
Abstract. Background/Aim: Brain metastases (BMs) are the
most frequent intracranial tumors in adults and one of the
greatest challenges for modern oncology. Most are derived from
lung, breast, renal cell, and colorectal carcinomas and
melanomas. Up to 14% of patients are diagnosed with BMs of
unknown primary, which are commonly characterized by an
early and aggressive metastatic spread. It is important to
discover novel biomarkers for early identification of BM origin,
allowing better management of patients with this disease. Our
study focused on microRNAs (miRNAs), which are very stable
in frozen native and FFPE tissues and have been shown to be
sensitive and specific diagnostic biomarkers of cancer. We

aimed to identify miRNAs with significantly different expression
in the five most frequent groups of BMs and develop a
diagnostic classifier capable of sensitive and specific
classification of BMs. Materials and Methods: Total RNA
enriched for miRNAs was isolated using the mirVana miRNA
Isolation Kit from 71 fresh-frozen histopathologically confirmed
BM tissues originating in 5 cancer types. Sequencing libraries
were prepared using the QIAseq miRNA Library Kit and
sequenced on the NextSeq 500 platform. MiRNA expression was
further validated by RT-qPCR. Results: Differential analysis
identified 373 miRNAs with significantly different expression
between 5 BM groups (p<0.001). A classifier model was
developed based on the expression of 6 miRNAs (hsa-miR-141-
3p, hsa-miR-141-5p, hsa-miR-146a-5p, hsa-miR-194-5p, hsa-
miR-200b-3p and hsa-miR-365b-5p) with the ability to correctly
classify 91.5% of samples. Subsequent validation confirmed
both significantly different expression of selected miRNAs in 5
BM groups as well as their diagnostic potential. Conclusion: To
date, our study is the first to analyze miRNA expression in
various types of BMs using small RNA sequencing to develop a
diagnostic classifier and, thus, to help stratify BMs of unknown
primary. The presented results confirm the importance of
studying the dysregulated expression of miRNAs in BMs and the
diagnostic potential of the validated 6-miRNA signature.

Metastatic tumors present one of the most challenging issues
in modern oncology as they are very detrimental to patients’
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quality of life. Among the most destructive metastatic lesions
are brain metastases (BM), which are the most frequent
intracranial tumors in adults and their management represents
one of the most urgent unmet clinical needs in the care for
cancer patients. The higher incidence of BMs may be caused
by the advances in tumor therapy and diagnostics as well as
supportive care, since the increasingly more efficient therapy
prolongs the overall survival of patients but simultaneously
raises the probability of metastatic spread while the higher
sensitivity and availability of imaging techniques allows
detection of small asymptomatic metastases, which would
previously go unnoticed (1). Despite these advancements, BMs
remain a fatal event in cancer progression and often lead to an
overall survival of 16 months or less since the diagnosis of
metastatic growth. Generally, the median overall survival of
patients with BMs highly varies from 3-17 months for patients
with BMs derived from gastrointestinal cancer to 7-46 months
for patients with BMs originating in lung carcinomas (2). BMs
were previously found by various autopsy studies to be partly
or entirely the cause of death in approximately 25% of all cases
(1), although these studies tend to be outdated and the autopsy
rates have been overall on the decline during the past three
decades (3). According to more recent literature, the estimates
of BM incidence vary approximately between 0.07% and
19.9%, depending on the primary cancer site and subtype (1,
4). Out of these cases, most are derived from tumors with a
high tendency to metastasize to brain, including lung
carcinomas (20-56%), breast carcinomas (5-20%), melanomas
(7-16%), renal cell carcinomas (2-9%), and colorectal
carcinomas (2-9%), while BMs derived from tumors of
esophagus, liver, pancreas, stomach, endometrium, ovaries,
prostate, testes, and bladder are less common (1, 5-9). Between
1 to 14% of patients are diagnosed with BMs of unknown
primary (BMUP), when the primary cancer diagnosis is
unknown, and the identification of primary tumor is impossible
(6, 7). BMUP are commonly characterized by an early and
aggressive metastatic spread, and they respond poorly to
conventional therapy, resulting in a dismal prognosis (10, 11).

Since early identification of the original primary site in
patients with BMUP would certainly be beneficial for
administering more effective therapy, it is important to
search for novel biomarkers for a precise stratification of
patients with BMs. MicroRNAs (miRNAs), a well-known
subclass of small non-coding RNAs, which function as
posttranscriptional regulators of gene expression, bear certain
advantages over other biomarkers. Firstly, the high
dysregulation of their expression has been frequently
observed and extensively studied in various types of
malignancies, promoting the search for a miRNA-based
signature for many diseases, including BMs. Secondly, the
technology for detection of miRNAs using small RNA
sequencing and real-time PCR coupled with reverse
transcription (RT-qPCR) in many types of biological

