for effects of landscape variables on genetic connectivity in an IBR framework 

using the R package ResistanceGA (Peterman, 2018). ResistanceGA optimizes the 

correlation between genetic distances and resistance surface cost values by using a genetic 

algorithm to explore potential resistance surface parameterizations for each landscape 

variable. Resistance surface optimization approaches avoid the need to a priori assign 

costs to environmental variables through expert opinion or species distribution and habitat 

suitability models, which can be difficult to translate to numerical values of resistance 
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to movement (Elliot, Cushman, Macdonald, & Loveridge, 2014; Spear, Balkenhol, Fortin, 

McRae, & Scribner, 2010). In contrast to least-cost path modelling, which considers only a 

single optimal dispersal pathway with respect to a heterogeneous landscape factor of interest 

(thus assuming that individuals have complete knowledge of the landscape), IBR analytical 

frameworks that implement circuit theory can account for all possible dispersal pathways in 

predicting rates of gene flow (McRae, 2006).

We optimized resistance surfaces singly for each environmental variable based on 

random-walk commute time between locations (van Etten, 2017). In brief, the genetic 

algorithm used for optimization comprised a randomly generated population of individuals 

possessing parameters with randomly chosen values that determine which of a variety 

of transformations is applied to the resistance surface, the shape of the transformation, 

and the maximum resistance value (Peterman, 2018). Thus, each simulated individual 

represents a uniquely parameterized resistance surface. Across each resistance surface (i.e., 

per simulated individual), pairwise commute times are calculated and evaluated against the 

true pairwise genetic distances using a linear mixed effect model with maximum likelihood 

population effects (MLPE), which accounts for nonindependence among pairwise samples 

(Clarke, Rothery, & Raybould, 2002; Van Strien, Keller, & Holderegger, 2012). Model 

support, or “fitness” of each simulated individual is determined using log-likelihood, with 

those achieving the highest log-likelihood allowed to “reproduce” to form a population 

comprising the next generation of the algorithm. This new population inherits the parameters 

from the previous generation (while allowing for random mutation and recombination 

of the parameters), and the process repeats itself through a number of subsequent 

generations. For each landscape variable, we specified that 25 generations must pass with no 

improvement to the MLPE model log-likelihood for a resistance surface to be identified 

as optimal. Following optimization, to test the relative support of each environmental 

variable as a predictor of genetic distance, we used the final optimized surfaces to again 

generate commute times and fit MLPE models, calculated without restricted maximum 

likelihood (REML) and bootstrapped for 1,000 iterations with 90% subsampling. We ranked 

environmental variables by average AICC scores across all bootstrap iterations.

Isolation-by-environment: effects of environmental differentiation on genetic 
differentiation—To investigate the extent to which genetic differentiation in hosts and 

tumors is influenced by patterns of IBE, we used generalized dissimilarity modelling (GDM) 

as implemented in the R package gdm (Fitzpatrick & Keller, 2015). Originally designed 

for community-level modelling of species turnover, GDM performs linear regressions to 

test associations between dissimilarity and distance matrices, but fits i-spline functions 

to allow for non-linear responses and controls for geographic distance among sample 

locations (Ferrier, Manion, Elith, & Richardson, 2007). GDM assumes ordered categorical 

or continuous predictor variables (Ferrier et al., 2007), so we included only elevation, 

elevation relief ratio, and our climatic variables in this analysis. Environmental variables 

were measured as the mean value within a 15 km2 buffer around each sample location, 

approximating a typical devil home range (M.E. Jones, unpublished data). We used 

matrix permutation (500 permutations with 90% subsampling of both sites and site-pairs) 

with backward elimination to evaluate model and variable significance and estimate 
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variable importance (Fitzpatrick & Keller, 2015). During each iteration of the backward 

elimination procedure, the least important variable was removed, and variable importance 

and significance re-calculated for the new model. As non-explanatory (i.e., the least 

important) variables were removed, the percent deviance explained by each successive 

model relative to the null did not change. Only as explanatory variables were removed did 

the percent deviance explained drop. Thus, the top model was identified as the model with 

the highest deviance explained and containing the fewest variables. Variable importance 

was calculated as the percent change in model deviance upon permutation of the given 

variable. Geographic distance was included as a control in all models and was not subject to 

backward elimination.

