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Supervised Deep Generalized Canonical Correlation

Analysis for Multi-Omics Integration
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ABSTRACT

Integration of multi-omics data provides opportunities for revealing biological mechanisms
related to certain phenotypes. We propose a novel method of multi-omics integration called
supervised deep generalized canonical correlation analysis (SDGCCA) for modeling cor-
relation structures between nonlinear multi-omics manifolds that aims at improving the
classification of phenotypes and revealing the biomarkers related to phenotypes. SDGCCA
addresses the limitations of other canonical correlation analysis (CCA)-based models (such
as deep CCA, deep generalized CCA) by considering complex/nonlinear cross-data corre-
lations between multiple (�2) modalities. Although there are a few methods to learn non-
linear CCA projections for classifying phenotypes, they only consider two views. Methods
extended to multiple views either do not perform classification or do not provide feature
ranking. In contrast, SDGCCA is a nonlinear multi-view CCA projection method that
performs classification and ranks features. When we applied SDGCCA in predicting pa-
tients with Alzheimer’s disease (AD) and discrimination of early- and late-stage cancers, it
outperformed other CCA-based and other supervised methods. In addition, we demonstrate
that SDGCCA can be applied for feature selection to identify important multi-omics bio-
markers. On applying AD data, SDGCCA identified clusters of genes in multi-omics data,
well known to be associated with AD.
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1. INTRODUCTION

The advent of sequencing technology has facilitated the collection of genome-wide data for dif-

ferent molecular processes (such as gene expression [GE], DNA methylation [ME], and microRNA

[miRNA] expression [MI]), resulting in multi-omics data analysis from the same set of individuals or

biospecimens. Exploring molecular mechanisms using multi-omics data is expected to improve our current

knowledge of diseases, leading to further improvements in disease diagnosis, prognosis, and personalized

treatment. Although single-omics analysis can only capture a part of the biological complexity of the disease,

integration of multi-omics data is required to provide a comprehensive overview of the underlying biological

mechanisms.

Various methods such as unsupervised data integration models based on matrix factorization and

correlation-based analysis, supervised data integration models based on network-based methods and

multiple kernel learning, and Bayesian methods have been proposed for multi-omics data integration

(Huang et al, 2017). For example, multi-omics factor analysis (Argelaguet et al, 2018) is a Bayesian

method for multi-omics integration that extracts the shared axes of variation between the different omics.

Sparse generalized canonical correlation analysis (sGCCA) (Tenenhaus et al, 2014) is a generalization of

regularized canonical correlation analysis (CCA) with an L1-penalty model that selects co-expressed

variables from omics datasets.

Recently, researchers have been interested in multi-omics biomarkers that can explain or characterize a

known phenotype. Data Integration Analysis for Biomarker discovery using Latent cOmponents (DIABLO)

(Singh et al, 2019) extends sGCCA to a supervised framework for identifying shared molecular patterns

that can explain phenotypes across multi-omics. However, most of these methods are linear representations

that cannot capture complex biological processes.

The CCA (Hotelling, 1992) is a well-known multivariate model for capturing the associations between

any two sets of data. The CCA and its variations have been applied in several studies (Tenenhaus et al,

2014; Mandal and Maji, 2017; Jendoubi and Strimmer, 2019; Singh et al, 2019) because of its advantages

in biological interpretation. However, a drawback of CCA is that it can only consider the linear relationship

of two modalities to correlate them maximally. Generalized canonical correlation analysis (GCCA)

(Kettenring, 1971) extends the CCA to consider more than two modalities.

To complement the GCCA, deep generalized canonical correlation analysis (DGCCA) (Benton et al,

2017) considers the nonlinear relationship learning of more than two modalities. Further, supervised deep

CCA (Liu et al, 2017) and task-optimal CCA (Couture et al, 2019) have been proposed for supervised

learning while considering nonlinear maximal correlation, but they can be only applied to two modalities.

In this study, we proposed a supervised deep generalized canonical correlation analysis (SDGCCA), a

nonlinear supervised learning model integrating with multiple modalities for discriminating phenotypic

groups. The SDGCCA identifies the common and correlated information between multiple omics data,

crucial for discriminating phenotypic groups. The SDGCCA is also based on a deep neural network (DNN),

allowing the powerful capturing of the nonlinear part of the biological complexity. After training

SDGCCA, we utilized Shapley additive explanation (SHAP) (Lundberg and Lee, 2017) to identify cor-

related biomarkers contributing to classification.

2. RELATED WORK

In this section, we briefly review relevant previous studies. Table 1 presents all the notions considered

throughout the study.

2.1. Canonical correlation analysis

The CCA is a representative method for dimension reduction that can consider the correlation between

two modalities. It is trained to maximize the correlation between two mapped matrices using the projection

matrices of each of the two modalities. The objective function of CCA is as follows:

(V�1 ‚ V�2 ) = argmax
V1‚ V2

corr(V>1 X1‚ V>2 X2) = argmax
V1‚ V2

V>1 S12V2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V>1 S11V1VT

2 S22V2

p ‚ (1)
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where Xi denotes the i-th modality; S11 and S22 denote covariance matrices of X1 and X2, respectively; S12

denotes a cross-covariance matrix; Vi denotes a projection matrix for the i-th modality; and V�1 and V�2 can

be adopted to select the relevant features in both modalities. Since the objective function above is invariant

for scaling of V1 and V2, the final objective function is expressed as follows by adding the constraints of the

unit variance.