specimen has been well-established by now, facilitating a
precise quantification of miRNA expression. Unlike mRNAs,
which need to be further translated into proteins to exert their
function, mature miRNAs are already fully functional
molecules, and it is therefore reasonable to consider the
expression quantified by RT-qPCR to be very close to the
real expression in tissues. Thirdly, due to their short length
and structure, most miRNAs are generally very stable and
resistant to changes in temperature and pH; this allows for
the detection of miRNAs in both frozen native specimen and
archived biological material, such as formalin-fixed and
paraffin-embedded (FFPE) samples (12). Lastly, they have
previously been shown to possess the potential to be
diagnostic, prognostic, and predictive biomarkers, as well as
therapeutic targets of BMs (13). Therefore, a classifier based
on specific patterns of miRNA expression in BMs of various
origins could serve as a promising diagnostic tool for
determining both the original primary site and the prognosis
of patients with BMUP. In our present study, we aimed to
analyze miRNA expression in BMs with origin in lung
carcinomas (BML), breast carcinomas (BMB), melanomas
(BMM), renal cell carcinomas (BMR), and colorectal
carcinomas (BMC) using small RNA sequencing to identify
miRNAs with significantly different expression and develop
miRNA-based diagnostic classifier capable of sensitive and
specific classification of BMs with origin in these five
primary cancer types. The gathered data could then lay the
groundwork for a future robust classifier capable of precise
stratification of BMs with various origin, including BMUP.

Materials and Methods

Patient samples. Native BM tissue samples were collected by
cooperating neurosurgical departments of University Hospital Brno
and St. Anne’s University Hospital Brno (Brno, Czech Republic)
during surgery, which is a part of the standard treatment protocol.
The study and the informed consent form were approved by the
research ethics committee of University Hospital Brno under the
code EKFNB-17-06-28-01. A signed informed consent form was
obtained from each patient prior to the beginning of the treatment
and the collection of patient tissue samples. The study
methodologies conformed to the standards set by the Declaration of
Helsinki. Seventy-one fresh tissue samples collected for the
exploratory phase of the study were immediately stored after the
collection in RNAlater Stabilization Solution (Thermo Fisher
Scientific, Waltham, MA, USA) at 4˚C for 24 h and then frozen
at –80˚C until further use. The retrospective cohort used in the
validation phase of the study consisted of 119 FFPE samples, which
were supplied by the cooperating pathology departments of
University Hospital Brno, St. Anne’s University Hospital Brno
(Brno, Czech Republic), and University Hospital Hradec Králové
(Hradec Králové, Czech Republic). The histology of all fresh and
FFPE tissue samples collected for this study was analyzed according
to the WHO 2021 classification scheme independently by two
histopathologists who confirmed that these samples belonged to the
5 most frequent types of BMs.
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RNA isolation and purification. Fresh-frozen tissue samples were
mechanically homogenized with 1.4 mm ceramic beads (Qiagen,
Hilden, Germany) in the presence of Lysis/Binding Buffer from
mirVana miRNA Isolation Kit (Thermo Fisher Scientific) in the
Precellys Evolution homogenizer (Bertin Instruments, Montigny-le-
Bretonneux, France). Total RNA enriched for small RNA species was
then isolated and purified using the mirVana miRNA Isolation Kit
according to the manufacturer’s instructions. Serial sections were cut
from each paraffin-embedded tissue block using a microtome (eight
10 μm thick slices per block) and stored in 1.5 ml tubes until further
use. The sections were then deparaffinized by 1 ml of xylene per tube
and mixed on a vortex mixer. Samples were centrifuged at the
maximum speed for 2 min, the supernatant was discarded, and the
xylene treatment was repeated once. Then 1 ml of absolute ethanol
was added to the tissue pellet, the sample was mixed on a vortex mixer
and centrifuged at the maximum speed for 2 min. The supernatant was
discarded, and the ethanol treatment was repeated once. The ethanol
residue was left to evaporate at 37˚C and the tissue pellet was digested
using the mixture of 180 μl of ATL buffer and 20 μl of proteinase K
(both Qiagen) at 55˚C overnight. The sample was mixed with 600 μl
of Lysis/Binding Buffer and 100 μl of miRNA Homogenate Additive,
incubated for 10 min on ice, and then mixed with 600 μl of Acid
Phenol:Chloroform:IAA (125:24:1), pH 4.5 (all Thermo Fisher
Scientific) and centrifuged at maximum speed for 5 min. Total RNA
enriched for small RNA species was then isolated and purified using
the mirVana miRNA Isolation Kit according to the manufacturer’s
instructions.