In addition to the host, all-tumor, and tumor cluster-specific tumor analyses, to compare 

the relative effects of host genetic variation and environmental variables on tumor 

genetic differentiation, we performed a separate GDM analysis of tumors for which the 

corresponding host devils were genotyped. For this analysis, the same environmental 

variables were included as above, with the addition of host genetic distances.

Results

Host and pathogen population structure

Analysis of devil population genetic structure using DAPC suggested the most likely number 

of genetic clusters was K = 2, according to BIC support. However, ΔBIC did not exceed 2 

for either K = 1 or K = 2 (Figure S1), suggesting that patterns of population structure were 

difficult to resolve with our data (Burnham & Anderson, 2002). Similarly, STRUCTURE 

provided the most support for K = 2 as determined by ΔK calculated using the Evanno 

method. Although the Evanno method is unable to evaluate K = 1 and thus cannot exclude it 

as a potential solution (Janes et al., 2017), K = 1 was the least supported solution according 

to mean LnPr(X|K), supporting the existence of multiple genetic clusters. Further, mean 

LnPr(X|K) values supported successively higher values of K (Table 1), indicating a potential 

genetic cline. However, there was also greater variation in LnPr(X|K) among iterations at 

higher values of K (Table 1), suggesting some uncertainty. Further analysis of hierarchical 

structure within the initial K = 2 clusters did not provide clear evidence for any further 

genetic clusters for DAPC, yet STRUCTURE again supported successively higher values of 

K according to LnPr(X|K). Thus, for devils, we settled on K = 2 as representing opposite 

ends of a genetic cline. Accordingly, these clusters were not geographically discrete, with 

individual assignment probabilities indicating a continuous longitudinal admixture gradient 

(Figures 2 and 3).

In tumors, DAPC and STRUCTURE both supported two genetic clusters (Table 1, Figure 

S1). However, LnPr(X|K) was higher for STRUCTURE runs at K = 4 but, similarly to 

devils, with greater variation among iterations. Subsequent DAPC and STRUCTURE runs 

showed no evidence of hierarchical population structure in tumors. Of the 177 tumors, 

147 had cluster assignments that were supported by both DAPC and STRUCTURE at K 

= 2, with 30 tumors ambiguously assigned. Hereafter, we refer to the two identified tumor 

clusters as tumor cluster 1 (n = 74) and tumor cluster 2 (n = 73). There was no clear 

geographic structure among these clusters, with almost complete spatial overlap. However, 
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we did observe a slight predominance of tumor cluster 2 towards the eastern end of the 

study area (Figures 2, 3). AMOVA revealed significant genetic variance attributable to 

the identified tumor clusters, which explained 6.48% of variation (P = 0.01) compared 

to minimal (1.58%; P = 0.23) variation attributable to among-tumor variation within 

clusters (Table S2). Variation within individual tumors comprised 91.94% of overall genetic 

variation (P = 0.04). This is due to somatic mutation in cancers producing high rates of 

heterozygosity.

Tasmanian devils and DFTD are weakly co-structured

Our STRUCTURE results provide some evidence for host-tumor co-structuring along a 

longitudinal gradient (Figures 2, 3). Logistic regression revealed that tumor cluster identity 

was predicted by devil population structure (LRT = 5.81; P = 0.016; Figure 4a) but not 

sampling date (LRT = 1.74; P = 0.19), suggesting co-circulating tumor clusters that broadly 

co-structure with host populations. However, when comparing host and tumor genetic 

distances directly, we found no correlation (Mantel r = −0.10, P = 0.92; Figure 4b). Further, 

host genetic distances performed worse than environmental differences in predicting tumor 

genetic differentiation (see below landscape genetic analyses). Mean genetic distances were 

greater among devils (0.30, SD = 0.025) than among tumors (0.14, SD = 0.035).

Landscape factors more strongly affect spatial genetic variation in devils than DFTD

Isolation-by-resistance: effects of landscape heterogeneity intervening sites—
In devils, landscape heterogeneity intervening sites explained substantial variation in gene 

flow. Although geographic distance was most frequently the top model (52.7% of bootstrap 

iterations) and explained 24.9% of genetic variation among devils, it had relatively low 

mean AICc support across bootstraps (mean ΔAICc = 5.97; Table 2). Roads as a barrier to 

gene flow had the highest average support of all models and was the top model in 38.4% 

of bootstrap iterations, explaining 37.9% of genetic variation among devils. Optimization 

of the roads resistance surface assigned the greatest costs to devil movement to highways 

and major roads, with minor roads and non-road cells having relatively low costs to devil 

movement. Although two other variables – precipitation seasonality and elevation relief ratio 

– had greater mean AICc support than geographic distance, they were poorly supported 

overall, being the top models in less than 7% of bootstrap iterations and having a mean 

ΔAICc > 2. No other landscape resistance model had mean ΔAICc < 2.

