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Chronic obstructive pulmonary disease (COPD) is a 
common inflammatory disease characterized by air-

flow limitation and is one of the leading causes of death 
in the United States (1–3). The current paradigm suggests 
that early signs of COPD originate with changes in air-
way structure and physiologic function (4,5); specifically, 
small airways are the first to be affected with narrowing 
and loss (6,7). Moreover, studies have shown that common 
airway branching variants confer a greater risk of acquir-
ing COPD in both smoking and nonsmoking populations 
(8). Therefore, airway phenotypes have become important 
indicators for understanding the mechanisms of disease, 
severity, and progression in quantitative CT-based studies 
(9–13). Airway segmentation is a precursor for CT-based 
analysis of airway phenotypes, but state-of-the-art methods 
require manual review and correction for missing branches 
and segmentation leakages (10,14), which are a bottle-
neck for multicenter longitudinal lung studies. Moreover, 
using low-dose CT imaging is the current trend in most 

CT-based studies because it reduces participants’ cumula-
tive exposure to ionic radiation and its associated risks (15). 
For example, only low-dose CT scans are acquired at phase 
III visits of the Genetic Epidemiology of COPD (COPD-
Gene) study (phase III: n = 2243 as of September 2020). 
The increased noise and reduced image quality of low-dose 
CT scans (16) reduces the accuracy in measurement of CT-
based lung phenotypes (17) and adds further challenges 
for detecting airways, especially small airways (18). Thus, 
an automated airway detection method at low-dose CT, 
which would provide results comparable or superior to 
those previously reported at standard-dose CT, could be an 
immensely powerful tool for CT-based lung studies.

This article presents a low-dose CT-based airway detec-
tion algorithm that uses deep learning (DL) and freeze-
and-grow (FG) methods that are suitable for large stud-
ies acquiring low-dose chest CT scans. The FG method 
was previously validated for standard-dose chest CT scans, 
and details of the method were presented (19). The basic 
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Purpose:  To present and validate a fully automated airway detection method at low-dose CT in patients with chronic obstructive pul-
monary disease (COPD).

Materials and Methods:  In this retrospective study, deep learning (DL) and freeze-and-grow (FG) methods were optimized and applied to 
automatically detect airways at low-dose CT. Four data sets were used: two data sets consisting of matching standard- and low-dose CT 
scans from the Genetic Epidemiology of COPD (COPDGene) phase II (2014–2017) cohort (n = 2 × 236; mean age ± SD, 70 years 
± 9; 123 women); one data set consisting of low-dose CT scans from the COPDGene phase III (2018–2020) cohort (n = 335; mean 
age ± SD, 73 years ± 8; 173 women); and one data set consisting of low-dose, anonymized CT scans from the 2003 Dutch–Belgian 
Randomized Lung Cancer Screening trial (n = 55) acquired by using different CT scanners. Performance measures for different meth-
ods were computed and compared by using the Wilcoxon signed rank test.

Results:  At low-dose CT, 56 294 of 62 480 (90.1%) airways of the reference total airway count (TAC) and 32 109 of 37 864 (84.8%) 
airways of the peripheral TAC (TACp), detected at standard-dose CT, were detected. Significant losses (P < .001) of 14 526 of 76 453 
(19.0%) airways and 884 of 6908 (12.8%) airways in the TAC and 12 256 of 43 462 (28.2%) airways and 699 of 3882 (18.0%) 
airways in the TACp were observed, respectively, for the multiprotocol and multiscanner data without retraining. When using the 
automated low-dose CT method, TAC values of 347, 342, 323, and 266 and TACp values of 205, 202, 289, and 141 were observed 
for those who have never smoked and participants at Global Initiative for Chronic Obstructive Lung Disease stages 0, 1, and 2, respec-
tively, which were superior to the respective values previously reported for matching groups when using a semiautomated method at 
standard-dose CT.

Conclusion:  A low-cost, automated CT-based airway detection method was suitable for investigation of airway phenotypes at low-dose 
CT.
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(2003, NTR636) (20), the largest CT lung cancer screen-
ing trial in Europe, were used. The COPDGene Iowa cohort 
was approved by the University of Iowa Institutional Review 
Board, and written informed consent was obtained from all 
participants. The current study was Health Insurance Porta-
bility and Accountability Act compliant. COPDGene data 
include data from participants studied across multiple institu-
tions, and a broad set of publications has been derived from 
the data gathered.

