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Endometrial carcinoma (EC) is the second major female genital malignancy. Genetic signatures may be an improved choice to
predict the prognosis of EC patients. The relationship between pyroptosis and tumours has attracted much attention in recent
years. Here, we constructed a new pyroptosis-related gene (PRG) signature for predicting the prognosis of EC. In this study,
gene data and clinical information of EC patients were obtained from The Cancer Genome Atlas (TCGA). Following the
identification of PRGs correlated with EC prognosis, we further investigate the bioinformatics functions of these PRGs by
univariate Cox regression analysis and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses. Then, we used the least absolute contraction and selection operator (LASSO) regression and multiple Cox
regression analysis to construct a new PRG signature that contains seven PRGs (NFKB1, EEF2K, CTSV, MDM2, GZMB,
PANX1, and PTEN) and performed the Kaplan-Meier (K-M) analysis, receiver operating characteristic curve (ROC) analysis,
and principal component analysis (PCA) to evaluate the prognostic value of our novel PRG signature. Finally, we assessed the
correlations between pyroptosis and immune cells/checkpoints through the CIBERSORT tool and single-sample gene set
enrichment analysis (ssGSEA). The result suggested that our signature was powerful in predicting EC prognosis and may play
a part in assessing response to immunotherapy in EC patients. In conclusion, our study established a novel PRG signature for
EC, which can be used as an effective prognostic marker in clinical practice in the future.

1. Introduction

Endometrial cancer (EC) severely threatens women’s health,
ranking second in female genital malignancies. The incidence
rate of endometrial cancer has been increasing significantly
in recent years. According to the statistics, there were
417,000 new cases and 97,000 deaths in 2020 worldwide
[1]. Although the therapeutic effect of EC is relatively good,
a large number of patients still suffer from tumour recur-
rence, and approximately 18% of patients eventually die [2,

3]. Molecular classification and emerging targeted therapies
can provide a basis for selecting clinical treatment strategies
in EC [4, 5]. Therefore, exploring biomarkers to predict the
prognosis is very important for the clinical diagnosis and
treatment of EC.

Pyroptosis is a novel characterized form of programmed
cell death (PCD) discovered after apoptosis and necrosis.
Pyroptosis was first found in macrophages after pathogen
infection and then confirmed to play a critical role in both
inflammatory and immune defenses [6–9]. Recently, the role
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of pyroptosis in tumourigenesis, development, and treat-
ment of tumours has attracted more and more attention. It
was indicated that pyroptosis could promote inflammatory
cell death of cancer and inhibit the proliferation and migra-
tion of tumour cells, thus affecting the progress and progno-
sis of tumour [10, 11]. For example, the expression of
pyroptotic inflammasome GSDMD is decreased in gastric
cancer (GC) cells, which promotes the proliferation of GC
cells [10]. Recent studies have shown that PRG signatures
can be used as effective prognostic markers in ovarian cancer
[12], lung cancer [13], bladder cancer [14], and squamous
cell cancer in the head and neck [15]. However, the prognos-
tic value of PRGs in EC has not yet been elucidated.

In this study, we performed a systematic study to con-
struct a prognostic multigene signature with PRGs and vali-
dated it in the TCGA cohort. This novel seven-PRG
signature provides ideas for predicting the prognosis of EC
and shares intriguing insights for more in-depth explorative
research upon the mechanism of tumour immunity. Also, it
may provide a basis for developing targeted anticancer ther-
apy of EC.

2. Materials and Methods

2.1. Datasets and Preprocessing. The profiling gene data and
corresponding clinical data of patients from 35 normal and
515 tumour tissues were obtained from TCGA (https://
tcga-data.nci.nih.gov/tcga/) on November 12, 2021. Only
samples from the primary tumour and RNA-seq data from
fresh frozen samples were chosen in this study, and criteria
were excluded as follows: data from FFPE tissue samples,
duplicate RNA-seq data in the same patient sample, and
cases without survival information. Furthermore, to develop
a prognostic model, EC samples from TCGA database (after
removing samples with patient’s survival time < 30 days)
were randomly divided into a training set (n = 387) and a
testing set (n = 128), and the ratio was set at 3 : 1.