Nucleic acid quantity and quality control. Purified RNA was
quantified using the NanoDrop 2000 spectrophotometer, and the
absorbance ratios A260/A280 and A260/A230, indicating RNA purity,
were automatically calculated using the NanoDrop 2000 software
(version 1.6.0.198). Concentrated RNA samples were subsequently
diluted for downstream analyses and quantified precisely in Qubit
2.0 Fluorometer using Qubit RNA BR Assay Kit (both Thermo
Fisher Scientific). The RNA integrity was assessed by capillary gel
electrophoresis using Agilent 2200 TapeStation and Agilent RNA
ScreenTape System (both Agilent Technologies, Santa Clara, CA,
USA) and quantified as the RNA integrity number (RIN) by the
2200 TapeStation analysis software (version 2.1.27.8350).

Library preparation, pooling, and sequencing. Seventy-one total
RNA samples with RIN ≥5.7 (median 8.2) were used as a template
for the construction of small RNA libraries using QIAseq miRNA
Library Kit (Qiagen). All procedures were performed according to
the manufacturer’s protocol. The input RNA amount was 100 ng.
The concentration of prepared libraries was measured using Qubit
2.0 Fluorometer and Qubit dsDNA HS Assay Kit (both Thermo
Fisher Scientific). Libraries were also analyzed using Agilent 2200
TapeStation and Agilent High Sensitivity D1000 ScreenTape System
(both Agilent Technologies) and then pooled in equimolar ratio
based on their molarity, which was calculated using online weight-
to-moles conversion calculator for nucleic acids. Library pools (23
to 24 libraries in each pool) were then processed according to the
NextSeq System Denature and Dilute Libraries Guide (14).
Denatured and diluted PhiX Control v3 was added at 1% to all
pools as an internal standard and single-read sequencing with 75 bp
read length was performed using NextSeq 500 Sequencing System
and NextSeq 500/550 High Output v2 kit (75 cycles) (all Illumina,
San Diego, CA, USA).

Processing of small RNA sequencing data. The pre-alignment
quality control (QC) of the sequencing data was done using FastQC
(version 0.11.9) (15). Adaptors present within sequenced reads were
trimmed off with cutadapt (version 3.3) (16). Adapter-trimmed small
RNA sequencing reads were collapsed exploiting unique molecular
identifiers (UMIs) with FASTX-Toolkit (version 0.0.14) (17).
Subsequently, reads were quality trimmed using cutadapt and reads
shorter than 15 bp were removed from the dataset. The remaining
reads were mapped against the database miRBase (version 21) (18)
using the miraligner tool (version 3.2) (19). All generated numerical
and graphical output from QC was gathered in cohesive reports via
MultiQC (version 1.7) (20). All statistical analyses were performed
in the R environment (version R4.0.3).

Differential expression analysis. Differential expression analysis
was carried out using the Bioconductor (version 3.11) package
limma (version 3.44.3) (21). The complete linkage (farthest
neighbor clustering) method with euclidean distance measure was
used for the unsupervised clustering. The expression levels of
miRNA with more than 1 count per million in at least 5 samples
were analyzed and compared between 5 groups of BMs. Results
were summarized in heatmaps with clustergram. MiRNAs with
significantly different expression were identified by having
Benjamini-Hochberg adjusted p-Value smaller than 0.05.

Development of a classifier based on miRNA expression. The
discovery of miRNA biomarker signature was performed using the
Boruta algorithm (version 7.0.0) (22), followed by multinomial
regression models (unordered categories of original tumors). The
selection of a subset of miRNAs with predictive ability was done
by leave-one-out cross-validation. The top 100 miRNAs from limma
F-test were selected as candidate predictors. For each patient, the
Boruta algorithm was employed on a testing set of 70 remaining
patients which led to a subset of important miRNAs. The predictive
ability of the selected model was validated by the excluded patient.
If the prediction failed, i.e., the multinomial regression model
incorrectly predicted the tumor origin of the excluded patient, the
whole model was discarded. The same procedure was repeated 71
times and a consensus model was formed from all validated miRNA
signatures. For practical reasons, the consensus model was then
collapsed to a minimal signature without compromising its
predictive ability.

Validation of sequencing results. Total RNA isolated from FFPE
sections was reversely transcribed to cDNA using TaqMan
MicroRNA Reverse Transcription Kit (Thermo Fisher Scientific)
according to the manufacturer’s instructions. The expression levels
were then analyzed by quantitative PCR (RT-qPCR) using TaqMan
Universal Master Mix II and TaqMan MicroRNA Assays for hsa-
miR-16-5p (000391), hsa-miR-141-3p (000463), hsa-miR-141-5p
(002145), hsa-miR-146a-5p (000468), hsa-miR-194-5p (000493),
hsa-miR-200b-3p (002251) and hsa-miR-365b-5p (121213_mat) (all
Thermo Fisher Scientific) on a LightCycler 480 Instrument II
(Roche, Basel, Switzerland). All PCR reactions were performed in
technical duplicates. Expression levels were normalized for
expression of hsa-miR-16-5p, which was chosen as a normalizer
based on its stable and high expression across all samples from the
exploratory phase (Benjamini-Hochberg adjusted p-Value of 0.57;
average normalized expression of 16.18). Relative expression levels
were compared between each pair of groups or all groups in Prism
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8 software (GraphPad Software, San Diego, CA, USA) using the
Mann-Whitney U-test or Kruskal-Wallis one-way ANOVA,
respectively. Finally, the predictive ability of the previously
established model based on the expression profiles of six miRNAs
was validated on the qPCR data as an independent dataset.