Chest CT Scans
Figure 1 illustrates the selection flowcharts for the four chest 
CT data sets for the experiments. Standard- and low-dose CT 
data sets, Data CII-Stand and CII-Low, consisted of matching stan-
dard- and low-dose TLC CT scans of 236 participants (70 years 
± 9 [SD]; 123 women) acquired at COPDGene phase II vis-
its. The data set Data CIII-Low was prepared using low-dose CT 
scans of 335 participants (73 years ± 8; 173 women) acquired 
at COPDGene phase III visits. All CT scans were acquired 
with a Siemens SOMATOM Force scanner. Standard-dose CT 
scans were acquired at a volume CT dose index of 13.3 mGy, 
whereas low-dose scans were acquired at 2.2 mGy. These im-
ages were reconstructed on 512 × 512 matrices at 0.5-mm slice 
spacing. Details of the CT imaging protocol were previously 
published (9,10). Data NLow was collected from the Automatic 
Nodule Detection 2009 data set (21), which consisted of 55 
anonymized CT scans that are publicly available online (https://
anode09.grand-challenge.org/) and are a subset from the Dutch–
Belgian Randomized Lung Cancer Screening trial. The scans 
were acquired with either a 16-slice or a 64-slice CT scanner 
(Philips Medical Systems) at 2.2 mGy and were reconstructed 
on 512 × 512 matrices at 0.7-mm slice spacing; protocol details 
are available in literature (15). 

Automated Airway Detection Using DL and FG
Automated airway detection was completed in two major 
steps: airway tree segmentation and branch counting at dif-
ferent generations. A recent airway segmentation algorithm 
that uses DL and multiparametric FG methods (19) was opti-
mized. The initial DL module was used to generate an airway 
lumen likelihood map from a chest CT image, which was 
fed into the iterative FG module, generating multiparametric 
segmentation of the airway tree volume. The DL module was 
implemented by using a three-dimensional U-Net with three 
pooling layers and three deconvolutional layers (22,23). The 
network was trained to output a voxel-level lumen likelihood 
map on a 64 × 64 × 64–voxel CT input patch. The itera-
tive FG module uses detection of leakages, forbidden volume 
marking and freezing around leakage roots by prohibiting 
connectivity paths, and parameter relaxation to facilitate fur-
ther airway tree growth (19).

After airway segmentation, the tree volume was skeletonized 
by using a minimum cost path-based curve skeletonization al-
gorithm producing a single-voxel thin representation (24,25). 
Spurious skeletal branches were automatically pruned by using 
local scale and tree depth at skeletal tree junctions (26). Finally, 

principle of the method is to freeze leakages at the current thresh-
old parameter and move to the next generous parameter to grow 
further. DL methods offer data-driven paradigms for deriving 
optimum multilayered and multiscale features for a target ap-
plication without requiring ad hoc rules or process-level design, 
and they outperform conventional methods (19). However, 
fully data-driven approaches have inevitable limitations related 
to their generalizability to different data sets from similar appli-
cations. Experiments were designed to investigate the following: 
optimization of the DL-FG algorithm, the accuracy of DL-FG 
airway detection at low-dose CT, and the trade-off between the 
costs of retraining and the detection performance regarding the 
generalizability of multiprotocol and multiscanner data.

Materials and Methods

Study Design
This retrospective study was designed to optimize a DL-FG 
airway detection algorithm and examine its accuracy and mul-
tiprotocol and multiscanner generalizability at low-dose CT. 
Experiments were performed on total lung capacity (TLC) CT 
scans. Standard- and low-dose chest CT scans from phase II 
(2014–2017) and III (2018–2020) visits of the COPDGene 
(NCT00608764) Iowa cohort and low-dose CT scans from 
the Dutch–Belgian Randomized Lung Cancer Screening trial 

Abbreviations
COPD = chronic obstructive pulmonary disease, COPDGene = 
Genetic Epidemiology of COPD, Data CII-Low = low-dose CT scans 
from phase II visits of COPDGene Iowa cohort, Data CII-Stand = 
standard-dose CT scans from phase II visits of the COPDGene 
Iowa cohort, Data CIII-Low = low-dose CT scans from phase III visits 
of the COPDGene Iowa cohort, Data NLow = low-dose chest CT 
scans from the Dutch–Belgian Randomized Lung Cancer Screening 
trial, DL = deep learning, FG = freeze and grow, GOLD = Global 
Initiative for Chronic Obstructive Lung Disease, TAC = total air-
way count, TACp = peripheral TAC, TLC = total lung capacity

Summary
When using the fully automated deep learning and multiparametric 
freeze-and-grow method, low-dose CT depicted most total and pe-
ripheral airways found at standard-dose CT in patients with chronic 
obstructive pulmonary disease.