(V�1 ‚ V�2 ) = argmax
V1‚ V2

V>1 S12V2‚

s:t: V>1 S11V1 = V>2 S22V2 = I
(2)

However, the CCA is limited to mapping linear relationships and can only leverage two modalities.

2.2. Deep canonical correlation analysis

A deep canonical correlation analysis (DCCA) (Andrew et al, 2013) is used to overcome the limitations

of CCA that extracts only the linear relationship. In DCCA, a DNN is applied to each modality to consider

a nonlinear relationship. The DCCA is learned by maximizing the correlation between the projected

representations of modalities. The objective function of DCCA is as follows:

(h1
�‚ h2

�‚ U1
�‚ U2

�) = argmax
U1‚ U2

corr(U>1 f1(X1)‚ U>2 f2(X2))‚ (3)

where fi(:) is a DNN function for the i-th modality, Ui indicates a projection matrix for fi(Xi), and hi is a

parameter of fi(:). hi(:) is trained via back-propagation that maximizes the objective function of DCCA.

However, DCCA maximizes the correlation between the representations projected by each DNN output

unlike CCA. Therefore, it cannot directly extract correlated features in both modalities. The DCCA also

cannot be applied to more than two modalities.

2.3. Generalized canonical correlation analysis

The GCCA is used to extend the CCA to more than two modalities. The GCCA learns projection metrics

that map each modality to a shared representation. The objective function of GCCA is as follows:

minimize
V1‚ ...‚ Vm‚ G

Pm

i = 1

k G - V>i Xi k2
F ‚

s:t: GG> = I‚

(4)

where G denotes the shared representation, and Vi indicates a projection matrix for Xi. To solve the

objective function of GCCA, an eigen decomposition of an n · n matrix is required, which increases

Table 1. Notations Used in Equations 1–12

Notation Dimension Description

n — Number of samples

m — Number of modalities

k — Dimensions of the shared representation

c — Number of label categories

di — Dimensions of the ith modality.

di — Output dimensions of a DNN of the i-th modality.

fi( � ) — Deep neural network of the i-th modality.

hi — Parameters of fi( � ).
Xi di · n i-th modality

Vi di · k Projection matrix for Xi

Ui di · k Projection matrix for fi(Xi)

Y c · n Label

Uy c · k Projection matrix for Y

U
y
y c · k Pseudo inverse of Uy

G k · n Shared representation

DNN, deep neural network.
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quadratically with sample size and leads to memory constraints. Also, unlike DCCA, nonlinear associations

between modalities cannot be considered.

2.4. Deep generalized canonical correlation analysis

The DGCCA is a model that addresses the limitations of CCA by including the advantages of GCCA and

DCCA. The DGCCA learns projection metrics that map each output of DNN to a shared representation.

The objective function of DGCCA is as follows:

minimize
U1‚ ...‚ Um‚ G

Pm

i = 1

k G - U>i fi(Xi) k2
F ‚

s:t:GG> = I:

(5)

Ui and G are trained to reduce the reconstruction error of GCCA, and to update hi, gradients are back-

propagated through the neural network. The gradient propagating to fi(Xi) is defined as 2UiG - 2UiU
>
i fi(Xi),

and hi can be updated with back-propagation to minimize the objective function of DGCCA. As hi is

updated, the value of fi(Xi) is changed.

Therefore, to solve the objective function of DGCCA, updating Ui and G and updating hi are alternately

performed. The DGCCA has the advantage of obtaining the nonlinear relationship of each modality. It can

also consider the correlation between more than two modalities.

2.5. Data Integration Analysis for Biomarker discovery using Latent cOmponents

DIABLO extends sGCCA, which is a GCCA with L1-penalty. It is different from sGCCA as (1) the

correlation between linear combinations of multi-omics data is changed to covariance; and (2) unlike

sGCCA, which is an unsupervised method, it is a supervised framework that is capable of classification by

maximizing the covariance between multiple omics datasets, including phenotype information. The ob-

jective function of DIABLO is as follows:

maximize
V1‚ ...‚ Vm‚ Uy

Pm

i‚ j = 1;i 6¼j

Di‚ j cov(V>i Xi‚ V>j Xj) +
Pm

l = 1

Dl‚ y cov(V>l Xl‚ U>y Y)‚

s:t: kVik2 = 1 and kVik1 � ki‚ kUyk2 = 1 and kUyk1 � ky‚

(6)

where D = fDi‚ jg 2 R(m + 1) · (m + 1) is a design matrix that determines whether datasets should be connected.

However, DIABLO has a limitation that only assumes a linear relationship between the selected features to

explain the phenotype.

3. METHODS

3.1. The SDGCCA method

The SDGCCA proposed in this study integrates ideas from DGCCA and DIABLO. The SDGCCA incor-

porates the phenotypes of samples for supervised learning and selects the significant features based on CCA. It

uses DNN to consider nonlinear interactions between multi-omics data as well as phenotypes (Fig. 1). The

SDGCCA makes it possible to predict the phenotypes of samples by adding two elements to DGCCA.