2.2. Identification of PRGs in EC. A total of 133 PRGs were
extracted from the GeneCards database (https://www
.genecards.org/) to identify differentially expressed genes
(DEGs, listed in Supplementary Table S1). The raw read
counts were normalized, and DEGs related to pyroptosis
were identified using the R package “DEseq2” [16]. The
protein-protein interaction (PPI) network for the DEGs
mentioned above was constructed by search tool for the
retrieval of interacting genes (STRING, https://string-db
.org/) [17].

2.3. Functional Enrichment Analysis. The Kyoto Encyclopedia
of Genes and Genomes (KEGG, http://www.kegg.jp/) pathway
enrichment analyses and Gene Ontology (GO, http://www
.geneontology.org) annotation were used to explore the bio-
logical functions of DEGs associated with pyroptosis through
“org.Hs.eg.db,” “clusterProfiler,” “ggplot2,” and “enrichplot”
packages in R. Adjusted p value < 0.05 was established as the
statistical significance threshold.

2.4. Construction of Prognostic PRG Signature. Univariate
Cox regression analysis was performed first to assess the cor-

relation between PRGs and the survival status of EC patients
in the training set. Then, to reduce the dimensionality of the
candidate genes according to the best penalty factor (λ), the
LASSO regression analysis was applied. After multivariate
Cox regression analysis was performed for these selected
DEGs and their coefficients, a risk signature was constructed
using the Akaike information criterion for the stepwise
backward/forward model. The risk score (RS) for each
patient was calculated using the risk formula: RS =∑Ni
(expression of signature gene i∗ coefficient βi).

2.5. Evaluation and Validation. According to the median risk
score of our PRG signature, EC patients were divided into
low-risk and high-risk groups. Survival curves were gener-
ated through the Kaplan-Meier method for the survival dif-
ference. Receiver operation characteristic (ROC) curves and
area under the curve (AUC) values corresponding to 1, 2,
and 3 years were used to evaluate the predictive efficiency
of the signature. Principal component analysis (PCA) was
adopted via the “prcomp” function in the “stats” R package.
Correlation analysis was performed to verify the connections
between the clinicopathological characteristics of the patients
and the RS. The independent prediction ability was demon-
strated by univariate and multivariate Cox regression analy-
ses. In addition, stratified analysis was used to examine the
precision of prognostic prediction based on different clinico-
pathological groups.

2.6. Construction and Evaluation by Nomogram. Based on
the clinicopathological features and the RS, a nomogram
model was then established to predict 1-, 2-, and 3-year mor-
tality with the rms package of R. The calibration curve with
the foreign package is used to determine the predictive per-
formance of the nomogram.

2.7. Tumour Immunity Analysis. The CIBERSORT algorithm
and the Spearman correlation were used to assess different
distributions of 22 types of tumour-infiltrating immune cells
(TIICs) with the variation of the risk score. The correlation
between the signature-based risk score and the expression
of the immune checkpoint genes (programmed cell death
protein 1 (PD1), PD ligand 1 (PDL1), and cytotoxic T-
lymphocyte-associated protein 4 (CTLA4)) was assessed by
Pearson’s test.

2.8. Statistical Analysis. All statistical analyses were per-
formed with the R (version 4.1.2, http://www.r-project.org)
and R Bioconductor packages. The Kaplan-Meier curve with
a log-rank test from the survival package and Cox propor-
tional risk regression models were used for survival analysis.
ROC analysis was used to detect the sensitivity and specific-
ity of the gene signature risk score to predict survival. The
AUC values can be used as an index of prognostic precision.
In all analyses, p value < 0.05 stands for a statistically signif-
icant difference.