Results
Sequencing analysis of microRNA expression in five most
prevalent groups of brain metastases identifies differentially
expressed microRNAs. In the exploratory phase of our study,
we performed a small RNA sequencing analysis to identify
miRNAs with significantly different expression profiles in
71 BM samples belonging to 5 groups based on the histology
of the primary tumors from which the metastases originated,
namely BML (37%), BMM (23%), BMB (18%), BMR
(15%), and BMC (7%). Out of the 1,091 miRNAs, which
were taken into the analysis, 373 miRNAs were significantly
differentially expressed among the 5 groups (Benjamini-
Hochberg adjusted p-Value <0.05), with 58 miRNAs having
adjusted p-Values smaller than 0.000001 (Figure 1A).
Moreover, each BM group was also compared with another
group consisting of the other BMs to identify sets of
miRNAs with unique expression pattern in the individual
groups of BMs (Figure 1B-F).

Six-microRNA signature comprises a classifier with a
diagnostic potential for the five major groups of brain
metastases. To establish a model with the ability of predicting
the origin of BMs, the top 100 differentially expressed
miRNAs in the 5 groups of BMs (adjusted p-Value <0.0005)
were taken into the analysis using the Boruta algorithm
followed by multinomial regression models. Using this
approach, 43 miRNA signatures were obtained and validated.
Finally, a consensus model was formed from 32 miRNAs
occurring in each of the obtained signatures, consisting of hsa-
miR-10b-5p, hsa-miR-122-5p, hsa-miR-141-3p, hsa-miR-141-
5p, hsa-miR-146a-5p, hsa-miR-155-5p, hsa-miR-183-3p, hsa-
miR-188-5p, hsa-miR-191-3p, hsa-miR-194-5p, hsa-miR-200a-
3p, hsa-miR-200a-5p, hsa-miR-200b-3p, hsa-miR-200b-5p,
hsa-miR-200c-3p, hsa-miR-200c-5p, hsa-miR-211-3p, hsa-
miR-211-5p, hsa-miR-215-5p, hsa-miR-30a-5p, hsa-miR-365a-
3p, hsa-miR-365b-5p, hsa-miR-375-3p, hsa-miR-429, hsa-miR-
514a-3p, hsa-miR-514a-5p, hsa-miR-2115-3p, hsa-miR-2115-
5p, hsa-miR-3131, hsa-miR-4728-3p, hsa-miR-4780 and hsa-
miR-6510-3p. For validation, with practical and economical
aspects in mind, the model was then collapsed to a minimal
signature consisting of 7 miRNAs (hsa-miR-141-3p, hsa-miR-
141-5p, hsa-miR-146a-5p, hsa-miR-194-5p, hsa-miR-200b-3p,
hsa-miR-365b-5p, hsa-miR-4780). The predictive ability of this
simplified model was confirmed by 100% accuracy, i.e., all
samples were correctly classified. Hsa-miR-4780 was then
excluded from the model because according to the miRBase,
the confidence of its annotation and existence was very low,

resulting in the conclusion that the probability of successful
validation of its expression was also low. The final 6-miRNA
classifier model had the ability to accurately classify 65 of 71
samples, i.e., 91.5% of all samples. Group-wise, the classifier
was able to correctly classify 88.46% of BML, 84.62% of
BMB, 100% of BMM, 100% of BMC, and 90.91% of BMR
samples. The results from the classifier, the calculated values
of sensitivity, specificity and 95% confidence interval, and the
hierarchical clustering heatmap based on the expression of 6
miRNAs are shown in Figure 2.

