TABLE 4.
Targets of RNA methylation/modification | Database by years |
N6-Methyladenosine (m6A) | ● MeT-DB V2.0 (Liu et al., 2018), m6Avar (Zheng et al., 2018) (2018) ● CVm6A (Han et al., 2019) (2019) ● REPIC (Liu et al., 2020h) (2020) ● ConsRM (Song et al., 2021a), M6A2Target (Deng et al., 2021) (2021) ● m6A-TSHub (Song et al., 2022a) (2022) |
5-methylcytosine (m5C) | ● SyStemCell (Yu et al., 2012) (2012) ● m5C-Atlas (Ma et al., 2022) (2022) |
N1-methyladenosine (m1A) | / |
N6, 2′-O-dimethyladenosine (m6Am) | / |
5-hydroxymethylcytosine (hm5C) | / |
Pseudouridine (Ψ) | / |
Database containing multiple types of RNA methylation/modification | ● MODOMICS (Dunin-Horkawicz et al., 2006) ● TCGA (Wang et al., 2016) (2006) ● REACTOME (Croft et al., 2011), RNAMDB (Cantara et al., 2011) (2011) ● Gene-Expression Omnibus (GEO) (Barrett et al., 2013), DARNED (Kiran et al., 2013) (2013) ● RCAS (Uyar et al., 2017) (2017) ● RMBase V2 (Xuan et al., 2018), REDIdb 3.0 (Lo Giudice et al., 2018) (2018) ● RNAmod (Liu and Gregory, 2019) (2019) ● RNAWRE (Nie et al., 2020), T-psi-C (Sajek et al., 2020) (2020) ● m6A-Atlas (Tang et al., 2021), RMVar (Luo et al., 2021), Lnc2Cancer 3.0 (Gao et al., 2021) (2021) ● RMDisease V2.0 (Song et al., 2022b), AgingBank (Gao et al., 2022), CPLM 4.0 (Zhang et al., 2022), OncoDB (Tang et al., 2022), ASMdb (Zhou et al., 2022), iMOMdb (Pan et al., 2022), OAOB (Li et al., 2022a), ProMetheusDB (Massignani et al., 2022), RM2Target (Bao et al., 2022) (2022) |