Among DFTD tumors, genetic variation was poorly explained by between-site landscape 

variables. Elevation and precipitation seasonality both had mean ΔAIC < 2 and were the 

most frequent top models among bootstrap iterations. However, these models explained 

minimal genetic variation among tumors. Elevation was most the supported model (mean 

ΔAICc = 0; top model in 67.7% of bootstrap iterations) but explained only 1.5% of genetic 

variation among tumors. Precipitation seasonality was less supported (mean ΔAICc = 1.70; 

top model in 30.5% of bootstrap iterations) but explained slightly more genetic variation 

among tumors (mean mR2 = 0.03).

When analyzing each tumor cluster separately, the top landscape resistance models differed 

among clusters but still explained relatively little genetic variation for each. For tumor 
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cluster 1, elevation relief ratio was the top model in 77.2% of bootstrap iterations, with 

annual precipitation being the top model in 11.5% of bootstrap iterations (mean ΔAICc = 

1.48). However, all but two of the models for cluster 1 had a mean ΔAICc < 4, suggesting 

relatively weak support for the top models over the others. For tumor cluster 2, elevation 

was the top model in 77.6% of bootstrap iterations (mean ΔAICc = 0), with all other models 

poorly supported.

Isolation-by-environment: effects of environmental differentiation on genetic 
differentiation—Analysis of isolation-by-environment patterns using GDM did not 

identify any environmental differences among sample locations that were explanatory of 

genetic differentiation among devils (Table 3). The top model explained a reduction in 

deviance relative to the null model of 11.87%, but contained only a significant effect of 

geographic distance, which explained just 1.84% of this reduction in model deviance. This 

suggests a weak effect of isolation-by-distance among devils.

Among all tumors, the top model explained a reduction in model deviance relative to the null 

model of 6.67% and contained significant effects of geographic distance and differences in 

elevation. Elevation predominated, explaining 99.95% of this reduction in model deviance, 

while the effect of geographic distance was nonexistent. This lack of an effect of geographic 

distance despite statistical significance was likely due to geographically distant animals 

being located in areas that differ in elevation, resulting in elevation explaining a high 

proportion of model deviance that would otherwise be partly explained by geographic 

distance.

When analyzing tumor clusters separately, the effect of elevation differences on genetic 

differentiation among tumors persisted only for tumor cluster 2, whose top model explained 

a 4.66% reduction in deviance relative to the null model. Elevation explained 93.36% of this 

reduction in model deviance, whereas the effect of geographic distance was non-significant. 

None of the models for tumor cluster 1 were significant upon permutation of environmental 

dissimilarity matrices, suggesting that none of the tested landscape variables, nor geographic 

distance, were influencing genetic differentiation among tumors within this cluster.

Host genetic distances did not perform better than environmental differences in explaining 

tumor genetic differentiation. In tumors for which the host devil was genotyped, host genetic 

distance was absent from the top model, which explained a reduction in model deviance 

relative to the top model of 5.50%. Elevation was the most important variable, explaining 

44.81% of this reduction in model deviance, consistent with the all-tumor analysis.

Discussion

We conducted a comparative landscape genetic study of Tasmanian devils and DFTD to 

identify environmental factors driving IBR and IBE patterns in both host and pathogen. 

Our results warrant caution when inferring pathogen spread using host population genetic 

structure. Although we found evidence for broad-scale co-structuring between devils and 

tumors, the primary landscape processes influencing genetic variation appeared to differ 

between host and pathogen. In devils, we found two genetic clusters, consistent with 
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previous studies (Storfer et al., 2017). Further, a relatively strong IBR pattern was present, 

whereby genetic variation was driven largely by major roads and highways acting as 

barriers to gene flow. However, evidence of IBE was absent in devils. Surprisingly, we 

found no geographic or temporal structure among two identified tumor clusters, suggesting 

coexistence of distinct tumor lineages throughout the study area for the entire sampling 

period. IBE in tumor cluster 2, although not particularly strong, was largely attributable 

to differences in elevation. Despite almost complete spatial overlap with cluster 2, tumor 

cluster 1 exhibited no evidence of IBE.