First, the correlation between each modality and that with the labels was considered. Thus, the shared

representation G can be trained to obtain the label information. The correlation loss function is defined as

follows:

Lcorr = k G - U>y Y k2
F +

Pm

i = 1

k G - U>i fi(Xi) k2
F ‚

s:t: GG> = I‚

(7)

where Uy denotes the projection matrix for label Y. Second, cross-entropy (De Boer et al, 2005), which is

widely used in supervised models, is used to enable the propagation of label information directly to the

DNN of each modality. The projection matrix Uy obtained from Eq. (7) can map the label to the shared

representation. In addition, a projection matrix Ui maps each modality to a shared representation. Using the

pseudo-inverse matrix of a projection matrix Uy, label Y can be approximated as follows:
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G�U>i fi(Xi)�U>y Y‚

Y� (U>y )
y
U>i fi(Xi)‚

(8)

where U
y
y denotes the pseudo-inverse of Uy, Let Ŷi = (U>y )yU>i fi(Xi). By applying the softmax function to

Ŷi, the model was trained using cross-entropy. Classification loss is defined as follows:

Lce =
Pm

i = 1

CrossEntropy (Y‚ Softmax(Ŷ i)): (9)

The final label prediction of SDGCCA uses soft voting of the label representation (Ŷi) of each modality.

The label prediction of SDGCCA is defined as follows:

Ŷ = Softmax((
Xm

i = 1

Ŷi)=m)‚ (10)

where m denotes the number of modalities, The optimization of the proposed model consists of three main

steps. First, Ui‚ . . . ‚ Um‚ Uy, and G were trained using the correlation loss function (Lcorr). Here,G is

obtained by solving the eigenvalue problem. Let Cii = fi(Xi)fi(Xi)
>‚ s:t: i = 1‚ . . . ‚ m, C(m + 1)(m + 1) = YY>,

Pi = fi(Xi)
>C - 1

ii fi(Xi) 2 Rn · n, Pm + 1 = Y>C - 1
(m + 1)(m + 1)Y 2 Rn · n, and M =

Pm + 1
i = 1 Pi.

Subsequently, the rows of G 2 Rk · n are orthonormal as the top k eigenvectors of M. After such G is

obtained, the following can be easily obtained: Ui = C - 1
ii fi(Xi)G

> and Uy = C - 1
(m + 1)(m + 1)YG>. Second, hi of

fi(:) was trained using Lcorr . It can be updated by selecting only the part related to hi in Lcorr and finding

gradients to back-propagate to fi(Xi) as follows:

FIG. 1. A schematic of SDGCCA. X1‚ . . . ‚ Xm are m modality, and Y is the label information. DNNs f1‚ . . . ‚ fm

operate on X1‚ . . . ‚ Xm. The outputs of each modality and Y are multiplied by each projection matrix (U1‚ . . . ‚ Um‚ Uy).

Two objective functions search for the optimal network f1‚ . . . ‚ fm and projection matrices, which provide both the

highest correlation and the lowest prediction error. DNNs, deep neural networks; SDGCCA, supervised deep gener-

alized canonical correlation analysis.
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k G - U>y Y k2
F +

Pm

i = 1

k G - U>i fi(Xi) k2
F ‚

= k G - GY>C - 1
(m + 1)(m + 1)Y k2

F +
Pm

i = 1

k G - Gfi(Xi)
>C - 1

ii fi(Xi) k2
F ‚

=
Pm + 1

i = 1

k G(In - Pi)) k2
F ‚

=
Pm + 1

i = 1

Tr[G(In - Pi)G
>]‚

=
Pm + 1

i = 1

Tr(Ik) - Tr(GMG>)‚

= (m + 1)k - Tr(GMG>):

(11)

As mentioned earlier, Lcorr can be minimized by maximizing Tr(GMG>), and the derivative of

Tr(GMG>) with respect to fi(Xi) is demonstrated in the DGCCA (Benton et al, 2017) as

2UiG - 2UiU
>
i fi(Xi). Finally, after substituting the Ui and Uy obtained earlier into Eq. 7, hi is trained using

Lce. A detailed algorithm for training SDGCCA using Eq. (7–11) is summarized in Algorithm 1.

Algorithm 1: Training the proposed model

Input: Training dataset X = [X1‚ X2‚ . . . ‚ Xm], regularization rate a, learning rate b, and max iterations T

Output: Projection matrices U1‚ . . . ‚ Um‚ Uy, parameters hi of fi
Initialize hi by He initialization

t = 1

while: Validation loss does not converge or t 2 T

Step 1. Calculate U1‚ . . . ‚ Um‚ Uy‚ G

Lcorr = k G - U>y Y k2
F +

Pm
i = 1 k G - U>i fi(Xi) k2

F

U1‚ . . . ‚ Um‚ Uy‚ G = argmin
U1‚ ...‚ Um‚ Uy‚ G

Lcorr

G is obtained by solving an eigenvalue problem.

Ui = C - 1
ii fi(Xi)G

>‚ s:t: Cii = fi(Xi)fi(Xi)
>

Uy = C - 1
(m + 1) (m + 1)YG>‚ s:t: C(m + 1) (m + 1) = YY>

Step 2. Training hi by using Lcorr

=fi(Xi)Lcorr = UiU
>
i fi(Xi) - UiG

hi ) (1 - a)hi - b=hi
=fi(Xi)Lcorr

Step 3. Training hi by using Lce

Ŷi = (U>y )yU>i fi(Xi)

Lce =
Pm

i = 1 CrossEntropy(Y‚ Softmax(Ŷi))

hi ) (1 - a)hi - b=hi
Lce

t ) t + 1

end while

3.2. Identification of multi-omics biomarkers

The SDGCCA is trained by maximizing the correlation between the shared representation and projected

representation for each modality, and a projection matrix can be used to select the most correlated dimension

of the DNN output of each modality. Because SDGCCA uses eigen decomposition to obtain a projection

matrix as a CCA-based model, it can be observed that the correlation value of the first component (Ui[ : ‚ 1])

is the largest among the values mapped to the shared representation through each modality.