Key Points
	■ At low-dose CT, 56 294 of 62 480 (90.1%) of total and 32 109 

of 37 864 (84.8%) of peripheral reference airways, detected at 
standard-dose CT, were successfully detected.

	■ Improved performance (P < .001) of 12 256 of 43 462 (28.2%) 
and 699 of 3882 (18.0%) peripheral airways was observed by re-
training the method on multiprotocol and multiscanner low dose 
CT compared with a generalized method.

	■ The cost of 7 days of computer time and 10 hours of expert time 
for retraining the algorithm for multiprotocol and multiscanner 
data was low compared with performance loss (P < .001).

Keywords
Airway, Airway Count, Airway Detection, Chronic Obstructive 
Pulmonary Disease, CT, Deep Learning, Generalizability, Low-Dose 
CT, Segmentation, Thorax, Lung
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matching low-dose scans (n = 196) from Data CII-Low on a DL-
FG algorithm trained on remaining scans (n = 40) in Data CII-

Low. The goal was to generate low-dose segmentations by using 
the best-fit network.

Experiment 2: Multiprotocol and multiscanner generaliz-
ability at low-dose CT.— Two different target data sets, Data 
CIII-Low and Data NLow, were used. For a given target data set, 
a reference DL network was obtained through training on a 
subset of the target data set and was used to assess the perfor-
mance of the DL network previously trained on Data CII-Stand 
in experiment 1 to examine the generalizability of DL at low-
dose CT. The target data set, excluding the training subset, 
was separately processed through the reference DL network 
and the previously trained network for evaluation. Forty 
scans from Data CIII-Low or 30 scans from Data NLow were used 
for training, and the remaining 295 or 25 scans, respectively, 
were used for evaluation.

Statistical Analysis
The performance metric for DL network optimization was 
defined as the average contrast between the computed lumen 
likelihood at a reference lumen voxel and at its nearest voxel in 
the background. For evaluative experiments, the relative per-
formance metric of a test segmentation was defined as the per-
centage of branches detected in the matching reference airway 
tree. The total airway count (TAC) was computed as the total 
number of detected airways, and the peripheral TAC (TACp) 
was computed as the number of airways at and beyond the 
seventh generation. Airway detectability of a reference set was 
defined as –ni / 2

i, where –ni is the average number of airways de-
tected at ith airway tree generation. The false-positive rate was 
defined as the number of voxels in the test segmentation out-
side the reference segmentation and was expressed as a percent-
age of the reference voxel count (28). Descriptive statistics, in-

airway counts at each generation were computed by using the 
trachea as generation 0.

Experiments
Experiments were conducted to optimize the network and 
training data size for the DL-FG algorithm and evaluate al-
gorithm accuracy and generalizability at low-dose CT. For 
different evaluative experiments, training, reference, and 
evaluation data sets were carefully tailored to accomplish the 
objective of each experiment, as illustrated in Figure 2. Train-
ing and evaluation data sets were mutually exclusive, and the 
reference segmentation of airway volume was generated by 
using CT intensity–based FG airway segmentation (19) and 
manual editing on an ITK-SNAP graphical user interface by 
a trained expert (S.A.N.) with 5 years of experience working 
on pulmonary CT imaging (27).

DL-FG algorithm optimization.— Network width (ie, the 
number of kernels at the first pooling layer) and training data 
size are key parameters defining the computational complex-
ity of a DL network. The trade-offs between the performance 
and computational complexity of the DL module were assessed 
by using various combinations of network parameters to select 
an effective setup. The network width and training data size 
were varied between 40 and 80 kernels and 20 and 60 scans, 
respectively. A fixed evaluation data set of 100 scans from Data 
CII-Stand, separate from all training data sets, was used for perfor-
mance evaluation.