Co-structuring among Tasmanian devils and DFTD

In devils, we observed a clinal pattern of admixture between two genetic clusters from 

east-to-west across our study area. Previous broader-scale studies of devils have identified 

relatively discrete genetic clusters, with a genetic discontinuity approximately overlapping 

our study area that distinguishes northwest Tasmanian devils from other populations 

(Brüniche-Olsen et al., 2014; Hendricks et al., 2017; Jones, Paetkau, Geffen, & Moritz, 

2004; Miller et al., 2011). Our study encompasses a relatively smaller geographical area 

at a higher sampling density than previous studies, and it is likely that the observed clinal 

pattern reflects admixture between the previously identified northwestern population and 

those further to the east.

We observed broad-scale genetic co-structuring between infected devils and their tumors, 

whereby devil genetic cluster assignment probabilities were predictive of the tumor cluster 

to which a given individual was host. However, there was no correlation between host 

and tumor genetic distances, suggesting that individual-level tumor variation (i.e., within 

clusters) is not influenced by host gene flow and a lack of co-structuring at a fine scale. 

Our inferred DFTD clusters had almost complete spatial overlap with one another, but 

we observed a higher prevalence of cluster 2 within Narawntapu National Park, our eastern-

most collection site. Devils from this area showed almost complete assignment to a genetic 

cluster that was only present at admixture levels among other samples in this study (Figure 

2), suggesting at least partial isolation of the Narawntapu population. Geographic isolation 

of Narawntapu, a coastal site surrounded by large water bodies and mountains, is further 

supported by documentation of a genetic distinct group of bare-nosed wombats (Vombatus 
ursinus) in this area (Martin et al., 2019a). Thus, we believe the observed broad-scale 

co-structuring is driven predominantly by geographic isolation of Narawntapu from the rest 

of our study area, rather than concordant patterns of gene flow.

Previous work has shown evidence of DFTD lineage replacement based on karyotype 

(Hamede et al., 2015), which may affect the spatial structuring of tumors. For example, 

a tetraploid DFTD strain first arrived at West Pencil Pine (a portion of our study area) 

in 2006, and initially resulted in lower than typical prevalence and higher than typical 

survival rates among infected individuals (Hamede et al., 2012, 2015). Devil populations 

subsequently began to decline with the arrival of a diploid tumor strain, which out-competed 

and replaced the tetraploid strain (Hamede et al., 2015). In contrast, we did not observe 

lineage replacement but rather co-circulation. However, we had insufficient data to test for 

differences in karyotype or virulence among our observed tumor strains, and the spatial 
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scale of our study was considerably broader than that at which karyotypic partitioning 

was observed by Hamede et al. (2015) (within a 25km2 area). As such, our results do not 

preclude the occurrence of lineage replacement at highly localized spatial scales.

Isolation-by-resistance affects devils but not DFTD

Overall, IBR had a strong influence on genetic structure of devils but not tumors, 

supporting our hypothesis that tumor transmission among adult devils is less constrained 

by landscape than gene flow among juvenile dispersers. A significant negative effect of 

roads (predominantly highways and major roads) on gene flow was observed in devils, 

explaining 38% of genetic variation among our samples, compared to 25% of variation 

attributable to isolation-by-distance alone. Roads are a source of wildlife mortality due to 

vehicle collision, including in devils (Grueber et al., 2017; Jones, 2000). Coupled with the 

loss of habitat associated with road construction as well as fences and other structures, roads 

reduce structural and functional landscape connectivity and often lead to decreased gene 

flow. Such responses to roads are well-documented, and have been observed in both small, 

sedentary species (Arens et al., 2007; Holzman et al., 2009) as well as large, wide-ranging 

species (Coulon et al., 2006; Epps et al., 2005), including carnivores (Kozakiewicz et al., 

2019; Riley et al., 2006). However, use of minor roads as movement corridors has been 

observed in devils, likely due to greater ease of movement through cleared vegetation and 

an abundance of roadkilled carcasses for scavenging (Andersen, Johnson, Barmuta, & Jones, 

2017). We found neither a positive nor a negative effect of minor roads on devil gene flow. 

However, our study was conducted over a much larger area than Andersen et al. (2017), 

with road use potentially occurring over only small distances without a significant effect on 

longer distance dispersal events.