Therefore, the most correlative dimension of each DNN output corresponds to the highest coefficient of

the projection matrix (argmaxjUi[ : ‚ 1]j), which is

fi( � )[argmax jUi[ : ‚ 1]j‚ : ] (12)

However, unlike CCA and GCCA, the model is difficult to interpret because of the DNN. Thus, we used

SHAP to select features related to the most correlative dimension of each DNN output. In Lundberg and

Lee (2017), SHAP calculated the feature importance using the SHAP value that satisfied the desirable

properties (local accuracy [ACC], missingness, and consistency) for each prediction.
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Specifically, we used deep SHAP, which is tailored to the DNN and effectively combines the SHAP values

calculated for smaller components of a DNN into SHAP values for the entire DNN. In deep SHAP, feature

importance is calculated as the extent to which the output of the arbitrary input deviates from that of the

network of the reference input, computing SHAP values recursively for smaller components of the model.

4. RESULTS

4.1. Datasets

We applied the proposed method to an Alzheimer’s disease (AD) classification task using multi-omics

data. Three types of omics data (mRNA, ME, and miRNA) and clinical data were obtained from the

Religious Order Study and Rush Memory and Aging Project (ROSMAP) cohort in the AMP-AD

Knowledge Portal (https://adknowledgeportal.synapse.org/). We downloaded mRNA data that were nor-

malized with quantile normalization to fragments per kilobase of transcript per million mapped reads

(FPKM) and removed potential batch effects using Combat ( Johnson et al, 2007).

The b-values of the downloaded ME data were measured using the Infinium HumanMethylation450

BeadChip, and the missing b-values were imputed using a k-nearest neighbor algorithm. We downloaded

miRNA data normalized using a variance stabilization normalization method (Huber et al, 2002) and

removed potential batch effects using Combat. Patients with AD (n = 207) and normal controls (n = 169)

with GE, ME, and MI profiles were included.

The normalized FPKM values of the GE profiles were log2-transformed. For ME data, CpG sites located

in promoter regions (TSS200 or TSS1500) were mapped to the corresponding gene, and the b-values of the

promoter CpG sites for the same genes were averaged to create a score per gene. Finally, 18,164 GE,

19,353 ME, and 309 MI features were obtained.

To further measure the performance of the proposed method, we used kidney renal clear cell carcinoma

(KIRC) data collected from The Cancer Genome Atlas (TCGA) for the early- and late-stage classification.

The TCGA level-3 data on GE (Illumina mRNAseq), ME (Illumina HumanMethylation450 BeadArray),

and MI (Illumina HiSeq miRNAseq) were obtained. The ME data used in this study were pre-processed

according to Ma et al (2020). Finally, KIRC data comprised 313 samples (184 and 129 early- and late-stage

samples, respectively) on 16,406 GE, 16,459 ME, and 342 MI features.

4.2. Existing methods for performance comparison

We compared the classification performance of SDGCCA using the following 10 existing methods. We

selected widely utilized machine- or deep learning models and CCA-based multi-omics integration methods to

determine the mechanism by which SDGCCA can contribute to the CCA framework. We selected (1) support

vector machine (SVM), (2) extreme gradient boosting (XGB) (Chen et al., 2016), (3) logistic regression (LR),

and (4) random forest (RF) as a method of machine learning, and (5) DNN as methods of deep learning.

For CCA-based methods, (6) GCCA, (7) DGCCA, and (8) DIABLO (Singh et al, 2019) were selected.

The SVM was used as an additional classification model, because GCCA and DGCCA are unsupervised

learning models. In addition, the performance was compared with (9) Multi-Omics Graph cOnvolutional

NETworks (MOGONET) (Wang et al, 2021) and (10) multimodal self-paced learning with a soft weighting

scheme (SMSPL) (Yang et al, 2020), which are recently released multi-omics integration algorithms

although they are not CCA-based models.

The performances of all combinations of GE, ME, and MI in ROSMAP, such as GE+ME, GE+MI,

ME+MI, and GE+ME+MI, were compared. In addition, the performance of the GE+ME+MI of KIRC was

compared. We used ACC, F1 score (F1), area under the receiver operating characteristic curve (AUC), and

Matthews correlation coefficient (MCC) (Elith et al, 2006) as metrics for evaluating the classification per-

formance. The mean and standard deviation for fivefold cross-validation (CV) were calculated for all metrics.

Each CV used 60% of the samples as the training set, 20% as the validation set, and 20% as the test set.

The hyperparameters of all models were selected based on the MCC of the validation set, because MCC is a

more reliable statistical measure for evaluating binary classifications than ACC and F1 (Chicco et al, 2021).

For DNN, DGCCA, and SDGCCA methods, a four-layer fully connected neural network with {256, 64,

16} neurons in the hidden layers was used for GE and ME and a three-layer fully connected neural network

with {64, 16} neurons in the hidden layers was used for MI. For hyperparameters in SDGCCA, learning

898 MOON ET AL.

https://adknowledgeportal.synapse.org/


rate from the set {1e - 4, 1e - 5}, L2 regularization term on weights from the set {0, 1e - 2, 1e - 4}, and the

dimension of the shared representation from the set {1, 2, . . ., 10} were selected using the validation set.

