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Abstract. Background/Aim: There exists considerably large
interpatient variability in pharmacokinetic exposure of high
dose melphalan
hematopoietic stem-cell transplantation. In this study, we
aimed to evaluate the potential impacts of CYP3A4*IB
(rs2940574) and CYP3A5*3 (rs776746) variations on
pharmacokinetic properties of melphalan and clinical
outcomes in multiple myeloma (MM) patients. Patients and
Methods: Genotypes of CYP3A4*IB (rs2940574) and
CYP3A5%*3 (rs776746) were determined by validated gene-
specific real-time PCR (RT-PCR) assays using DNA samples
from 108 MM patients, plasma concentrations of melphalan
at different time points were quantified using liquid
chromatography-tandem mass spectrometry (LC-MS/MS).

in multiple myeloma patients with
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melphalan,

Results: CYP3A4*1B/*IB and CYP3A5%*3/*3 carriers
appeared to have a short median progression-free survival
time higher maximum melphalan plasma
concentration than non-carriers [792 vs. over 950 days,
p=0.08; 9.91 (2.67, 34.03) vs. 8.66 (4.46, 17.61) mg/l,
p=0.039]. Conclusion: CYP3A4*1B/*1B and CYP3A5%3/*3
variations might influence melphalan therapy in MM
patients through yet-to-be-identified mechanisms.

and a

Multiple myeloma (MM) accounts for 1% of all cancers and
is the most common hematologic malignancy, only secondary
to lymphoma (1). MM is characterized by a pattern of
recurrent relapses and remains incurable due to resistance and
relapse in almost all patients, of which over 50% die within 5
years of diagnosis (1, 2). Despite the development of novel
proteasome inhibitors, immunomodulatory drugs and
epigenetic agents, hematopoietic autologous stem cell
transplant (ASCT) with high dose intravenous melphalan
(HDM) remains the current standard of care and the most
effective treatment for transplant-eligible patients (3-6).
Melphalan is a bifunctional alkylating agent that forms
interstrand, intrastrand, or DNA-protein crosslinks (7). It has
been used for the treatment of a variety of malignancies
including MM and ovarian carcinoma for more than 60 years.
Notably, the treatment outcome of autoHSCT-HDM varies
considerably among MM patients, and about 20% of patients
even have melphalan resistant myeloma as demonstrated by a
progression-free survival (PES) of less than 12 months, much
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shorter than the PFS of most MM patients (8, 9). It is arguably
believed that variability in melphalan pharmacokinetics (PK)
at least partially contributes to both excessive adverse effects
(such as oral mucositis, gastrointestinal toxicity, and infection)
and inadequate dosing, thus resulting in treatment failure (10-
14). Previous studies have shown that PK of melphalan
appears to be dose-independent and there is up to 10-fold
variation in plasma melphalan area under the concentration-
time curve (AUC) between patients receiving the standard
200 mg/m? of melphalan (15),

Defining the PK behaviors of melphalan remains very
challenging to date. Melphalan undergoes spontaneous
hydrolysis in the plasma, with “inactive” monohydroxyl and
dihydroxyl metabolites appearing quickly after melphalan
administration, suggesting that melphalan does not require
metabolic activation (16-19). Interestingly, melphalan is found
to extensively bind to plasma proteins (mainly serum
albumin), which decreases the hydrolysis of melphalan (8,19).
As such, only 5% of melphalan is eliminated through
hydrolysis (18). It is known that a considerable portion of
melphalan (up to 40%) is excreted intact in urine, indicative
of a potential association between renal function with PK of
melphalan (12, 15). Such association is further supported by
previous observations that the toxicity and perturbation in PK
properties of melphalan, such as the half-life time and AUC,
increased when it was administered at high doses to MM
patients with renal insufficiency (20). However, it has been
reported that together with lean body weight and hematocrit,
renal function (i.e., creatinine clearance) only accounts for
20% of interpatient variability in melphalan PK, indicating
that there could be other clinical factors contributing to the
vast interpatient variability in its PK properties (18, 21). For
example, previous studies have identified at least three
metabolites of melphalan other than monohydroxyl and
dihydroxyl melphalan (the products of hydrolysis) in the
plasma of mice and dogs, implying that there exist certain
metabolic pathways in these animals, even though these
pathways may not be the major routes of melphalan
elimination (22, 23).