3. Results

3.1. Defining the Expression of PRGs in EC.We first explored
the expression of 133 PRG expressions from 35 normal and
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Figure 1: Expression and interaction of the PRGs in EC. (a) Heatmap (blue: low expression level; red: high expression level) of the PRGs in
EC (green) and normal endometrial tissues (red). (b) Interactions of the PRGs shown by the PPI network (score = 0:9). (c) Correlation
network containing PRGs with core > 0:5 (red: positive correlations; blue: negative correlations).
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515 tumour tissues in TCGA, using the DESeq2 package in
R. A total of 97 PRGs were identified (all p < 0:05), including
64 upregulated genes and 33 downregulated genes. Details of

these PRGs were listed in Table S2. A heatmap of these genes
is visualized in Figure 1(a). A PPI analysis with the
minimum required interaction score of 0.9 (the highest
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Figure 2: Enrichment analyses of PRGs in EC. (a) GO term analyses indicated the mainly biological functions involved in PRGs in EC. (b)
Bubble graph of KEGG pathway analyses suggested the mainly biological functions involved in PRGs in EC.
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confidence) was constructed to explore the interactions of
the PRGs, which revealed that TP53, NLRP3, CASP8,
NFKB1, AKT1, BIRC2, TNF, CASP3, JUN, and PYCARD
(all node degree > 10) were the core genes (Figure 1(b)).
The correlation network containing PRGs with core > 0:5
is shown in Figure 1(c).

3.2. Functional Enrichment of the PRGs in EC. Function anno-
tation analyses of the 97 PRGs were performed. GO
enrichment (listed in Supplementary Table S3) suggested that
these genes were mainly involved in “pyroptosis,”
“interleukin-1 beta production,” “regulation of interleukin-1
beta production,” “response to virus,” and “cellular response
to biotic stimulus” (Figure 2(a)). KEGG pathway enrichment
analysis (listed in Supplementary Table S4) suggested that
these PRGs were mainly involved in “NOD-like receptor
signaling pathway,” “Salmonella infection,” “shigellosis,”
“lipid and atherosclerosis,” and “apoptosis” (Figure 2(b)).

3.3. Identification and Validation of the Prognostic PRG
Signature. Univariate Cox regression analysis was first per-
formed to identify the prognostic-associated PRGs. Nineteen
genes (MDM2, ALK, CRTAC1, IRF2, UBE2D2, GZMB,
NFKB1, PTEN, EEF2K, CTSV, GBP5, ANXA2, IL32, SER-

PINB1, PRDM1, CASP3, IL13RA2, TP53, and PANX1) that
meet the criteria p < 0:5 are obtained for further analysis
(Figure 3(a)). Then, by performing a least absolute shrinkage
and selection operator (LASSO) (Figure 3(b)), fourteen
PRGs were sought out according to the optimal λ value
(Figure 3(c)). Finally, multivariate Cox regression analysis
revealed that seven PRGs (NFKB1, CTSV, PANX1, PTEN,
MDM2, GZMB, and EEF2K) were independent prognostic
factors for patients with EC (Figure 3(d)).

As calculated in the following, the risk score = ð−0:62342
× expression value of NFKB1Þ + ð−0:23063 × expression value
of CTSVÞ + ð0:335488 × expression value of PANX1Þ + ð−
0:3216 × expression value of PTENÞ + ð−0:35904 × expression
value of MDM2Þ + ð−0:21909 × expression value of GZMBÞ +
ð1:030988 × expression value of EEF2KÞ.