Validation in an independent cohort confirms the expression
patterns of the six microRNAs and the diagnostic potential of
the established model for all but one group of brain
metastases. To validate the expression patterns obtained from
the analysis of small RNA sequencing data and the
established 6-miRNA signature and to rule out any effects of
the specific sequencing platform, the expression levels of
these miRNAs were measured using RT-qPCR in an
independent cohort of 119 FFPE tissue samples of BMs
[BML (22.7%), BMB (18.5%), BMM (24.4%), BMC (14.3%)
and BMR (20.1%)]. The analysis of measured and normalized
data using Mann-Whitney U-test confirmed the expression
patterns observed in the exploratory phase of the study with
notable deviation in the case of hsa-miR-365b-5p (Figure 3).
Furthermore, Kruskal-Wallis one-way ANOVA also
confirmed the significantly different expression of all 6
miRNAs in 5 groups of BMs (p<0.0001 for hsa-miR-141-3p,
hsa-miR-146a-5p, hsa-miR-194-5p and hsa-miR-200b-3p;
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Figure 1. Results from differential analysis of miRNA expression
assessed by small RNA sequencing in 71 samples of brain metastases
(BM) derived from 5 tumor types, including lung carcinomas (dark
blue), breast carcinomas (pink), melanomas (gray), colorectal
carcinomas (dark red), and renal cell carcinomas (yellow). (A) The
miRNA expression profiles in the 5 groups of BMs were compared,
resulting in the identification of 58 significantly differentially expressed
miRNAs with Benjamini-Hochberg adjusted p-Value smaller than
0.000001. The expression profiles of these miRNAs were visualized in
a heatmap with dendrogram. Furthermore, each group was also
compared with another group comprised of other BMs. The heatmaps
with dendrogram show the results of hierarchical clustering based on
the expression of (B) 17 differentially expressed miRNAs (adjusted p-
Value <0.05) in BMs derived from lung carcinomas (dark blue) vs. other
BMs (light blue), and the 20 most significantly differentially expressed
miRNAs in (C) BMs derived from breast carcinomas (pink) vs. other
BMs (light blue) (adjusted p-Value ≤0.0017), (D) melanoma-derived
BMs (gray) vs. other BMs (light blue) (adjusted p-Value <0.0001), (E)
BMs derived from colorectal carcinomas (dark red) vs. other BMs (light
blue) (adjusted p-Value ≤0.0002), and (F) BMs derived from renal cell
carcinomas (yellow) vs. other BMs (light blue) (adjusted p-Value
≤0.0135). The green-black-red spectrum represents miRNA expression
in samples from low (green) to high expression (red).
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p=0.0007 for hsa-miR-141-5p; p=0.0035 for hsa-miR-365b-
5p). The predictive ability of the previously established 6-
miRNA signature was then tested on the RT-qPCR data as an
independent dataset, and the model was shown to accurately
classify most of the samples from all groups except BML,
i.e., the classifier correctly classified 44% of BML, 73% of
BMB, 100% of BMM, 82% of BMC, and 88% of BMR
samples. The results from the classifier testing on RT-qPCR
data and the calculated values of sensitivity, specificity and
95% confidence interval are shown in Figure 4.

Discussion

BMs are a relatively frequent event in the later stages of
primary solid cancers, leading to a generally dismal
prognosis. The incidence of BMs has increased, possibly due
to more efficient approaches to therapy, which on one hand
prolong overall patient survival but on the other hand allow
more time for metastasizing cells to invade and colonize the
brain. Despite recent advances in the treatment and imaging
of BMs, the prognosis of patients with BMs remains poor
and is further exacerbated in the case of BMUP when the
underlying origin of the disease is not known. It is, therefore,
important to search for novel diagnostic molecular
biomarkers and develop sensitive and specific classifier

models capable of precise diagnostics of patients with BMs
based on the expression of said biomarkers.

In our present study, we focused on miRNAs, which are
very stable, well-researched and easily analyzable and they
have been proven to be good diagnostic, prognostic, and
predictive indicators for various diseases, including cancer
(23). Using small RNA sequencing, we identified miRNAs
with significantly different expression in the 5 major groups
of BMs, including hsa-miR-200c-3p, hsa-miR-141-5p, hsa-
miR-141-3p, hsa-miR-200c-5p, hsa-miR-215-5p, hsa-miR-
200b-3p, hsa-miR-211-3p, hsa-miR-429, hsa-miR-200a-3p and
hsa-miR-200b-5p, which were the ten most significantly
differentially expressed miRNAs based on the corresponding
adjusted p-Value. Out of these, eight (hsa-miR-141-3p, hsa-
miR-141-5p, hsa-miR-200a-3p, hsa-miR-200b-3p, hsa-miR-
200b-5p, hsa-miR-200c-3p, hsa-miR-200c-5p, hsa-miR-429)
belong to the miR-200 family of miRNAs, which has been
described to be involved in the inhibition of the epithelial-
mesenchymal transition (EMT), the initiating step of cancer
metastasis (24). More specifically, they enhance the expression
of the cell-cell adhesion molecule E-cadherin by directly
targeting and inhibiting its transcriptional repressors ZEB1 and
ZEB2 (25, 26). By contrast, they were found to promote
colonization of secondary sites by metastasizing cells and
formation of metastatic foci, the last steps of cancer
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Figure 2. Results from the classifier algorithm and the differential analysis based on the miRNA expression assessed by small RNA sequencing. (A)
The classifier algorithm is based on the expression of 6 miRNAs (hsa-miR-141-3p, hsa-miR-141-5p, hsa-miR-146a-5p, hsa-miR-194-5p, hsa-miR-
200b-3p, hsa-miR-365b-5p) in 71 samples of BMs derived from lung carcinomas (BML), breast carcinomas (BMB), melanomas (BMM), colorectal
carcinomas (BMC), and renal cell carcinomas (BMR). The real BM origin is represented by columns and the classifier prediction by rows. The
classifier correctly identified the origin of 91.5% of samples which are highlighted in green. Incorrectly classified samples are highlighted in yellow.
The corresponding sensitivity, specificity and 95% confidence interval (CI) values for each group of BMs are shown in the bottom part. (B) The
hierarchical clustering analysis based on the expression of the 6 miRNAs in 71 samples of BMs derived from lung carcinomas (dark blue), breast
carcinomas (pink), melanomas (gray), colorectal carcinomas (dark red), and renal cell carcinomas (yellow) was visualized in a heatmap with
dendrogram. The green-black-red spectrum represents miRNA expression in samples from low (green) to high expression (red).
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Figure 3. Comparison of the expression patterns of the 6 miRNAs; namely (A) hsa-miR-141-3p, (B) hsa-miR-141-5p, (C) hsa-miR-146a-5p, (D) hsa-
miR-194-5p, (E) hsa-miR-200b-3p and (F) hsa-miR-365b-5p. The expression was analyzed by small RNA sequencing and RT-qPCR in 71 native
tissue samples and 119 formalin-fixed paraffin-embedded tissue samples, respectively, which were derived from lung carcinomas (BML, blue), breast
carcinomas (BMB, pink), melanomas (BMM, gray), colorectal carcinomas (BMC, dark red), and renal cell carcinomas (BMR, yellow). Median
values of normalized expression were compared using the non-parametric Mann-Whitney U-test. The statistical significance of the results is denoted
by ns (not significant; p>0.05), *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001.