CYP3A4 and CYP3AS are cytochrome P450 enzymes
involved in phase I metabolism of many chemotherapeutic
agents including alkylating agents, which may have direct or
indirect impacts on the PK properties of these agents (24-
26). For example, it has been reported that patients carrying
CYP3A5%3/*3 (CYP3A5 non-expressers, with 6986A->G
polymorphisms) exhibited significantly higher dose-
corrected trough concentrations of tacrolimus (24, 25). In a
prospective randomized clinical trial (HOVON-24), MM
patients carrying CYP3A5*3/*3 and CYP3A4*I1B/*IB
(290A—-G; a variant in a close linkage with the CYP3A5*3
allele) had significantly poorer progression-free survival
(PFS) and overall survival (OS) after high-dose melphalan
and VAD therapies than non-carriers of CYP3A5%3/*3 and
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CYP3A4*1B/*1B, as demonstrated in univariate survival
analyses (26, 27). Additionally, CYP3A4* B SNP was found
to be statistically significantly associated with OS and PFS
in a cohort of MM patients with ASCT and bortezomib-
cyclophosphamine-dexamethasone therapy (28).

Taken together, these findings demonstrate that even though
high doses of melphalan have been used in the context of
autologous HCT for plasma cell myeloma for 30 years, the
interpatient variability in its PK properties (as well as its
underlying mechanisms) remains to be further elucidated. In
this study, we evaluated the potential impacts of CYP3A4*IB
(rs2940574) and CYP3A5*3 (rs776746) variations on PFS, 90-
days response, and oral mucositis in a cohort of 108 MM
patients with HSCT-HDM therapy. We also investigated the
associations of these genetic variations with the PK properties
of melphalan, namely, area under the plasma concentration-
time curve extrapolated to infinity (AUC;,s), the maximum
plasma concentration (Cmax), time to reach the maximum
plasma concentration (Tmax), and creatinine clearance (CrCL).

Patients and Methods

Blood samples and pharmacokinetic (PK) parameter determination.
Blood samples were collected from 119 MM patients who underwent
melphalan-based autologous stem cell transplant (prior to melphalan
treatment) with approval from the Cancer Institutional Research
Board’s guidance (IRB#2011C0080, NCT01653106). Venous blood
samples were collected in heparin tubes prior to melphalan
administration (time 0) and then at different time points after
completion of melphalan infusion: 5, 30, 45, 60, 180 and 360 min.
The concentration of melphalan in each plasma was assessed using
liquid chromatography-tandem mass spectrometry (LC-MS/MS)
following a well-validated procedure. Non-compartmental PK
parameters, such as AUC; (the area under the plasma concentration-
time curve extrapolated to infinity), Cmax (the maximum plasma
concentration), Tmax (time to reach the maximum plasma
concentration), were determined using Phoenix WinNonlin (v6.3,
Pharsight, Mountain View, CA, USA). NONMEM 7, version 7.1.2
(ICON Development Solutions, Ellicott City, MD, USA) was used to
build the basic two-compartment population pharmacokinetic model
and the covariate model for melphalan as previously described (21).

DNA preparation and genotyping. After PK analysis, PBMCs were
successfully separated from the remaining blood samples of 108
patients. DNA and RNA were purified using a Blood DNA/RNA
Purification kit (Qiagen, Valencia, CA, USA) following the
manufacturer’s instructions. Genotypes of CYP3A5 *3 and CYP3A4
*]B SNPs were determined on a QuantStudio™ 7 Flex system
(Thermo Fisher Scientific, Waltham, MA, USA) using the following
Tagman® pre-validated genotyping kits (Life Technologies,
Carlsbad, CA, USA): C__26201809_30 for CYP3AS5 *3 (1s776746)
and C__1837671_50 for CYP3A4 *I1B (rs2740574). Assays were
conducted in duplicate (6).

Statistical analyses. R3.4 (R Foundation for Statistical Computing,
Vienna, Austria; https://CRAN.R-project.org) was used in all
statistical procedures in this study. For each SNP, the consistency
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Table 1. Genotypes of CYP3A4 *1B and CYP3A5 *3 variations in OSU11055 patients (N=108).