Roads that form barriers to wildlife do not necessarily act similarly as barriers to their 

pathogens – even those relying on direct transmission. For example, a major highway was 

found to produce strong population genetic structure in bobcats (Lynx rufus) but not in 

their directly-transmitted viruses (Lee et al., 2012). Similarly, our results suggest that roads 

do not significantly influence DFTD transmission. Roads are known to disproportionately 

affect juvenile devils, which exhibit higher mortality rates from vehicle collision than 

adults (Jones, 2000). Thus, roads likely present a greater barrier to dispersing juveniles, via 

which devil gene flow is primarily mediated, than to adults, via which DFTD transmission 

predominantly occurs. Overall, differentiation among tumors was not governed by any 

variation in connectivity due to landscape or environmental heterogeneity, with IBR patterns 

explaining barely more than 3% of tumor genetic variation. DFTD has spread across 

Tasmania very rapidly (Lazenby et al., 2018; McCallum et al., 2007), so it is not surprising 

that tumor movement has been largely unconstrained by geography. Tumors can proliferate 

rapidly if even a single infected individual reaches a naive population after crossing a 

challenging landscape. By contrast, the same challenging landscape may facilitate only 

occasional dispersal by juveniles, which may not even reproduce subsequently. Thus, 

although major roads constrain devil movements to the extent that devil population genetic 

structure is increased, even infrequent crossing of roads by DFTD-infected individuals is 

sufficient to sustain rapid DFTD spread.
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Isolation-by-environment affects DFTD but not devils

Despite substantial topographic variation and a large rainfall gradient from east-to-west that 

produces dramatic variation in vegetation types and structure across Tasmania, we found no 

detectable IBE effect. This result is somewhat surprising because devil population densities 

vary throughout Tasmania concordant with habitat preference for low-elevation dry eucalypt 

forest, with lower densities at high elevations and in areas of cool temperate rainforest 

(Jones & Barmuta, 2000). However, the relatively narrow geographic focus of our study 

likely did not capture a sufficient proportion of these environmental gradients (relative to 

range-wide variation) for IBE patterns to be evident, with devils throughout our study area 

occupying (and preferring) relatively similar habitats.

In contrast to devils, we did detect evidence of IBE in tumors. Specifically, we found a 

significant positive correlation between elevation difference and genetic distance of tumors. 

When analyzing tumor clusters separately, we found that this effect was entirely driven by 

cluster 2, with genetic differentiation among cluster 1 lacking any significant association 

with any tested environmental factor, including geographic distance. We believe this effect 

of elevation on genetic differentiation among cluster 2 is most likely a result of population 

structure that is coincident with an elevation gradient. As we discussed above, a large 

proportion of cluster 2 tumors were sampled from Narawntapu National Park. Narawntapu is 

effectively at sea level, whereas the majority of tumors were sampled from devil populations 

in higher elevation areas. Thus, genetic differentiation among these groups owing to 

geographic isolation of Narawntapu tumors would be expected to produce an isolation-

by-elevation effect. Although it is possible that some innate biological characteristic of 

the tumor may instead be driving this effect, the mechanism by which this would occur 

is unclear. Potentially, climatic differences (e.g., temperature, moisture) among high and 

low elevation areas could influence the ability of tumor cells to successfully implant in 

uninfected devils, driving local adaptation of tumors in these regions, although this has yet 

to be demonstrated. Alternatively, differences in local landscape characteristics and thus 

devil densities may change the frequency of biting interactions among devils that in turn 

alters the DFTD transmission rate. However, existing studies of devil interactions provide no 

support for this explanation, with biting behaviors tied to interactions that devils seek out 

regardless of landscape structure (Hamede et al., 2009, 2013; Hamilton et al., 2019).

Conclusions

Comparative landscape genetic studies facilitate identification of patterns of connectivity 

that are common to multiple species. However, use of host gene flow estimates as a 

proxy for pathogen transmission and spread can lead to erroneous conclusions in cases 

of incongruent host and pathogen genetic structure (Kozakiewicz et al., 2018; Mazé-Guilmo 

et al., 2016). We have shown that host population structure, and the landscape features that 

influence it, is decoupled from that of their pathogens. Roads, which were found to constrain 

devil gene flow significantly, were not associated with DFTD transmission, suggesting that 

genetic studies of devils are insufficient to infer or predict the spatial spread of tumors. This 

decoupling of host and pathogen likely occurred due to a mismatch between dispersal life 

stage and the stage at which devils typically carry and transmit DFTD. In other systems, 
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external ecological factors such as multiple host/vector species or transmission via the 

environment are also known to mediate host-pathogen interactions (Näpflin et al., 2019; 