Based on the median risk score, 387 EC patients in the
training set were divided into low-risk (n = 193) and high-
risk groups (n = 194). The distribution patterns of risk scores
and survival status are illustrated in Figures 4(a) and 4(b). A
heatmap exhibited seven-gene expression between the high-
and low-risk groups (Figure 4(c)). PCA showed that patients
with different risks were satisfactorily divided into two clus-
ters (Figure 4(d)). The Kaplan-Meier curve showed that
patients in the high-risk group had more deaths and shorter
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Figure 3: Construction of the risk signature in the training set. (a) Univariate Cox regression of OS for 19 PRGs with p < 0:05. (b) LASSO
coefficient distribution of 19 PRGs. (c) LASSO model was adjusted based on the minimum criteria (regularization parameter λ). (d)
Multivariate Cox regression analysis revealed 7 PRGs as independent prognostic factors for EC patients.
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survival times than those in the low-risk group (Figure 4(e)).
The areas under the ROC curve for predicting 1-, 3-, and 5-
year survival rates were 0.732, 0.763, and 0.793, respectively
(Figure 4(f)).

To validate the efficiency of the signature, based on the
same median risk score of the training set, 128 patients in
the testing set were divided into low-risk (n = 62) and
high-risk groups (n = 66). The distribution patterns of risk
scores and survival status are illustrated in Figures 5(a) and
5(b). A heatmap exhibited seven-gene expression between
the high- and low-risk groups (Figure 5(c)). PCA showed
that patients with different risks were satisfactorily divided
into two clusters (Figure 5(d)). The Kaplan-Meier curve

showed that patients in the high-risk group had more deaths
and shorter survival times (Figure 5(e)). The AUCs for pre-
dicting 1-, 3-, and 5-year survival rates were 0.92, 0.789, and
0.739, respectively (Figure 5(f)). Meanwhile, we performed
the same analyses in the entire set. The distribution patterns
of risk scores and survival status are illustrated in
Figures 6(a) and 6(b), and a heatmap exhibiting seven-gene
expression between the high- and low-risk groups is shown
in Figure 6(c). PCA showed that patients with different risks
were satisfactorily divided into two clusters (Figure 6(d)).
The Kaplan-Meier curve showed that patients in the high-
risk group had more deaths and shorter survival times
(Figure 6(e)). The AUCs for predicting 1-, 3-, and 5-year
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Figure 4: Construction of the risk signature in the training cohort. (a) Risk score map of patients in the high- and low-risk groups. (b)
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survival rates were 0.711, 0.729, and 0.754, respectively.
(Figure 6(f)).

3.4. Correlation of the PRG Prognostic Signature with Clinical
Features. The correlation analysis showed significant relation-
ship between the risk scores and clinicopathological features
such as age (Figure 7(a), p = 0:0015), histology (Figure 7(b),
p < 2:22e − 16), and stage (Figure 7(c), p = 0:00024), while
there was no significant relationship between the risk scores
and grade (Figure 7(d), all p > 0:05). These results suggested
that our PRGs may be associated with EC progress.

The stratified analysis showed that high risk was an inde-
pendent index of poorer survival outcome in comparison to
low risk based on different subgroups of clinicopathological

features, such as age ≤ 60 (p = 0:00095, Figure 8(a)) and >60
(p < 0:0001, Figure 8(b)), endometrioid (p < 0:0001,
Figure 8(c)) and serous (p = 0:4, Figure 8(d)), stages I-II
(p = 0:0076, Figure 8(e)) and stages III-IV (p = 0:00019,
Figure 8(f)), grade 1 (p < 0:0001, Figure 8(g)), grade 2
(p = 0:026, Figure 8(h)), and grade 3 (p = 0:0028,
Figure 8(i)). The result suggested that our PRG signature
was powerful to predict the prognosis in different subgroups
of EC patients.