Experiment 1: Accuracy at low-dose CT.— A training sub-
set (n = 40) of Data CII-Stand was used, and reference airway 
segmentations were derived from remaining scans (n = 196) 
in Data CII-Stand. The motivation was to generate reference seg-
mentations from the best-quality images by using the best-
fit network. Test airway segmentations were generated from 

Figure 1:  Participant selection flowchart for each data set. ANODE09 = Automatic Nodule Detection 2009, COPDGene = Genetic Epidemiology of Chronic Ob-
structive Pulmonary Disease, NELSON = Dutch–Belgian Randomized Lung Cancer Screening.
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Low-dose CT scans had a relative performance of 12 349 of 
13 482 (91.6%) airways, with an average airway count of 63 
at the seventh generation, at which the peak count of reference 
airways was found. Relative performance was reduced to 404 
of 623 (64.8%) airways at the 12th generation. Note that, on 
an average, only 6.7 airways were detected in reference data at 
and beyond the 12th generation (Fig 4B). Figure 4D shows CT 
image slices illustrating airways detected at standard-dose CT 
but missed at low-dose CT.

Results of airway detection at low-dose CT are summarized 
in Table 2. All airways were detected at low-dose CT at the seg-
mental level along the five standardized segmental airway paths 
(RB1 [apical segment of the right upper lobe], RB4 [lateral seg-
ment of the right middle lobe], RB10 [posterobasal segment of 
the right lower lobe], LB1 [apicoposterior segment of the left 
upper lobe], and LB10 [posterobasal segment of the left lower 
lobe]); see Figure 5 (29). However, a loss in the number of de-
tected airways at low-dose CT was observed at the subsegmen-
tal (P = .002) and sub-subsegmental (P < .001) levels. Losses 
(P < .001) of 6186 of 62 480 (9.9%) airways in the TAC and 
5755 of 37 684 (15.2%) airways in the TACp were observed at 
low-dose CT compared with the counts at standard-dose CT. 
Reference TAC values of 347 ± 67, 342 ± 67, 323 ± 76, 266 ± 
56, 233 ± 47, and 188 ± 0 and TACp values of 205 ± 63, 202 ± 
59, 189 ± 69, 141 ± 50, 114 ± 34, and 69 ± 0 were achieved for 
those who have never smoked and participants at Global Ini-
tiative for Chronic Obstructive Lung Disease (GOLD) stages 
0–4, respectively.

cluding the means and SDs of different performance measures, 
were computed by using MathWorks MATLAB and Microsoft 
Excel. Finally, a Wilcoxon signed rank test was conducted to 
compare the performance of different methods. A P value less 
than .05 was considered to indicate statistical significance.

Results
DL network optimization results are presented in Appendix 
E1 (supplement). Following the observations of Appendix E1, 
a network width of 80 kernels and a training data set size of 
40 scans were selected for all experiments, except for the mul-
tiscanner generalizability experiment involving Data NLow (n = 
55), in which 30 scans and 25 scans were used for training and 
evaluation. The demographic characteristics of participants 
from different data sets are presented in Table 1.

Experiment 1: Accuracy at Low-Dose CT
Generational counts and detection rates of reference airways 
at standard-dose CT are presented in Figure 3A and 3B. Ex-
amples of representative reference airway trees for those who 
have never smoked and participants with different levels of 
COPD severity grouped by male and female participants are 
displayed in Figure 3C. Figure 4 presents comparative results 
of airway segmentation at standard-dose (reference) and low-
dose CT. As shown in Figure 4A, at each generation between 
generation 7 and generation 12, low-dose CT airway counts 
were lower (P = .007 for generation 7 and P < .001 for gen-
erations 8–12) than the reference counts at standard-dose CT. 

Figure 2:  Schematic description of the experimen-
tal design to evaluate the accuracy and generalizability 
of the deep learning (DL)–based freeze-and-grow 
(FG) airway detection algorithm at low-dose CT. 
COPDGene = Genetic Epidemiology of Chronic Ob-
structive Pulmonary Disease, Data CII-Low = low-dose CT 
scans from phase II visits of COPDGene Iowa cohort, 
Data CII-Stand = standard-dose CT scans from phase II 
visits of COPDGene Iowa cohort, Data CIII-Low = low-
dose CT scans from phase III visits of the COPDGene 
Iowa cohort, Data NLow = low-dose chest CT scans 
from the Dutch–Belgian Randomized Lung Cancer 
Screening trial.