Witsenburg et al., 2015). Such ecological factors are amenable to inclusion in a comparative 

landscape genetic framework, emphasizing the value of comparative landscape genetics 

studies in host-pathogen systems where the dynamics of host dispersal and pathogen 

transmission may differ. Examples include sarcoptic mange, which infects various mammal 

species and can be transmitted environmentally (Martin et al., 2019b; Niedringhaus, Brown, 

Sweeley, & Yabsley, 2019), or pathogens requiring arthropod vectors, such as Plasmodium 
spp. (malaria; Lo et al., 2017), whereby disease spread relies on multiple species and is 

strongly mediated by the environment (Hemming-Schroeder et al., 2018; Schwabl et al., 

2017).

Despite the apparent de-coupling of host and pathogen gene flow herein, host connectivity 

generally plays a significant role in wildlife disease dynamics. Higher connectivity among 

habitat patches and increased host movements increase rates of pathogen spread, prevalence, 

and persistence in the landscape (Becker, Snedden, Altizer, & Hall, 2018; Wilber, Johnson, 

& Briggs, 2020). However, wildlife populations themselves benefit similarly from increased 

connectivity, which is critical for maintaining genetic diversity and facilitating demographic 

rescue (Brown & Kodric-Brown, 1977; Keyghobadi, 2007; Whiteley, Fitzpatrick, Funk, & 

Tallmon, 2015). Thus, management of the landscape to isolate and constrain the spread of 

disease must be balanced against the need to maintain genetic and demographic exchange 

among wildlife populations (McCallum & Dobson, 2002). In light of increasing threats 

owing to habitat loss and wildlife disease globally (Haddad et al., 2015; Jones et al., 2008), 

this trade-off has become a major conundrum for wildlife managers. Any interventions 

should therefore proceed with caution and can benefit from comparative landscape genetic 

studies to help consider the impact of alternative management strategies.
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Figure 1. 
The spread of DFTD across the island of Tasmania, with the approximate disease front over 

time depicted as red lines labelled by year. The site of the first documented case of DFTD 

is identified by the red circle. The 12,000 km2 study area is shown within the box, with 

Narawntapu National Park (NNP) and West Pencil Pine (WPP) indicated.
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Figure 2. 
Spatial distribution of population genetic structure in (A) Tasmanian devils and (B) DFTD 

tumors. For devils, relative STRUCTURE assignment probabilities for K = 2 genetic 

clusters are depicted as pie charts. For tumors, genetic clusters as determined by combined 

STRUCTURE and DAPC analyses are depicted, with samples for which analyses were 

incongruent shown as being of ambiguous cluster assignment.
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Figure 3. 
Population structure is evident in both Tasmanian devils (top) and DFTD (bottom). 

STRUCTURE genetic assignment probabilities are shown for K = 2, showing both full 

(right) and paired host-tumor (left) sets. Each column represents an individual devil or tumor 

sample, with genetic clusters indicated by color and the relative proportions of each color 

representing a sample’s relative probability of membership of each genetic cluster. Tumor 

cluster 1 is indicated in blue and tumor cluster 2 is indicated in orange. Samples are arranged 

along the x-axis from west-to-east.
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Figure 4. 
Tests of Tasmanian devil and DFTD tumor co-structuring, with logistic regression (A) 

suggesting that host genetic cluster assignment broadly predicts tumor genetic cluster, but 

with a Mantel test (B) showing no correlation between devil and tumor individual genetic 

distances (1 – DPS). Removal of left-tail outlier in panel B Mantel test produced negligible 

change in result.
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Kozakiewicz et al. Page 28

Table 1.

Results from the Evanno method showing relative support for STRUCTURE models of varying numbers of 

genetic clusters (K) in Tasmanian devils and DFTD. Optimal K was determined according to the model with 

the highest ΔK, together with assessment of mean natural logarithm of the probability of the data (Ln Pr(X|K), 

and is shown in bold typeface.

K Reps Mean Ln Pr(X|K) Stdev LnP(K) ΔK

Devil

1 10 −1025607.12 4.90 -

2 10 −1005918.67 4.55 3339.52

3 10 −1001419.28 9.87 180.47

4 10 −998701.25 37.17 30.84

5 10 −997129.52 2514.96 -

Tumor

1 10 −93561.09 0.31 -

2 10 −91383.05 22.36 271.29

3 10 −95270.47 6058.33 1.40

4 10 −90660.12 503.25 24.24

5 10 −98251.00 23635.46 -
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Table 2.