Gene SNP ID Genotype* Allele 2 test
(p-Value)**
M/M n; M/m n, m/m ny M m MAF
CYP3A4*1B 1s2740574 A/A 82 A/IG 22 G/G 4 186 30 0.139 0.14
CYP3A5*3 15776746 A/A 4 A/G 12 G/G 92 20 196 0.907 0.20

MAF, Minor allele frequency. *The number of patients (n) with genotypes for major (M) and minor (m) alleles. *¥y2 tests were used to analyze the
differences between the actual genotype frequency and the genotype frequency predicted from the Hardy-Weinberg equilibrium.

between its distribution and the Hardy Weinberg equilibrium (HWE)
principle was analyzed using the chi-square test. Count data were
analyzed using Fisher’s exact test or chi-square test, where
appropriate. Potential non-random allele associations between
selected SNPs were investigated using the “genetics” package of R.

Time to relapse was determined as the time from transplant until
the earliest of the following time points: progressive disease, clinical
relapse, or relapse from CR (complete response) as determined by
the International Myeloma Working Group (IMWG) (28). Patients
without known progression were censored at the date of last follow
up. Time to relapse was calculated from Kaplan-Meier curves with
the difference between the curves analyzed using the log-rank test.
Multivariate analysis was conducted using the proportional hazard
regression model of Cox (Cox PH regression), initially including all
factors with a p-Value of less than 0.20 in the univariate analyses
and using a stepwise backward approach for model reduction.
Regarding the sample size, the final multivariate model contained
covariates with p-values <0.10 (29).

Univariate and multivariate logistic regression analyses were
used to investigate the potential associations between mucositis (no:
mucositis grade 0 and 1; yes: mucositis grade 2 and 3) and SNPs as
well as other demographic cand clinical covariates. Similarly, the
relationship between response at day 90 after transplant (no:
negative, minor response and partial response; yes: very good partial
response, complete response, and stringent complete response) and
SNPs as well as other covariates were evaluated using logistic
regression.

p-Values were two-sided, and unless specified, the significance
level was 0=0.05.

Results and Discussion

CYP3A4*1B and CYP3A5*3 variations in MM patients. The
human CYP3 subfamily, located on chromosome 7, comprises
four genes, namely, CYP3A4, CYP3A5, CYP3A7 and
CYP3A43, whose protein products are involved in the
oxidative metabolism of about 50% of all prescribed drugs,
such as HIV protease inhibitors, calcium channel blockers,
antineoplastic drugs and immunosuppressants (24, 30, 31).
Out of these CYP3A enzymes, CYP3A4 is the predominant
isoform that metabolizes macrolide antibiotics, statins,
opioids, antidepressants, immunosuppressants, and some
anticancer drugs (32). CYP3AS shares up to 85% homology
in protein sequence with CYP3A4 and the substrate
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specificities of these two enzymes overlap considerably (27).
It has been reported that some SNPs in CYP3A4 and CYP3AS5
genes down-regulate their enzymatic activities, which impact
the metabolisms of some drugs, leading to different clinical
outcomes (33). For example, two closely linked SNPs,
CYP3A4 rs2940574 and CYP3AS5 rs776746, have been found
to be associated with the metabolism of tacrolimus in kidney
transplant patients (34, 35). CYP3AS5 rs776746 (CYP3A5*3)
causes a splicing defect in the CYP3AS5 transcript, resulting in
significantly lower expression of active CYP3AS5 enzyme.
Consequently, patients who harbored homozygous CYP3A5*3
alleles had significantly higher dose-corrected trough
concentrations of tacrolimus (36-38). The effect of CYP3A4
1rs2940574 on tacrolimus metabolism is thought to be caused
by its linkage to active CYP3AS5 allele (i.e., CYP3A5*1), rather
than modulating CYP3A4 itself. While hydrolysis and renal
exertion are regarded as major route in melphalan metabolism
in MM patients, a previous study showed that CYP3A4*IB
and CYP3A5*3 variations tended to be associated with the
survival of MM patients to certain extent, suggesting that the
potential association of CYP3A4*IB and CYP3A5%*3 variations
and melphalan therapy might need to be evaluated (27).