http://radiology-cti.rsna.org
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The results of multiprotocol and multiscanner generaliz-
ability at low-dose CT are presented in Tables 3 and 4. Mul-
tiprotocol generalization of DL-FG at low-dose CT caused 
the loss (P = .50) of airways at the segmental level but caused 
significant losses (P < .001) at the subsegmental and sub-
subsegmental levels. Multiscanner generalization incurred 
no significant losses (P > .05) of airways at the segmental, 
subsegmental, or sub-subsegmental levels. Losses (P < .001) 
of 14 526 of 76 453 (19.0%) and 884 of 6908 (12.8%) air-
ways in the TAC and 12 256 of 43 462 (28.2%) and 699 of 
3882 (18.0%) airways in the TACp were observed for the 
multiprotocol and multiscanner generalization, respectively, 
at low-dose CT. Multiprotocol generalization at low-dose CT 
achieved TAC values of 221 ± 23, 231 ± 28, 204 ± 30, and 
181 ± 26 and TACp values of 93 ± 12, 101 ± 18, 77 ± 15, 
and 63 ± 14 for those who have never smoked, participants 
at GOLD stage 0, participants at GOLD stage 1, and par-
ticipants at GOLD stage 2, respectively. For the multiscanner 
generalizability experiment, only those who smoke but are 
without COPD (GOLD stage 0) were studied, and TAC and 
TACp values of 242 ± 42 and 127 ± 23 were observed for the 
generalized network at low-dose CT.

Experiment 2: Multiprotocol and Multiscanner 
Generalizability at Low-Dose CT
Generational distributions of reference airway counts for 
multiprotocol and multiscanner generalizability experi-
ments are presented in Figure 6A; to facilitate comparisons, 
reference airway counts at standard-dose CT are repeated. 
Figure 6B presents relative performance for multiprotocol 
and multiscanner generalizability at low-dose CT. Multi-
protocol generalization of DL-FG at low-dose CT caused 
a loss (P = .01 for generation 6; P = .002 for generation 7; 
and P < .001 for generations 8–12) in airway counts at each 
of the sixth to 12th generations. A relative performance 
of 11 061 of 14 493 (76.3%) was observed at the seventh 
generation, with a peak generational airway count of 49.1. 
Relative performance was reduced to 885 of 1861 (47.6%) 
airways at the 12th generation. Multiscanner generalization 
at low-dose CT incurred a loss (P < .05) of airway counts 
at each of the seventh to 12th generations. A relative per-
formance of 1326 of 1553 (85.4%) airways was observed 
at the seventh generation, with a peak generational airway 
count of 62.1. Relative performance was reduced to 34 of 
47 (72.3%) airways at the 12th generation.

Table 1: Characteristics of Participants Included in This Study

Characteristic Iowa COPDGene Phase II Iowa COPDGene Phase III NELSON Trial*

No. of participants 236 335 55
Demographics
  Age (y) 70 ± 9 (51–86) 73 ± 8 (51–88) — (50–75)
  Men 113 (48) 162 (48)
  Women 123 (52) 173 (52)
  Pack-years† smoking 41.1 ± 25.8 41.1 ± 28.0
  Those who have never smoked 59 (25) 50 (15)
  Those who formerly smoked 156 (66) 249 (74)
  Those who smoke 21 (9) 36 (11)
  Body mass index (kg/m2) 30.0 ± 6.6 29.1 ± 5.8
Spirometry (postbronchodilator) results
  FEV1/FVC 0.75 ± 0.02 0.74 ± 0.02
  FEV1 (% predicted) 82.9 ± 24.2 89.9 ± 24.4
GOLD classification
  −1 49 (21) 57 (17)
  0 51 (22) 112 (33)
  1 23 (10) 40 (12)
  2 38 (16) 57 (17)
  3 15 (6) 15 (4)
  4 1 (0.4) 4 (1)

Note.—Data are presented as means ± SDs, means ± SDs with ranges in parentheses, or counts with percentages in parenthe-
ses. COPDGene = Genetic Epidemiology of Chronic Obstructive Pulmonary Disease, FEV1 = forced expiratory volume in 1 
second, FVC = forced vital capacity, GOLD = Global Initiative for Chronic Obstructive Lung Disease, NELSON = Dutch–
Belgian Randomized Lung Cancer Screening.
* Specific demographic information for this data set were not available.
† Defined by the American Thoracic Society as the number of packs of cigarettes smoked every day multiplied by the total 
number of smoking years.

http://radiology-cti.rsna.org
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A mean ± SD false-positive rate of 0.3% ± 0.2 with a median 
of 0.5% (1972 of 371 825) and range of 0% (0 of 370 693) to 
1.2% (4871 of 413 312) were observed for multiprotocol gen-
eralizability, whereas the false-positive rates for multiscanner 
generalizability were 0.3% ± 0.3, 0.3% (1059 of 379 277), and 
0% (0 of 398 174) to 0.8% (2764 of 346 594), respectively. The 
means ± SDs and 95% CIs of the distances (in voxels) of false-
positive voxels and the reference airway segmentation were 1.5 ± 
0.7 and (1.4, 1.5), respectively, for multiprotocol generalizability 
and 1.3 ± 0.7 and (1.0, 1.5), respectively, for multiscanner gen-
eralizability. False-positive voxels were primarily located around 
the reference airway lumen surface, and no false branches were 
observed in these experiments; see Figure E2 (supplement).