3.5. Independent Predictive Value of PRG Risk Signature. Uni-
variate and multivariate analyses were performed to verify the
PRG risk signature as an independent prognostic factor in EC
patients. Univariate analysis (listed in Supplementary
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Figure 5: Construction of the risk signature in the test cohort. (a) Risk score map of patients in the high- and low-risk groups. (b) Survival
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Table S5) revealed that PRG risk score, as well as age,
histology, and stage, was significantly correlated with the
patient’s survival time (all p < 0:001, Figure 9(a)).
Multivariate analysis (listed in Supplementary Table S6)
demonstrated that PRG risk score, age, and stage predict the
prognosis independently in patients with EC (all p < 0:001,
Figure 9(b)). A heatmap for the connection between the
predictive gene signature and clinicopathological features is
shown in Figure 9(c). ROC curve analysis showed that the
AUC value of the risk score was 0.716, which was
significantly higher than that of patients’ age (AUC = 0:602)
and patients’ weight (AUC = 0:556), histology (AUC = 0:556
), grade (AUC = 0:537), and stage (AUC = 0:708)
(Figure 9(d)). These results suggest that this PRG signature

was an effectively independent predictor of the prognosis of
EC patients.

3.6. Nomogram Building and Validation. To further estimate
EC patients’ survival probability, a comprehensive prognos-
tic nomogram was built based on six parameters, including
age, weight, histology, grade, stage, and risk score
(Figure 10(a)). The calibration plots showed excellent con-
sistency between the nomogram predictions and actual
observations in terms of the 1-year (Figure 10(b)), 3-year
(Figure 10(c)), and 5-year (Figure 10(d)) survival rates in
the entire TCGA cohort (listed in Supplementary
Table S7). It was also confirmed the efficiency of prognosis
prediction of our PRG risk signature.
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3.7. Immunological Activity between Different Risk
Subgroups. CIBERSORT was implemented to evaluate the
association between the risk score and the 22 types of
tumour-infiltrating immune cells (TIICs) in EC. We
observed significantly higher proportions of B cell naïve, T
cell CD4 memory resting, NK cells activated, and dendritic
cells activated and lower proportions of plasma cells, CD8+
T cells, T cell regulatory (Tregs), NK cell resting, and den-
dritic cell resting in the high-risk group (Figure 11(a)). Then,
the enrichment scores of 16 types of immune cells and the
activity enrichment analysis of 13 immune-related pathways
were compared between TCGA dataset using ssGSEA.
Figure 11(b) shows that there are significantly higher pro-
portions of immune cells, such as DCs and neutrophils in
the high-risk group. Moreover, four immune pathways, such
as APC_co_inhibition, checkpoint, HLA, and T_cell_coinhi-
bition, were also significantly higher in the high-risk group
(Figure 11(c)). The results indicated that the infiltration of
these immune cells and pathways might significantly influ-
ence the prognosis of EC patients.

The expression levels of immune checkpoint genes and
correlation analysis between the high- and low-risk groups

showed significant decrease of CTLA4, PD1, and PDL1 in
the high-risk group: the expression levels of CTLA4
(p = 1:4e − 14, Figure 12(a)) and the correlation between risk
score and CTLA4 (cor = −0:4, p < 2:2e − 16, Figure 12(b)),
the expression levels of PD1 (p = 1:4e − 14, Figure 12(c))
and the correlation between risk score and PD1
(cor = −0:27, p < 4:8e − 10, Figure 12(d)), and the expression
levels of PDL1 (p = 0:00075, Figure 12(e)) and the correla-
tion between risk score and PDL1 (cor = −0:21, p = 2:3e −
06, Figure 12(f)). These data indicated that the PRG signa-
ture might play a part in assessing response to immunother-
apy in EC patients.

4. Discussion

EC is one of the most common female genital malignancies
and threatens women’s lives worldwide [18]. Because of the
lack of effective screening methods, there is still a large part
of EC that is difficult to diagnose at the early stage [19]. The
current clinicopathological features, such as age, tumour
size, and tumour histological type, are not sufficient to accu-
rately predict the outcome of patients with EC. Finding new
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Figure 8: Continued.
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molecular mechanisms is very necessary for the clinical diag-
nosis and treatment of EC.