We first determined the genotypes of CYP3A4*IB
(rs2940574) and CYP3A5*3 (rs776746) variations in a
cohort of 108 MM patients with HSCT-HDM therapy. The
results are summarized in Table I. While the MAF (minor
allele frequency) of CYP3A4*IB was about 14 %, the MAF
of CYP3A5*3 was over 90%, which is consistent with the
fact that most of these MM patients were white (about 85%)
(38). It has been demonstrated that most of Caucasians
(white) are CYP3A5%*3/*3 carriers, and about 70% of the
African population are CYP3A5 expressers harboring one of
two CYP3A5*] alleles (39).

The genotype frequencies of these two SNPs in this cohort
of MM patients were in Hardy-Weinberg equilibrium
(p>0.1). Further allele association analyses showed that
CYP3A4*IB and CYP2A5*3 SNPs were significantly
associated with each other in this cohort of MM patients
(»<0.001).

A total of 81 patients (75%) were CYP3A4*IB/*1B and
CYP3A5%*3/*3 carriers, and the rest of patients had genotypes



CANCER GENOMICS & PROTEOMICS 20: 9-17 (2023)

Table II. Demographic and clinical characteristics of patients in the current study.

Characteristics CYP3A4 AA (*1B/*1B) and Other CYP3A4 *1B and p-Value##
CYP3AS5 GG (¥3/*3) CYP3AS5*3 genotypes
(n=81) (n=27)
Age (years)
Median (range) 59 (37-72) 59 (35-71) 0.89
<65 62 (76.5%) 21 (77.8%) 0.99
=65 19 (23.5%) 6 (22.2%)
Sex 091
Female 36 (44.4%) 13 (48.1%)
Male 45 (55.6%) 14 (51.9%)
Race <0.001
White 78 (96.3%) 15 (55.6%)
Other 3 (3.7%) 12 (44.4%)
Melphalan dose” 0.99
140 mg/m? 14 (17.3%) 4 (14.8%)
200 mg/m? 67 (82.7%) 23 (85.2%)
CrCL (ml/min)
Median (range) 91.0 (13.2-165.8) 101.6 (5.3-196.0) 0.25
CrCL<60 15 (18.5%) 5 (18.5%) 0.99
CrCL=60 66 (81.5%) 22 (81.5%)
AUC;,¢ (mg*hr/l)
Median (range) 11.4 (6.0-23.8) 12.9 (4.9-18.8) 0.22
<12.84 39 (48.1%) 17 (63.0) 0.27
=12.84 39 (48.1%) (3 missing) 10 (37.0%)
Cmax (mg/l)
Median (range) 9.91 (2.67-34.03) (2 missing) 8.66 (4.46-17.61) 0.039
Tmax (minute)
Median (range) 38 (7-54) (2 missing) 40 (25-51) 0.22
Risk 0.17
Standard risk 41 (50.6%) 19 (70.4%)
Intermediate/High risk 36 (44.4%) (4 missing) 8 (29.6%)
Mucositis 0.39
0 30 (37.0%) 10 (37.0%)
1 39 (48.1%) 11 (40.7%)
2 11 (13.6%) 4 (14.8%)
3 1(1.2%) 2 (7.4%)
Response at Day 90 post-transplantation 0.99
NE/MR/PR 29 (35.8%) 8 (29.6%)
VGPR/CR/sCR 32 (39.5%) (20 missing) 9 (33.3%) (10 missing)
Length of stay in hospital (days)
Median (range) 14 (10-21) 14 (10-21) 0.64
AUC;,, the area under the plasma concentration-time curve extrapolated to infinity; CrCL, creatine clearance; Cmax, the maximum plasma

concentration; Tmax, time to reach the maximum concentration; NE, not evaluable; MR, minor response; PR, partial response; VGPR, very good
partial response; CR, complete response; sCR, stringent complete response. *Melphalan dose adjusted by the patient's BSA (body surface area, m2).
##All count data were analyzed using Fisher's exact test, and continuous data were analyzed using Wilcox rank sum test. All tests were two-sided.

Missing data were not included in statistical analyses.

different from CYP3A4*I1B/*1B and CYP3A5*3/*3. Table 11
summarizes the demographic and clinical characteristics of
these two groups of MM patients with different CYP3A4 and
CYP3A5 genotypes (defined as CYP3A4*IB/*IB and
CYP3A5%*3/*3 carriers and Others). There are no statistically
significant differences between these two groups of MM
patients regarding age, sex, length of stay in hospital (LOS),
melphalan dose, and risk (p-Values>0.1). Due to the known
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association between CYP3A5 *3 allele with Caucasian (white)
people, there is a statistically significant difference in race
between these two groups of MM patients (p<0.001) (38).