Discussion
Accurate airway tree segmentation and branch-level tracking at 
low-dose CT is critical in studying early-stage COPD in mul-
tisite longitudinal lung studies (9–12). Results of the accuracy-
gauging experiments in this study suggest that at low-dose CT, 

compared with standard-dose CT, there are significant losses 
in detected airways beyond the segmental level, particularly 
when the same DL-FG method is applied to both standard- 
and low-dose scans. Losses in detected airways at low-dose CT 
are consistent with the increase of noise and degradation of 
image quality and detectable features on low-dose scans (see 
Fig 4D) (16–18). Although the airway detection losses at low-
dose CT were significant, more than 95% of subsegmental and 
90% of sub-subsegmental and total reference airways found at 
standard-dose CT were successfully detected. Approximately 
85% of reference peripheral airways were successfully detected 
at low-dose CT (see Table 2).

Moreover, the results at low-dose CT observed in this study 
show improvements over prior results at standard-dose CT (10). 
For example, Kirby et al (30) applied a then state-of-the-art 
semiautomated method (10) on standard-dose TLC CT scans of 
those who have never smoked and participants at GOLD stages 
0, 1 and 2 from the Canadian Cohort of Obstructive Lung Dis-
ease (12). They observed TAC values of 221, 217, 190, and 152 

Figure 3:  Reference airway segmentation results on standard-dose total-lung-capacity CT data from phase II visits of the Genetic Epidemiology Chronic Obstructive 
Pulmonary Disease Iowa cohort (Data CII-Stand). (A) Mean airway counts at different airway tree generations. (B) Mean and SD of airway detection rates at different gen-
erations. (C) Representative reference airways for different groups segmented at standard radiation. The representative participant for each group was selected as the one 
with the total airway count closest to the respective group mean. COPD = chronic obstructive pulmonary disease.

http://radiology-cti.rsna.org
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and TACp values (estimated from figure 2 from Kirby et al [30]) 
of 80, 76, 57, and 34 for those who have never smoked and 
participants at GOLD stages 0, 1, and 2, respectively. TAC and 
TACp results observed in this study at low-dose CT show con-
siderable improvements over those Kirby et al (30) reported for 
each of the never-smoking, GOLD 0, GOLD 1, and GOLD 
2 populations. These observations suggest that when using the 
fully automated DL-FG method, low-dose CT imaging provides 
a viable solution for investigating small peripheral airway phe-
notypes in early COPD and other lung diseases. It is clinically 
known that small peripheral airways are the first to be affected 
in early-onset COPD (6,7), and the detectability of peripheral 
airways is an important indicator of early-onset COPD in CT-
based studies (30,31). Given the increased use of low-dose CT 

imaging aimed at reducing cumulative radiation exposure, the 
observations of this study suggest that DL-FG will add to the 
sensitivity of early assessment of COPD occurrence and progres-
sion and increase the power of studies exploring the changes in 
airway structure and physiologic function of different lung dis-
eases. Recent guidelines from the U.S. Preventive Services Task 
Force (32) on CT lung cancer screening (33,34) studies will po-
tentially create a large data set of low-dose chest CT scans, and 
the current method may provide a suitable tool for quantitative 
assessment of airway phenotypes.

It was observed from the generalizability experiments that the 
performance of the generalized method was considerably higher 
in the multiscanner experiment than in the multiprotocol ex-
periment, despite the low-dose and reference standard-dose 

Figure 4:  Comparative results of airway detection at standard-dose (reference) and low-dose CT imaging. (A) Generational distribution of mean airway counts at 
standard-dose (blue) and low-dose (red) CT. (B) Mean and SD of the relative performance at different airway generations at low-dose CT (red). Mean reference airway 
counts at standard-dose CT are shown at the bottom (blue). (C) Representative examples of segmented airways at standard- and low-dose CT for men and women. (D) 
CT image slices show examples of airways (yellow arrowheads) that are detected at standard-dose CT but missed at low-dose CT. CT display settings: level, −450 HU; 
window, 1200 HU.

http://radiology-cti.rsna.org
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scans being acquired from the same scanner. The primary reason 
behind this observation may be the population difference in the 
two experiments, as the participants for the multiscanner experi-
ments were all persons who smoke with preserved lung function. 
The performance metrics for the two experiments in terms of 
TAC and TACp were similar, and the gap was considerably re-
duced when the results of persons who smoke at GOLD stage 
0 from the multiprotocol experiment were compared with the 
observations from the multiscanner experiment.