As a novel immunogenic form of inflammatory pro-
grammed cell death pathway [20], pyroptosis can participate
in local inflammation and attract immune cell infiltration,
which provides a good opportunity to alleviate the immuno-
suppression of the tumour microenvironment [21]. It has
been proven that pyroptosis may play various roles in
tumours and PRGs have the effect of inhibiting tumour
growth and tumour immunity [10]. Ye et al. [12] showed a
novel signature of seven PRGs (AIM2, PJVK, PLCG1,
GSDMA, ELANE, CASP3, and CASP6) for predicting the
prognosis of ovarian cancer (OC). Zhang et al. [22] identi-
fied a new signature featuring seven PRGs (BAK1,
CHMP4B, NOD2, NLRP6, GSDMC, PLCG1, and SCAF11)
in predicting the prognosis of hepatocellular carcinoma
(HCC) patients. Chen et al. [14] constructed eight-PRG sig-
nature (AIM2, BAK1, GZMA, GZMB, IRF1, NOD2, TNF,
and TP63) to predict the survival in bladder cancer (BC)
patients. Qian et al. [15] performed a novel PRG signature
(GSDME, IL1B, NLRP1, and NLRP6) for prognostic predic-
tion of head and neck squamous cell carcinoma. In EC,
Chen et al. [23] recently analyzed 33 PRGs between tumour
samples and normal samples and obtained six pyroptosis-
related prognostic DEGs (GPX4, GSDMD, GSDME, IL6,
NOD2, and PYCARD).

In this study, using bioinformatics, we compared the
expression of 133 currently known PRGs between EC and
normal endometrial tissues in TCGA dataset and identified
19 DEGs associated with pyroptosis in EC. In order to further
assess the prognostic value of these PRGs, we constructed 7-
gene signature (NFKB1, CTSV, PANX1, PTEN, MDM2,
GZMB, and EEF2K) via Cox univariate analysis and LASSO
Cox regression analysis and then subsequently performed
GO and KEGG to validate our PRG risk signature.

The nuclear factor-κB (NF-κB) signaling pathway plays
an important role in inflammation and immune response
[24]. As a subunit of NF-κB, NFKB1 has been shown to be
a pathway-specific suppressor of inflammation, aging, and
tumours such as hematological malignancies [25]. Upregula-
tion of NFKB1 can promote the invasiveness of breast can-
cer cells in vitro [26]. Cathepsin V (CTSV) is a member of
the cathepsin family, which is highly expressed in activated
macrophages and is involved in inflammatory diseases like
myasthenia gravis [27, 28]. Studies showed that high expres-
sion of CTSV was associated with poor prognosis of breast
cancer [29], and ectopic expression of CTSV increased the
number of migrated and invaded colorectal cancer cells
in vivo [30].

Pannexin 1 (PANX1) is a critical ATP-releasing channel
and widely participates in the regulation of the tumour
immune microenvironment by infiltrating multiple immune
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Figure 10: Nomogram for predicting the 1-, 3-, and 5-year survival probability of patients with EC. (a) Age, weight, histology, grade, stage,
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cells, such as cancer-associated fibroblast cells, macrophage,
lymphocytes, and neutrophil cells [31]. High expression of
PANX1 was significantly related to the poor outcome of
multiple cancers, especially in pancreatic adenocarcinoma
(PAAD) [32]. In addition, PANX1 overexpression is associ-
ated with the EMT transformation of breast cancer cells
and poorer clinical outcomes in breast cancer patients [33].
As a tumour suppressor gene, phosphatase and tensin
homolog (PTEN) protein plays an important role in PI3K/
AKT pathway [34]. The inactivation of PTENmay be consid-
ered a key factor for early endometrial tumourigenesis [35].
Similar to our study, Kanamori et al. found that PTEN was
a significant prognostic indicator of EC [36]. As a critical
negative regulator of the tumour suppressor p53, mouse
double minute 2 (MDM2) can bind mutant and wild-type
p53 protein and plays a key role in controlling its function
[37]. MDM2 is abnormally upregulated in several types of
tumours, especially those of mesenchymal origin [38].
Ambros et al. first reported that there was a selective correla-