Association between CYP3A4*1B and CYP3A5%*3 variations
and clinical outcomes in MM patients. We then evaluated the
potential association between CYP3A4*IB and CYP3A5*3
variations with progression-free survival after HSCT-HDM.
Survival analyses using univariate models showed that
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Table II1. Univariate and multivariate Cox Proportional Hazard regression analyses of progression-free survival in multiple myeloma patients with

melphalan therapy.

Factor HR 95% CI p-Value*
Univariate

CYP3A4*IB rs 2940574 (AG/GG vs. AA) 0.77 [0.27,2.19] 0.63
CYP3A5 *3 rs776746 (GG vs. AA/AG) 2.20 [0.85, 5.84] 0.10
CYP3A4 AA (*1B/*1B) and CYP3AS5 GG (*3/*3) vs. Other 2.23 [0.86, 5.78] 0.08
Sex (female vs. male) 1.79 [0.92, 3.45] 0.09
Dose (200 vs. 140 mg/m2) 0.55 [0.23, 1.14] 0.12
Age (>65 vs. <65) 1.61 [0.75, 3.45] 0.22
CrCL (>60 vs. <60 ml/min) 0.66 [0.29, 1.52] 0.33
Risk (intermediate/high vs standard) 1.96 [1.00, 3.85] 0.05
ANRIL rs2151280 (CC/CT vs. TT)** 0.53 [0.26, 1.07] 0.07
XRCC1 1525487 (AA/AG vs. GG) 0.42 [0.22,0.81] 0.01
Multivariate

XRCC1 1525487 (AA/AG vs. GG) 043 [0.21,0.85] 0.030
ANRIL rs2151280 (CC/CT vs. TT)** 0.46 [0.22,0.97] 0.034
CYP3A4 AA (*1B/*1B) and CYP3AS5 GG (*3/*3) vs. Other 2.44 [0.92, 6.57] 0.072

CI, Confidence interval; HR, hazard ratio; CrCL, creatinine clearance. Significant p-Values are shown in bold. *Log rank tests. **Data published

in References 6 and 39.

CYP3A5*3 variation trended to be associated with PFS
(p=0.10) (*3/*3 vs. *¥1/*1 and *1/*3, HR=2.20, 95% CI=0.85-
5.84) (Table III). In comparison, there was no statistically
significant association between CYP3A4* B variation itself and
PES (p=0.63). Interestingly, the genotype of CYP3A4*1B/*1B
and CYP3A5%3/*%3 was associated with PFS with borderline
significance (p=0.08) (CYP3A4*1B/*1B and CYP3A5*3/*3 vs.
Others, HR=2.23, 95% CI=0.86-5.78). For patients carrying
CYP3A4*1B/*IB and CYP3A5*3/*3, the median PFS time was
792 days (95% CI=573-978); for other patients, the median
PFS time was longer than 950 days (Figure 1). Apparently,
patients carrying CYP3A4*1B/*1B and CYP3A5*3/*3 had a
shorter median PFS time. Since our previous studies have
showed that sex, risk level, ANRIL rs2151280 SNP (6), and
XRCCI 1525487 SNP (40) appeared to be associated with PES
in univariate survival models, we continued to explore the
association between the genotypes of CYP3A4*IB/*1B and
CYP3A5*3/*3 and PFS using multivariate models. Of note, due
to the relatively small sample size in our current study, we used
p<0.1 and not p<0.05, in this multivariate analysis. Our results
indicate that the genotype of CYP3A4*IB/*IB and
CYP3A5%3/*%3, ANRIL 152151280 SNP, and XRCC1 rs25487
SNP appeared to be three independent factors associated with
PFS in MM patients after ASCT-HDM. After adjustment for
ANRIL 132151280 and XRCCI rs25487 statuses, the HR
between patients carrying CYP3A4*1B/*1B and CYP3A5*3/*3
and other patients was 2.44 (p=0.072, 95% CI=0.92-6.57).
Taken together, these results support further studies on the
potential role of CYP3A4*1B and CYP3A5*3 variations as a
prognostic factor for PFS in MM patients after ASCT-HDM.
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Additionally, we investigated the potential associations
between CYP3A4*1B and CYP3A5%*3 variations and another
two clinical outcomes, 90-day response and the severity of
oral mucositis. Our results show that none of CYP3A4*IB
variation, CYP3A5*3 variation, and the combination of
CYP3A4*IB/*1B and CYP3A5*3/*3 variations was
associated with 90-day response and the severity of oral
mucositis (p-Values>0.2).