metastasis, by inducing mesenchymal-epithelial transition
(MET) (27). Interestingly, all 9 members of the miR-200
family (hsa-miR-141-3p, hsa-miR-141-5p, hsa-miR-200a-3p,
hsa-miR-200a-5p, hsa-miR-200b-3p, hsa-miR-200b-5p, hsa-
miR-200c-3p, hsa-miR-200c-5p, hsa-miR-429) were identified
by the Boruta algorithm to be a part of the 32-miRNA
signature with the ability to accurately classify all samples
from 5 major groups of BMs. Furthermore, after identifying
miRNAs with expression changes specific for each
histological type of BM (Figure 1B-F), we found that, in total,
19 significantly differentially expressed miRNAs were also
part of our 32-miRNA signature, namely hsa-miR-10b-5p,
hsa-miR-141-3p, hsa-miR-141-5p, hsa-miR-188-5p, and hsa-
miR-200c-3p, in the case of BML; hsa-miR-191-3p, hsa-miR-
365b-5p, hsa-miR-2115-3p, hsa-miR-2115-5p and hsa-miR-
4728-3p, in the case of BMB; hsa-miR-146a-5p, hsa-miR-
200b-3p, hsa-miR-211-3p, and hsa-miR-211-5p, in the case of
BMM; hsa-miR-194-5p, hsa-miR-215-5p, and hsa-miR-3131,
in the case of BMC; and hsa-miR-122-5p, hsa-miR-155-5p,
hsa-miR-191-3p and hsa-miR-2115-3p, in the case of BMR.

After collapsing the 32-miRNA signature, hsa-miR-141-
3p, hsa-miR-141-5p and hsa-miR-200b-3p remained in the
6-miRNA model. The collapsing was done out of practicality
since it would be financially unachievable to validate the
expression of all 32 miRNAs using RT-qPCR in 119
samples. The 6-miRNA classifier was able to correctly
classify 91.5% samples which we deemed to be sufficient.
The model was also proven to be highly sensitive and
specific since the calculated values of sensitivity and
specificity for all 5 groups were higher than 84% and 93%,
respectively. The expression of these 6 miRNAs was,
therefore, proven to be a very good indicator of the primary
origin of analyzed BM samples. We then proceeded to
validate the results from the exploratory phase in an
independent validation cohort and confirmed the overall
expression trends observed in the exploratory phase of the
study. The only notable exception was hsa-miR-365b-5p,
whose expression, analyzed by RT-qPCR in 5 BM groups,
did not entirely correlate with the results from the differential
expression analysis of small RNA sequencing data. However,
since the Boruta algorithm identified it as part of the
collapsed 6-miRNA signature, its expression changes across
the 5 groups must have added a significant value to the
model. After testing the 6-miRNA model on the RT-qPCR
dataset, the sensitivity values were considerably high for all
BM groups (>72%) except for BML (44.44%). An
explanation may lie in the histological types of lung
carcinomas, from which BML are derived. Lung carcinomas
are subclassified into small cell lung carcinomas (SCLC) and
non-small cell lung carcinomas (NSCLC), with the latter
further divided into adenocarcinomas, squamous cell
carcinomas, large cell carcinomas, and large cell
neuroendocrine carcinomas (28). While the first treatment

option for early stages of NSCLC is surgery and
chemotherapy, radiotherapy, and immunotherapy for later
NSCLC stages, the surgery in the case of SCLC is very
limited and the first line of therapy is usually radiotherapy
and chemotherapy (29, 30). These differences in the
management of patients with lung carcinomas are due to the
high genetic heterogeneity of these tumors which are also
present in BML and may have influenced the sensitivity of
our classifier regarding BML samples. The specificity values
were considerably high for all BM groups (>89%).