tion of expression between MDM2 and p53 expression in EC
[39]. Buchynska et al. further proved that high expression of
p53 with low expression of MDM2 might be the characteris-
tic features of low-differentiated EC [40]. In our study, as a
prognostic PRG, the expression level of MDM2 in EC is also
lower than in normal endometrial tissues. Granzyme B
(GZMB) is a component of cytolytic granules within cyto-
toxic T lymphocytes (CTLs) and natural killer (NK) cells,
which are involved in several pathologies, including the
formation of the tumour microenvironment [41]. GZMB
expression was associated with worse clinical outcomes in
non-small-cell lung cancer [42] and with early signs of
metastasis in colorectal cancer [43]. Eukaryotic elongation
factor 2 kinase (EEF2K) is a new member of atypical protein
kinase and acts as a negative regulator of cell growth [44]. It
was shown that EEF2K is activated and overexpressed in
many cancers. EEF2K can positively help to improve breast
cancer cells’ survival ability under nutrient deprivation or
insufficient growth factor [45]. EEF2K is also a clinical
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Figure 11: TIICs of EC patients. (a) Violin plot showed the different proportions of TIICs in the high- and low-risk group. Comparison of
the ssGSEA scores for immune cells (b) and immune pathways (c) between the high- and low-risk group (∗p < 0:05).
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indicator of metastasis and prognosis of stomach adenocarci-
noma and could serve as a potential therapeutic target [46].

In our study, this PRG prognostic signature’s association
with EC progression can be preferably illustrated through
the results of correlation analysis and stratified analysis,
and this finding exerts satisfactory predicting power in terms
of the survival period of EC patients. The development of
univariate and multivariate analyses facilitates our verifica-
tion, which suggests that PRG’s risk can serve as an indepen-
dent prognostic factor in EC patients.

Furthermore, in-depth exploring the mechanisms of this
genes signature, CIBERSORT functional analysis of immune
cell subsets revealed significantly higher proportions of B
cells naïve, T cell CD4 memory resting, NK cells activated,
and dendritic cells activated and lower proportions of
plasma cells, CD8+ T cells, Tregs, NK cell resting, and den-
dritic cell resting in the high-risk group of EC. Then, the
enrichment score analyses showed that there were signifi-
cantly higher proportions of immune cells, such as DCs
and neutrophils, and four immune pathways, such as
APC_co_inhibition, checkpoint, HLA, and T_cell_coinhibi-
tion, were also observed to be significantly higher in the
high-risk group (Figure 10(c)). These results indicated that
reduced levels of antitumour immunity might lead to a poor
prognosis. Additionally, our study showed a significant
decrease in immune checkpoint genes of CTLA4, PD1, and
PDL1 in the high-risk group. Current studies have shown
that immunotherapy, especially immune checkpoint inhibi-
tors (ICIS), may produce lasting therapeutic effects. The
combined application of induced blepharoptosis and ICIS
can enhance anticancer activity [47]. The PD-1 pathway is
a critical pathway of immunosuppression in the tumour
microenvironment. The generation of endogenous antitu-
mour immunity to inhibit cancer development can be ideally
achieved through the inhibition of PD-1 and PD-L1 [48].
Further research on the pyroptosis-related immune mecha-
nism will be beneficial to guide clinical diagnosis and treat-
ment of EC.

In summary, more and more studies had shown that
PRGs are closely related to tumour prognosis, but as a com-
plex gene network, there may be differences in key genes
related to prognosis in different types of tumours and even
in different research groups of the same type of tumours.
Here, we developed a novel PRG signature using different
platforms and validated this signature model. Our study sug-
gested that using this seven-PRG signature is able to predict
prognosis in patients with EC. It may provide new insight
into the molecular mechanism and a classification tool in
the clinical practice of EC.
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