A common concern with DL-based methods is the cost and 
time of retraining for a new data set, which can be broken into 

Table 2: Comparative Results of Airway Branch Counts Using DL-FG Airway Segmentation Method at Stan-
dard- and Low-Dose CT

Parameter Standard Low Agreement (%) Difference (%) P Value*

Segmental 4.9 ± 0.5 4.9 ± 0.5 100.0 0.0 >.99
Subsegmental 9.8 ± 1.4 9.3 ± 2.5 95.1 4.9 .002
Sub-subsegmental 19.4 ± 3.3 17.4 ± 5.0 90.1 9.9 <.001
TAC 318.8 ± 54.7 287.4 ± 42.2 90.1 9.9 <.001
TACp 193.2 ± 41.2 163.9 ± 30.2 84.8 15.2 <.001

Note.—Data are presented as means ± SDs or percentages. Segmental, subsegmental, and sub-subsegmental airways were 
counted along the five anatomic paths: RB1 (apical segment of right upper lobe), RB4 (lateral segment of right middle lobe), 
RB10 (posterobasal segment of right lower lobe), LB1 (apicoposterior segment of left upper lobe), and LB10 (posterobasal 
segment of left lower lobe). Standard- and low-dose results were obtained by using DL-FG methods trained on standard- and 
low-dose CT scans, respectively. These results were obtained by using standard- and low-dose CT scans from Genetic Epidemi-
ology of Chronic Obstructive Pulmonary Disease phase II visits at the University of Iowa. DL = deep learning, FG = freeze and 
grow, TAC = total airway count, TACp = peripheral TAC.
* Results from Wilcoxon signed rank test.

Figure 6:  (A) Generational airway counts for reference (solid) and test 
(dotted) airway segmentation for multiprotocol (red) and multiscanner (green) 
generalizability experiments together with reference counts at standard-dose CT 
(gray line) for the accuracy experiment. (B) Relative performance for the multi-
protocol (red) and multiscanner (green) generalizability experiments at low-dose 
CT. II Stand = the method trained and evaluated on standard-dose CT scans from 
phase II visits of the Genetic Epidemiology Chronic Obstructive Pulmonary Disease 
(COPDGene) Iowa cohort (CII-Stand); N Low (Ref) = the method trained and 
evaluated on low-dose chest CT scans from the Dutch–Belgian Randomized Lung 
Cancer Screening trial (NLow); N Low (Test) = the method trained on CII-Stand 
and evaluated on NLow; III Low (Ref) = the method trained and evaluated on 
low-dose chest CT scans from phase III visits of the COPDGene Iowa cohort (CIII-
Low); III Low (Test) = the method trained on CII-Stand and evaluated on CIII-Low; 
Data NLow = the method trained on CII-Stand and evaluated on NLow, Data 
CIII-Low = the method trained on CII-Stand and evaluated on CIII-Low. 

Figure 5:  Illustration of segmental, subsegmental, and sub-subsegmental 
generations along the five standardized bronchopulmonary paths: RB1 (apical 
segment of right upper lobe), RB4 (lateral segment of right middle lobe), RB10 
(posterobasal segment of right lower lobe), LB1 (apicoposterior segment of left up-
per lobe), and LB10 (posterobasal segment of left lower lobe).
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two components: the preparation time and cost of the training 
data set and the computational training time. It was observed in 
this study that approximately 7 days of computation time and 
10 hours of expert time were required to prepare a training data 
set (n = 40). Observations from the generalizability experiments 
suggest there is significant loss in the TAC, TACp, and detected 
airways beyond the segmental level when a DL-FG algorithm 
trained on standard-dose scans is applied to multiprotocol and 
multiscanner CT images. Despite the performance loss that oc-
curs when using a generalized DL-FG algorithm at low-dose CT, 
it excelled the performance reported by Kirby et al (30), who 
used the then state-of-the-art semiautomated method at stan-
dard-dose CT. Based on the low cost of training and observed 
performance loss compared with the best achievable results at 
low-dose CT, we recommend using a DL-FG algorithm after 
retraining on a target data set.