Linear mixed effect models with maximum likelihood population effects testing the influence of landscape 

resistance variables on genetic differentiation in devils, tumors, and tumor clusters 1 and 2. Model 

performance was evaluated by AICc averaged over 1,000 bootstrap iterations, with models with ΔAICc < 

2 highlighted. Marginal R2 (mR2) is the proportion of overall variation explained by the model fixed effects 

and % Top Model is the percentage of times the model was the top performing model over 1,000 bootstraps, as 

determined by AICc support.

Variable K AICc ΔAICc mR2 % Top Model

Devils

Roads 5 −7364.67 0.00 0.379 38.4

Precip. seasonality 4 −7359.56 4.66 0.269 1.7

Elevation relief ratio 4 −7358.72 5.49 0.253 6.8

Temp. annual range 4 −7357.35 6.87 0.255 0.0

Distance 2 −7357.64 5.97 0.249 52.7

Elevation 4 −7357.35 6.86 0.253 0.1

Annual precip. 4 −7355.11 9.11 0.255 0.0

Land cover 13 −7322.04 50.90 0.319 0.3

All tumors

Elevation 4 −7083.89 0.00 0.015 67.7

Precip. seasonality 4 −7082.19 1.70 0.030 30.5

Annual precip. 4 −7080.23 3.67 0.020 1.4

Elevation relief ratio 4 −7072.25 11.64 0.012 0.3

Distance 2 −7070.41 13.48 0.009 0.1

Temp. annual range 4 −7069.27 14.62 0.006 0.0

Land cover 13 −7067.75 16.14 0.024 0.0

Roads 5 −7065.33 18.57 0.009 0.0

Tumor cluster 1

Elevation relief ratio 4 −7627.07 0.00 0.026 77.2

Annual precip. 4 −7625.59 1.48 0.019 11.5

Precip. seasonality 4 −7624.56 2.51 0.016 4.6

Distance 2 −7624.19 2.88 0.009 6.4

Elevation 4 −7623.73 3.35 0.021 0.2

Temp. annual range 4 −7623.67 3.40 0.009 0.0

Roads 5 −7622.07 5.01 0.020 0.1

Land cover 13 −7616.24 10.83 0.016 0.0

Tumor cluster 2

Elevation 4 −7972.78 0.00 0.025 77.6

Annual precip. 4 −7969.02 3.76 0.043 2.1

Elevation relief ratio 4 −7967.41 5.37 0.044 10.3

Precip. seasonality 4 −7965.74 7.04 0.024 8.6

Distance 2 −7959.39 13.39 0.007 0.5

Roads 5 −7958.98 13.80 0.047 0.9

Land cover 13 −7957.66 15.12 0.053 0.0

Temp. annual range 4 −7958.77 14.01 0.006 0.0
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Table 3.

Summary of top generalized dissimilarity models explaining genetic distances in devils, all DFTD tumors, 

and DFTD clusters separately. % deviance explained refers to the reduction in model deviance relative to the 

null. % model deviance explained refers to the percent change in model deviance upon permutation of a given 

variable.

% deviance explained Variable Variable significance 
(P)

% model deviance 
explained

Devils 11.87

Geographic distance 0.00 1.84

Elevation relief ratio - -

Elevation - -

Precip. seasonality 0.47 0.90

Annual precip. 0.08 7.64

Temp. annual range 0.25 3.17

All tumors 6.67

Geographic distance 0.00 0.00

Elevation relief ratio 0.99 0.00

Elevation 0.00 99.95

Precip. seasonality - -

Annual precip. - -

Temp. annual range - -

Tumors with matched host 
samples 5.50

Geographic distance 0.01 0.00

Elevation relief ratio 0.07 38.96

Elevation 0.03 44.81

Precip. seasonality - -

Annual precip. - -

Temp. annual range - -

Host genetic distance - -

Tumor cluster 1 No significant model

 

 

 

 

 

Tumor cluster 2 4.66

Geographic distance 0.11 0.00

Elevation relief ratio 0.47 7.07

Elevation 0.02 93.36

Precip. seasonality - -

Annual precip. - -

Temp. annual range - -
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