Details regarding the hyperparameters of the other models and fivefold CV are described in the Supple-

mentary Data and Supplementary Figure S1.

The SDGCCA was trained using correlation and classification losses. To see how each loss affects the

classification and feature selection, we performed ablation studies by measuring the performance of two

additional models. First, SDGCCA-Gcorr is a model that excludes Step 2 of Algorithm 1 in the training

process. Second, SDGCCA-Gcl f excludes Step 3 of Algorithm 1 in the training process.

4.3. Evaluation of classification performances

The results of the classification of patients with AD and normal controls are summarized in Tables 2–5.

The SDGCCA showed the best performance in 10 of 16 cases, except for the performance of AUC in

Table 2. Performance Comparison of Alzheimer’s Disease Classification Using Gene Expression+DNA

Methylation in ROSMAP Multi-Omics Data

Method ACC F1 AUC MCC

SVM 0.676 – 0.044 0.711 – 0.036 0.751 – 0.055 0.346 – 0.095

XGB 0.643 – 0.063 0.686 – 0.059 0.697 – 0.053 0.275 – 0.131

LR 0.674 – 0.067 0.674 – 0.072 0.750 – 0.071 0.363 – 0.133

RF 0.602 – 0.058 0.687 – 0.047 0.678 – 0.059 0.179 – 0.134

DNN 0.697 – 0.037 0.695 – 0.035 0.785 – 0.038 0.412 – 0.079

GCCA+SVM 0.665 – 0.054 0.699 – 0.046 0.710 – 0.067 0.323 – 0.111

DGCCA+SVM 0.609 – 0.035 0.700 – 0.021 0.673 – 0.072 0.194 – 0.080

DIABLO 0.633 – 0.059 0.637 – 0.062 0.702 – 0.050 0.277 – 0.120

MOGONET 0.670 – 0.022 0.698 – 0.050 0.698 – 0.042 0.332 – 0.034

SMSPL 0.683 – 0.071 0.723 – 0.056 0.751 – 0.084 0.356 – 0.155

SDGCCA-Gcorr 0.721 – 0.050 0.724 – 0.055 0.788 – 0.043 0.453 – 0.095

SDGCCA-Gclf 0.691 – 0.034 0.693 – 0.034 0.765 – 0.046 0.396 – 0.07

SDGCCA 0.729 – 0.035 0.728 – 0.037 0.782 – 0.019 0.474 – 0.069

The best performances are marked in bold.

ACC, accuracy; AUC, area under the receiver operating characteristic curve; DGCCA, deep generalized canonical correlation

analysis; DIABLO, Data Integration Analysis for Biomarker discovery using Latent cOmponents; F1, F1 score; GCCA, generalized

canonical correlation analysis; LR, logistic regression; MCC, Matthews correlation coefficient; MOGONET, Multi-Omics Graph

cOnvolutional NETworks; RF, random forest; ROSMAP, Religious Order Study and Rush Memory and Aging Project; SDGCCA,

supervised deep generalized canonical correlation analysis; SMSPL, multimodal self-paced learning with a soft weighting scheme;

SVM, support vector machine; XGB, extreme gradient boosting.

Table 3. Performance Comparison of Alzheimer’s Disease Classification Using Gene

Expression+microRNA Expression in ROSMAP Multi-Omics Data

Method ACC F1 AUC MCC

SVM 0.679 – 0.042 0.714 – 0.036 0.755 – 0.054 0.351 – 0.089

XGB 0.647 – 0.062 0.689 – 0.057 0.704 – 0.057 0.283 – 0.130

LR 0.680 – 0.069 0.681 – 0.070 0.758 – 0.070 0.375 – 0.140

RF 0.602 – 0.054 0.683 – 0.046 0.678 – 0.056 0.181 – 0.126

DNN 0.689 – 0.048 0.695 – 0.049 0.765 – 0.065 0.387 – 0.095

GCCA+SVM 0.648 – 0.044 0.700 – 0.044 0.693 – 0.060 0.288 – 0.092

DGCCA+SVM 0.633 – 0.071 0.714 – 0.047 0.617 – 0.095 0.244 – 0.154

DIABLO 0.662 – 0.060 0.672 – 0.063 0.736 – 0.066 0.330 – 0.116

MOGONET 0.696 – 0.055 0.722 – 0.055 0.759 – 0.040 0.387 – 0.112

SMSPL 0.691 – 0.079 0.719 – 0.056 0.760 – 0.062 0.378 – 0.169

SDGCCA-Gcorr 0.697 – 0.047 0.702 – 0.053 0.757 – 0.051 0.404 – 0.091

SDGCCA-Gclf 0.667 – 0.039 0.692 – 0.030 0.739 – 0.043 0.331 – 0.082

SDGCCA 0.699 – 0.017 0.697 – 0.015 0.796 – 0.033 0.416 – 0.035

The best performances are marked in bold.
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GE+ME, F1 in GE+MI, ACC, F1, MCC in ME+MI, and F1 in GE+ME+MI. In addition, for SDGCCA,

integrating all three omics datasets (GE+ME+MI) outperformed that of the two omics datasets. Notably, the

integration of ME and MI showed different results from combining the other two omics datasets.