Association between CYP3A4*1B and CYP3A5%3 variations
and PK properties of melphalan in MM patients.
Considering the predominant roles of CYP3A4 and
CYP3AS5 in drug metabolism, we further explored the
potential impacts of CYP3A4*1B and CYP3A5%*3 variations
on the PK properties of melphalan in these MM patients. As
shown in Figure 2, there was no statistically significant
association between the genotype of CYP3A4*1B/*IB and
CYP3A5%*3/*3 and any of AUC; ¢, CrCL, and Tmax in MM
patients (p-Values>0.2). In contrast, the genotype of
CYP3A4*IB/*IB and CYP3A5*%3/*3 was statistically
associated with Cmax, the maximum plasma concentration
of melphalan (p=0.039). After stratification by the dose
level (140 and 200 mg/mz), such association remained to be
of borderline significance (p=0.07). Carriers of
CYP3A4*IB/*1B and CYP3A5%*3/*3 appeared to have
higher Cmax values than their non-carrier counterparts.
Apparently, such observation was consistent with the fact
that carriers of CYP3A4*1B/*1B and CYP3A5%*3/*3 had
lower CYP3AS enzymatic activities as mentioned earlier
(38). Interestingly, even though carriers of CYP3A4*1B/*1B
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Figure 1. Kaplan-Meier curves showing the progression-free survival (PFS) of 108 multiple myeloma (MM) patients with different CYP3A4*1B
(rs2940574) and CYP3A5*3 (rs776746) genotypes. The differences in PFS between different groups were analyzed using log-rank tests.

and CYP3A5%3/*3 had higher Cmax values, these patients
had unfavored PFS (Figure 1). It has demonstrated in our
previous study that Cmax was not associated with PFS in
the same cohort of MM patients (6). Hence, we
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postulated that the impact of the genotype of
CYP3A4*1B/*1B and CYP3A5*3/*3 on Cmax would not
directly underscore the observed association between this
genotype and PFS.
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Figure 2. Comparison of pharmacokinetic (PK) parameters of melphalan between carriers of CYP3A4*1B/*1B and CYP3A5*3/*3 and the corresponding
non-carriers. (A) AUCinf (the area under the plasma concentration-time curve extrapolated to infinity) (B) CrCL (creatine clearance); (C) Cmax (the
maximum plasma concentration); (D) Tmax (time to reach the maximum concentration). Two-sided U rank sum tests were used to analyze the data.

Conclusion

In this study, we evaluated the impacts of the CYP3A4*1B and
CYP3A5*3 variations on pharmacokinetic properties of
melphalan and clinical outcomes in a cohort of 108 MM
patients with ASCT-HDM therapy. Our results show that
CYP3A4*IB and CYP3A5%*3 variations led to unfavored PFS
in MM patients. Interestingly, CYP3A4*IB and CYP3A5*3
carriers had higher maximum melphalan plasma concentrations
than non-carriers. These results suggest that CYP3A4*1B and
CYP3A5*3 variations might contribute to the inter-patient
diversities of melphalan exposure and clinical outcomes of
MM patients through yet-to-be-elucidated mechanisms. It is
known that most of gene polymorphisms exert a small or
moderate effect on drug metabolisms and clinical responses,
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and the impact of a gene polymorphism could be cofounded
with other polymorphisms in the same gene or in other genes
(27). Apparently, in the era of precision medicine, controlled
clinical trials in large cohorts of patients are essential to
extensively evaluate the effects of functional polymorphisms
of drug-metabolizing enzymes, thus elucidating the inter-
patient heterogeneity of drug response. Nonetheless, our
findings, from a relatively small cohort of MM patients,
provide insights in support of continuing investigation on the
potential roles of CYP3A4*IB and CYP3A5%*3 variations in
large cohorts of MM patients.
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