A few studies in the past have attempted to establish
classifier models with the ability to classify tumor tissue
samples, including metastatic tissues, according to their origin
and miRNA expression using various approaches. Ferracin et
al. (31) used a microarray platform to analyze the expression
of 723 miRNAs in the training set of 40 primary tumors
representing 10 different cancer types, validated their results in
the test set of 45 primary tumor samples and 16 metastatic
samples, and identified 47 differentially expressed miRNAs
with the ability to correctly classify 100% of primary tumors
and 78% of metastases. They found a high similarity of
miRNA expression patterns in primary tumors and
corresponding metastatic tumors, concluding that the primary
origin appears to be the main determinant of the metastasis
miRNA profile. They also found an exclusive miRNA
expression pattern for every cancer type except lung and breast
carcinomas, which exhibited similar expression profiles (31).
This is consistent with our own findings since we also found
noticeable overlap in the case of BML and BMB samples after
the unsupervised clustering of BMs based on 58 differentially
expressed miRNAs (Figure 1A), and in the results from the
validation of our classifier algorithm which misclassified 10
BML and 4 BMB samples as BMB and BML, respectively
(Figure 4). Ferracin et al. also observed high expression of hsa-
miR-211-5p, hsa-miR-146a-5p and hsa-miR-514 in
melanomas, hsa-miR-122-5p in renal carcinomas, and hsa-
miR-192-5p, hsa-miR-194-5p and hsa-miR-215-5p in colon
cancer (31), which agrees with our results (Figure 1). A study
by Rosenfeld et al. (32) described a decision-tree classification
algorithm based on the data from microarray expression
profiling of more than 600 miRNAs in 205 primary tumors and
131 metastatic tumors, representing 22 different tumor origins.
Even though some differences in miRNA expression between
primary and metastatic tumors may be expected, the team
reported none in the case of most cancers, including breast and
colon tumors, concluding that primary tumors are suitable for
training a classifier for metastases. They then cross-validated
their decision tree within the training sample set, confirmed
classifier performance on an independent blinded 83-sample
test set and validated miRNA expression using RT-qPCR in
additional 65 samples; they found that its classification
accuracy reached 100% for most tissue classes, including all
metastatic tumors. Although the nodes in their decision-tree
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classifier pertaining to lung, breast, renal and colorectal
carcinomas and melanomas were based on the expression of
different miRNAs than the ones we identified as the most
differentially expressed when comparing one group of BMs
with another group composed of other BMs, they also observed
that the most common error was misclassification as lung
cancer, similarly to our own observation regarding our
classifier model, which both misclassified BML as BMs of
different origin and other BMs as BML. The team also found
the expression of miR-200 family to be the basis of the first
major division, separating tissues of epithelial origin, e.g., lung,
breast, and colon cancer, from tissues of other or mixed origin,
e.g., melanomas and kidneys (32). This agrees with our study,
which identified all 9 members of the family as ones of the
most differentially expressed miRNAs among the 5 groups of
BMs (Figure 1A) and as a part of our initial 32-miRNA
classifier model. Rosenwald et al. (33) then improved the
classifier from the previous study (32) by expanding the
microarray dataset by profiling 254 additional FFPE tumor
samples on a different, custom-designed microarray platform

and by further testing this classifier in an expanded training set
of 356 samples and validating it in an independent cohort of
204 samples. For 124 samples, the two algorithms, which the
classifier is based on, generated a consensus prediction for a
single tissue of origin. Out of these samples, 52 belonged to
the 5 tissue types, from which BMs most frequently originate.
The lowest sensitivity was observed for breast cancer (53%)
and the highest for lung cancer (95%), while for colorectal and
renal clear cell carcinomas and melanomas, the sensitivity was
80% or more. The specificity was higher than 94% for all 5
tumor types. Interestingly, 6 out of the 13 misclassified
samples, which in reality were of breast, kidney or melanoma
origin, were classified as lung tissue (33). These results again
mostly agree with our findings with notable exception being
the sensitivity for tumors with lung origin since the sensitivity
in our case was much lower (44%). Varadhachary et al. (34)
then prospectively evaluated the clinical utility of the improved
classifier from the previous study (33) for patients with cancer
of unknown primary (CUP) in the context of working
diagnoses, which were predicted based on the available
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Figure 4. Results from the classifier algorithm, which is based on the expression of 6 miRNAs (hsa-miR-141-3p, hsa-miR-141-5p, hsa-miR-146a-
5p, hsa-miR-194-5p, hsa-miR-200b-3p, hsa-miR-365b-5p) assessed by RT-qPCR in 119 formalin-fixed paraffin-embedded tissue samples of brain
metastases (BM). The real BM origin is represented by columns and the classifier prediction by rows. The classifier correctly identified the origin
of 77.3% of samples which are highlighted in green. Incorrectly classified samples are highlighted in yellow. The corresponding sensitivity, specificity
and 95% confidence interval (CI) values for each group of BMs are shown in the bottom part.