For ME+MI, LR performed better than the other machine-learning models (SVM, XGB, and RF) and had

the highest MCC values. In addition, SMSPL was the best-performing model for ACC and FI measurements. If

we consider that LR extracts the linear relationship between multi-omics data and SMSPL as an LR-based

model, the importance of nonlinearity in ME+MI is less than that in other combinations of omics data.

In all the experiments, SVM that used the original input data performed better than GCCA+SVM and

DGCCA+SVM. In addition, SDGCCA performed better than GCCA+SVM and DGCCA+SVM, except for

F1 in GE+MI. This result indicates a risk of losing information related to classification when dimension

reduction is performed by considering only the correlation. In most cases, the performance of SDGCCA-

Gcorr was better than that of SDGCCA-Gcl f , and the performance improved when both the correlation and

classification losses were combined.

The results of the classification of early- and late-stage KIRC are shown in Table 6. The SDGCCA

showed the best performance in two out of four cases, except F1 and AUC. The F1 and AUC were the

highest in LR-based SMSPL, and LR also had a higher performance than other machine-learning models

Table 4. Performance Comparison of Alzheimer’s Disease Classification Using DNA

Methylation+microRNA Expression in ROSMAP Multi-Omics Data

Method ACC F1 AUC MCC

SVM 0.678 – 0.040 0.713 – 0.036 0.753 – 0.052 0.349 – 0.085

XGB 0.653 – 0.059 0.697 – 0.055 0.708 – 0.054 0.296 – 0.123

LR 0.683 – 0.064 0.684 – 0.065 0.758 – 0.067 0.380 – 0.130

RF 0.597 – 0.051 0.682 – 0.043 0.670 – 0.058 0.169 – 0.120

DNN 0.644 – 0.033 0.637 – 0.045 0.741 – 0.031 0.305 – 0.061

GCCA+SVM 0.631 – 0.044 0.699 – 0.037 0.672 – 0.065 0.249 – 0.096

DGCCA+SVM 0.561 – 0.031 0.681 – 0.027 0.548 – 0.071 0.073 – 0.079

DIABLO 0.686 – 0.048 0.701 – 0.051 0.755 – 0.072 0.374 – 0.095

MOGONET 0.668 – 0.030 0.708 – 0.040 0.708 – 0.028 0.329 – 0.048

SMSPL 0.686 – 0.032 0.724 – 0.025 0.747 – 0.054 0.365 – 0.068

SDGCCA-Gcorr 0.678 – 0.050 0.679 – 0.066 0.764 – 0.052 0.369 – 0.093

SDGCCA-Gclf 0.662 – 0.012 0.681 – 0.021 0.733 – 0.029 0.325 – 0.027

SDGCCA 0.684 – 0.046 0.693 – 0.051 0.764 – 0.039 0.372 – 0.089

The best performances are marked in bold.

Table 5. Performance Comparison of Alzheimer’s Disease Classification Using Gene Expression+DNA

Methylation+microRNA Expression in ROSMAP Multi-Omics Data

Method ACC F1 AUC MCC

SVM 0.679 – 0.040 0.714 – 0.035 0.756 – 0.050 0.352 – 0.084

XGB 0.655 – 0.060 0.698 – 0.055 0.711 – 0.055 0.299 – 0.124

LR 0.683 – 0.061 0.683 – 0.063 0.759 – 0.064 0.380 – 0.124

RF 0.603 – 0.050 0.684 – 0.041 0.672 – 0.055 0.181 – 0.116

DNN 0.707 – 0.039 0.701 – 0.037 0.779 – 0.043 0.437 – 0.079

GCCA+SVM 0.628 – 0.042 0.702 – 0.033 0.669 – 0.065 0.240 – 0.094

DGCCA+SVM 0.569 – 0.018 0.680 – 0.037 0.615 – 0.055 0.104 – 0.034

DIABLO 0.673 – 0.060 0.679 – 0.064 0.739 – 0.044 0.354 – 0.117

MOGONET 0.684 – 0.040 0.736 – 0.012 0.692 – 0.059 0.359 – 0.086

SMSPL 0.699 – 0.047 0.726 – 0.027 0.777 – 0.068 0.397 – 0.110

SDGCCA-Gcorr 0.731 – 0.035 0.742 – 0.031 0.797 – 0.034 0.469 – 0.075

SDGCCA-Gclf 0.678 – 0.047 0.682 – 0.050 0.753 – 0.061 0.367 – 0.089

SDGCCA 0.731 – 0.050 0.729 – 0.056 0.805 – 0.043 0.479 – 0.094

The best performances are marked in bold.
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(SVM, XGB, and RF) and DNN. Consistent with the results of ROSMAP, all performances of

DGCCA+SVM were better than those of GCCA+SVM, and all performances of SDGCCA-Gcorr were

better than those of SDGCCA-Gcl f .

To statistically estimate the performance of our model against other models, we performed a paired t-test

using fivefold CV classification results in MCC values for GE+ME+MI of ROSMAP and KIRC (Table 7).

We observed that SDGCCA statistically outperformed its competing methods in 15 out of 20 cases ( p-

value <0.05).

We projected omics data and concatenated multi-omics data on a low-dimensional space through di-

mension reduction using t-distributed Stochastic Neighbor embedding. Figure 2 shows the projections of

the multi-omics data for each method. As expected, the supervised learning-based methods clearly sepa-

rated classes. Among the supervised learning-based models, nonlinear SDGCCA classifies classes more

clearly than linear DIABLO.