This study had a few limitations. First, because most partici-
pants smoked, the findings are not directly applicable to those 
who do not smoke. Additionally, the majority of participants 

were non-Hispanic White individuals, limiting generalizability 
of the results to other ethnicities and races. The age distribution 
of study participants also limits the external validity in younger 
groups. Comparative results referencing the results of Kirby et al 
(30) should be interpreted with the caveat that different data sets 
were used. Finally, this research is at an early stage and requires 
rigorous investigations evaluating its significance and suitability 
for adoption in a clinical setting.

In summary, this study validates an automated airway detec-
tion algorithm at low-dose CT that uses DL and multiparamet-
ric FG methods that is suitable for large CT-based lung studies, 
which will provide a powerful tool for computing and analyzing 
airway phenotypes to further the understanding of the mecha-
nisms of disease, severity, and progression.

Data sharing: Data generated or analyzed during the study are available from the 
corresponding author by request.

Author contributions: Guarantors of integrity of entire study, E.A.H., P.K.S.; 
study concepts/study design or data acquisition or data analysis/interpretation, all 

Table 4: Results of Multiscanner Generalizability of DL-FG Airway Segmentation Method at Low-Dose CT

Parameter Reference Counts Generalized Counts Agreement (%) Difference (%) P Value*

Segmental 5.0 ± 0.0 5.0 ± 0.0 100.0 0.0 >.99
Subsegmental 10.0 ± 0.0 9.8 ± 1.0 98.0 2.0 .25
Sub-subsegmental 18.6 ± 3.3 18.4 ± 3.7 99.0 1.0 .13
TAC 277.3 ± 42.0 241.9 ± 39.9 87.2 12.8 <.001
TACp 155.3 ± 21.90 127.3 ± 26.3 82.0 18.0 <.001

Note.—Data are presented as means ± SDs or percentages. Segmental, subsegmental, and sub-subsegmental airways were 
counted along the five anatomic paths: RB1 (apical segment of right upper lobe), RB4 (lateral segment of right middle lobe), 
RB10 (posterobasal segment of right lower lobe), LB1 (apicoposterior segment of left upper lobe), and LB10 (posterobasal 
segment of left lower lobe). Reference counts were obtained by training and applying a DL-FG method on low-dose scans from 
the Dutch–Belgian Randomized Lung Cancer Screening trial, whereas generalized counts were obtained by training a DL-FG 
method on standard-dose scans from Genetic of Epidemiology of Chronic Obstructive Pulmonary Disease phase II visits at the 
University of Iowa and then applying the method to low-dose Dutch–Belgian Randomized Lung Cancer Screening trial data. 
DL = deep learning, FG = freeze and grow, TAC = total airway count, TACp = peripheral TAC.
* Results from Wilcoxon signed rank test.

Table 3: Results of Multiprotocol Generalizability of DL-FG Airway Segmentation Method at Low-Dose CT

Parameter Reference Counts Generalized Counts Agreement (%) Difference (%) P Value*

Segmental 4.9 ± 0.6 4.9 ± 0.7 99.3 0.7 .50
Subsegmental 9.2 ± 2.7 8.5 ± 3.5 93.4 6.6 <.001
Sub-subsegmental 17.2 ± 7.0 15.2 ± 7.9 90.2 9.8 <.001
TAC 253.7 ± 51.9 205.4 ± 42.0 81.0 19.0 <.001
TACp 143.8 ± 36.3 103.2 ± 23.3 71.8 28.2 <.001

Note.—Data are presented as means ± SDs or percentages. Segmental, subsegmental, and sub-subsegmental airways were 
counted along the five anatomic paths: RB1 (apical segment of right upper lobe), RB4 (lateral segment of right middle lobe), 
RB10 (posterobasal segment of right lower lobe), LB1 (apicoposterior segment of left upper lobe), and LB10 (posterobasal 
segment of left lower lobe). Reference counts were obtained by training a DL-FG method on low-dose scans and then applying 
the method to low-dose scans, whereas generalized counts were obtained by training a DL-FG method on standard-dose scans 
and then applying the method to low-dose scans. Standard- and low-dose CT scans used for these results were from Genetic 
Epidemiology of Chronic Obstructive Pulmonary Disease phase II and III visits at the University of Iowa. DL = deep learning, 
FG = freeze and grow, TAC = total airway count, TACp = peripheral TAC.
* Results from Wilcoxon signed rank test.
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