immunohistochemistry and clinicopathological data. The
authors reported that 62 out of the 74 successfully profiled
samples with unknown origin had their miRNA profile
consistent or compatible with the clinical and/or pathological
presentation. They also observed the improved classifier to be
consistent in identifying cases where the most likely diagnosis
is colon adenocarcinoma (34). Meiri et al. (35) then took this
classifier and developed a second-generation diagnostic assay
to identify a wider range of tumor types based on the
expression of 64 miRNAs. They validated the assay on 509
blinded FFPE tissue samples of known origin and classified
them into 42 tumor types, demonstrating an overall assay
sensitivity of 85% and sensitivity of 90% for 403 cases with
single tissue of origin predicted. Regarding the single-answer
cases with predicted origin in the five tissue types, from which
most BMs are derived, the sensitivity was lowest for breast
cancer (75%) and highest for lung carcinomas and melanomas
(100%) (35), which is consistent with the findings of the
previous study (33) but again differs in terms of lung
carcinomas from our observation. Meiri et al. (35) then applied
the improved classifier on 52 CUP cases, reporting a prediction
of convincing suggested origin in 88% of cases, with single
predicted diagnosis in 48% of cases. Their classifier was able
to correctly predict the tissue of origin in most cases of
suspected lung carcinomas, few cases of breast, gastrointestinal
and renal clear cell carcinomas, and one case of skin melanoma
(35). Laprovitera et al. (36) also focused on classifying CUP
cases but decided to use droplet digital PCR. In their two-
algorithm classifier model, they implemented two miRNA sets
from previously mentioned studies (31, 32) and expanded the
miRNA signature with 10 additional miRNAs, which served as
reference candidates or markers of novel tumor classes or
histological types (36). They trained their classifier on a cohort
of 96 primary tumors, comprising 16 different tumor types and
19 histological classes, which were chosen with focus on the
most common origin sites of CUP. Using clustering analysis,
the authors identified highly similar miRNA expression
patterns to our own findings, specifically high expression of
hsa-miR-122-5p and hsa-miR-194-5p in renal clear cell
carcinoma samples; hsa-miR-146a-5p, hsa-miR-211-5p and
hsa-miR-514a-3p in melanoma samples; hsa-miR-194-5p, hsa-
miR-200b-3p and hsa-miR-215-5p in colorectal carcinoma
samples; and hsa-miR-141-3p and hsa-miR-200b-3p in triple-
negative breast carcinomas and certain subtypes of lung
carcinomas. They then evaluated the droplet digital PCR data
using their classifier and reported generally low error rates for
colorectal carcinoma, melanoma, and lung adenocarcinoma
samples (16% or smaller) and higher error rates for renal tumor
samples (25% or higher) and triple-negative breast carcinoma
samples (53% or higher). Finally, the authors used the classifier
for the prediction of tissue origin of 53 CUP cases and
observed agreement between the two classifier algorithms in
94% of cases and compatibility of the prediction with

clinicopathological diagnosis in 53% of cases. All mentioned
studies demonstrate that miRNA-based classifiers could
potentially serve as very useful tools in predicting tissue origin
for CUP cases and, after further training and testing, possibly
also for BMUP patients. One limitation of these studies,
however, was the use of a pre-selected microarray panel of
miRNAs, which, unlike small RNA sequencing, does not allow
the exploration of the diagnostic potential of all known human
miRNAs.

Conclusion

To our current knowledge, our study is the first to analyze
miRNA expression in the five most frequent types of BMs
using small RNA sequencing. The correct diagnosis or
subtype of a tumor is crucial for further postoperative
treatment, which will be even more accentuated in the future
due to the increasing number of drugs indicated only for
certain diagnoses. Correct diagnosis is also essential for
valid estimation of patient prognosis, as highlighted in
numerous published papers evaluating clinical prognostic
markers. The currently most widely used assessment in
routine clinical practice, the disease-specific Graded
Prognostic Assessment (DS-GPA) (2), involves an online
tool for valid estimation of prognosis. However, the tool is
based on known primary cancer, making the correct
diagnosis even more important. Our findings prove that
miRNAs are significantly differentially expressed in BMs
and that their expression patterns are specific for all
investigated histological types of BM except for BML,
which may require subdividing in future studies to reflect
the differences in their genetic background and the resulting
management of tumors with this origin. All in all, our study
confirms the potential of miRNAs to serve as clinically
relevant diagnostic biomarkers.
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