To further demonstrate the effects of the hyperparameter k (dimension of shared representation) on the

SDGCCA, we trained SDGCCA under a wide range of k using the ROSMAP data. Supplementary

Figure S2 shows the embedding performance, correlation sum, and classification performance of SDGCCA

when k varied from 1 to 10. We observed that the hyperparameter k did not influence the embedding and

classification performance of SDGCCA as the performance fluctuated with the change in k. However, we

observed that the correlation sum peaked at k = 7 and decreased thereafter. This experiment is described in

detail in the Supplementary Data.

Table 6. Performance Comparison of Early- and Late-Stage Classification Using Gene Expression+DNA

Methylation+microRNA Expression in Kidney Renal Clear Cell Carcinoma Multi-Omics Data

Method ACC F1 AUC MCC

SVM 0.713 – 0.040 0.708 – 0.039 0.790 – 0.035 0.401 – 0.082

XGB 0.693 – 0.055 0.688 – 0.057 0.778 – 0.066 0.362 – 0.125

LR 0.738 – 0.053 0.738 – 0.052 0.784 – 0.039 0.480 – 0.106

RF 0.687 – 0.024 0.661 – 0.032 0.770 – 0.031 0.340 – 0.054

DNN 0.687 – 0.023 0.715 – 0.025 0.763 – 0.054 0.418 – 0.041

GCCA+SVM 0.652 – 0.057 0.615 – 0.073 0.678 – 0.086 0.247 – 0.159

DGCCA+SVM 0.665 – 0.067 0.642 – 0.081 0.684 – 0.106 0.287 – 0.167

DIABLO 0.719 – 0.052 0.760 – 0.044 0.791 – 0.030 0.425 – 0.117

MOGONET 0.661 – 0.095 0.728 – 0.087 0.745 – 0.061 0.327 – 0.123

SMSPL 0.710 – 0.069 0.763 – 0.052 0.808 – 0.067 0.394 – 0.151

SDGCCA-Gcorr 0.741 – 0.063 0.742 – 0.062 0.800 – 0.058 0.479 – 0.129

SDGCCA-Gclf 0.735 – 0.060 0.734 – 0.057 0.794 – 0.061 0.472 – 0.122

SDGCCA 0.745 – 0.035 0.745 – 0.034 0.793 – 0.084 0.484 – 0.069

The best performances are marked in bold.

Table 7. Statistical Significances of Performance Improvements of Supervised Deep Generalized

Canonical Correlation Analysis Against Other methods

Methods ROSMAP KIRC

SVM 6.57E-02 7.22E-04

XGB 2.82E-02 2.28E-02

LR 1.68E-03 4.40E-01

RF 5.65E-02 1.09E-02

DNN 8.39E-03 3.28E-02

GCCA+SVM 9.26E-02 4.17E-03

DGCCA+SVM 1.72E-02 1.35E-02

DIABLO 1.67E-03 2.36E-02

MOGONET 1.59E-02 3.51E-02

SMSPL 1.59E-02 5.24E-02

Values with a p-value <0.05 are marked in bold.

KIRC, kidney renal clear cell carcinoma.
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FIG. 2. t-SNE plots for CCA-based methods, including GCCA, DGCCA, DIABLO, and SDGCCA. (A) ROSMAP

data and (B) TCGA KIRC data. Each method was used to compute projections for the GE, ME, and miRNA data. The

circle and cross symbols represent training and test samples, respectively. Samples are colored according to labels.

CCA, canonical correlation analysis; DGCCA, deep generalized canonical correlation analysis; DIABLO, Data In-

tegration Analysis for Biomarker discovery using Latent cOmponents; GCCA, generalized canonical correlation

analysis; GE, gene expression; KIRC, kidney renal clear cell carcinoma; ME, DNA methylation; miRNA, microRNA;

ROSMAP, Religious Order Study and Rush Memory and Aging Project; t-SNE, t-distributed Stochastic Neighbor

embedding; TCGA, The Cancer Genome Atlas.
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4.4. Classification performance of the identified biomarkers

We compared the feature selection performance of the CCA-based method to demonstrate that the set of

relevant features of DNN output with a high correlation between each modality is effective in classification.

For each CV of the ROSMAP dataset, SHAP selected 300 out of 18,164 features for GE, 300 out of 19,353

features for ME, and 30 out of 309 features for MI using only the training data. Here, correlated features

were selected using only the training data.

The performance was evaluated using LR, which was the best performance among the machine-learning

models in the GE+ME+MI experiments. To confirm the importance of features selected by SDGCCA in the

classification, LRs with these features were compared with that of randomly selected features and features

selected by CCA-based models, GCCA and DGCCA. Random feature samplings were repeated 100 times,

and the performances were averaged.

Table 8 presents the classification performance of the critical features selected by all competing methods

in the ROSMAP data. All features and feature sets obtained from DGCCA and SDGCCA performed better

than the randomly selected features, whereas the others did not. A feature set from SDGCCA showed better

performance than using all features except AUC.

Thus, it can be observed that SDGCCA can identify essential features in AD classification using multi-

omics data. Performance comparison experiments with additional settings, including different numbers of

features and different parameter tuning approaches on the ROSMAP and KIRC datasets, were described in

Supplementary Tables S1–S5 in Supplementary Data. In most cases, SDGCCA showed performance

similar to that of all features.

The SDGCCA-Gcorr and SDGCCA-Gcl f performed lower than when randomly selected features were

used. Regarding SDGCCA-Gcorr, the gradient associated with the correlation between the shared represen-

tation and the projected representation for each modality is not propagated to the weight and bias of the DNN

of each modality, indicating that the ability to select the correlative features between multi-omics is weak.

When we calculated the average of correlations between the first components of the shared represen-

tation of each modality in the training set, SDGCCA-Gcorr had a correlation coefficient of 0.462, which is

much lower than the correlation coefficient of 0.954 from SDGCCA-Gcl f and a correlation coefficient of

0.956 from SDGCCA. Regarding SDGCCA-Gcl f , the correlation value is slightly lower than that of

SDGCCA but shows lower performance. Accordingly, Lcorr cannot propagate sufficient information about

the label to the DNN for each modality, and it is crucial to use Lcl f together.

4.5. Pathway analysis using the SHAP values

To further illustrate the applicability of the proposed method, we performed pathway analysis. For

pathway analysis, all ROSMAP samples were used for training the SDGCCA, where hyperparameters with

the highest MCC values for fivefold on average in the fivefold CV were used. We clustered features with

similar patterns using all samples and features with variable SHAP values (Fig. 3A). Pathway enrichment

analysis was performed based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database

(Kanehisa and Goto, 2000) using the GE and ME features of each cluster.

Figure 3A illustrates enriched KEGG pathways with adjusted p-values <0.05. Cluster H was significantly

enriched in the KEGG pathway related to olfactory transduction (adjusted p-values = 2E-37). Previous

Table 8. ROSMAP Classification Performance Comparison of Important Features Selected by Canonical

Correlation Analysis-Based Methods

Feature set ACC F1 AUC MCC

All features 0.683 – 0.061 0.683 – 0.063 0.759 – 0.064 0.380 – 0.124

Random features 0.661 – 0.043 0.674 – 0.047 0.727 – 0.045 0.328 – 0.086

GCCA 0.630 – 0.043 0.638 – 0.036 0.693 – 0.045 0.269 – 0.089

DGCCA 0.669 – 0.040 0.678 – 0.048 0.739 – 0.037 0.345 – 0.076

SDGCCA-Gcorr 0.646 – 0.045 0.661 – 0.048 0.716 – 0.053 0.294 – 0.092

SDGCCA-Gclf 0.650 – 0.021 0.650 – 0.020 0.739 – 0.040 0.315 – 0.048

SDGCCA 0.689 – 0.045 0.698 – 0.042 0.755 – 0.043 0.386 – 0.095

The best performances are marked in bold.
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studies (Zou et al, 2016) have revealed that AD is closely related to olfactory dysfunction. We analyzed

clusters J and S in detail using ClueGO (Bindea et al, 2009) Cytoscape plugins to show the relationship

(Fig. 3B, C). In cluster J, we identified that two genes, HIPK3 and TGFBR1, related to cellular senescence,

and miR-885-5p targeting them were clustered. Cellular senescence is known to be associated with AD

(Boccardi et al, 2015; Masaldan et al, 2019; Reddy et al, 2017).

In addition, interleukin (IL)6, IL10, and RAF1 in the cluster J network are also well-known AD closely

related genes (Arosio et al, 2004; Mei et al, 2006). Cluster S was significantly enriched in the KEGG

pathway related to AD (adjusted p-values = 1E-03) and neurodegeneration (adjusted p-values = 5E-03).

CASP8 and PLCB1 are known AD biomarkers (Rehker et al, 2017; Shimohama and Matsushima, 1995).

AXIN1 and PPP3CA are AD-related genes (Lloret et al, 2011; Whelan et al, 2019).

A

B C

FIG. 3. The results of pathway analysis. (A) Clustered heatmap of SHAP value with the red color denoting increase

and green color denoting decrease. The KEGG pathways enriched in each of the 20 clusters are represented with a

heatmap. (B) The pathway network of cluster J. (C) The pathway network of cluster S. Yellow circles denote well-

known AD-related genes. AD, Alzheimer’s disease; KEGG, Kyoto Encyclopedia of Genes and Genomes; SHAP,

Shapley additive explanation.
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5. CONCLUSION

In this study, we proposed a CCA-based SDGCCA, an integration method of multi-omics data, to

classify and identify significant multi-omics biomarkers. The SDGCCA was trained to consider the non-

linear/complex interaction between multi-omics using the loss of DGCCA, which maximizes the corre-

lation between the shared representation and the projected representation for each modality. In addition, the

label can be predicted using a projection matrix. The model can be trained to propagate the label infor-

mation to each DNN using cross-entropy.

The SDGCCA performed better in the AD prediction and early- and late-stage KIRC classification task

using GE, ME, and MI than the other machine-learning models, DNN, DIABLO, MOGONET, and

SMSPL. We demonstrated that SDGCCA could select a vital feature set related to a phenotype by com-

paring it with other feature selection models. Using SHAP values, we clustered features in multi-omics data

and showed that it applies to AD-related biomarker discovery using pathway analysis.

We expect that SDGCCA can be extended to predict quantitative phenotypes by using the mean squared

error loss function for regression problems instead of using the cross-entropy for the classification loss. In

conclusion, SDGCCA is a multi-omics integration algorithm with high classification performance and the

ability to select a set of mutually contributing features from different multi-omics datasets.
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