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ABSTRACT

Computational, in silico prediction of resistance-conferring escape mutations could accel-
erate the design of therapeutics less prone to resistance. This article describes how to use the
Resistor algorithm to predict escape mutations. Resistor employs Pareto optimization on
four resistance-conferring criteria—positive and negative design, mutational probability,
and hotspot cardinality—to assign a Pareto rank to each prospective mutant. It also predicts
the mechanism of resistance, that is, whether a mutant ablates binding to a drug, strength-
ens binding to the endogenous ligand, or a combination of these two factors, and provides
structural models of the mutants. Resistor is part of the free and open-source computa-
tional protein design software OSPREY.

Keywords: cancer, mutation, OSPREY, Pareto, resistance, RESISTOR.

1. INTRODUCTION

Resistance to drugs is a major public health challenge affecting antibiotic (Centers for Disease Control

and Prevention, 2020; Pang et al, 2019), antiviral (Bar-On et al, 2018; Lampejo, 2020; Li and Chung,

2019), antifungal (Du et al, 2020; Hendrickson et al, 2019), and antineoplastic therapies (Assaraf et al, 2019;

Hanna and Balko, 2021; Housman et al, 2014). Algorithms that accurately predict, early in the challenging

drug development and approval process, the kinds of resistance that will occur could aid medicinal chemists

in developing more durable therapies with longer effective lifespans (Frey et al, 2010; Kaserer and Blagg,

2018; Reeve et al, 2015). To that end, we have developed a new algorithm named Resistor to predict

resistance mutations (Guerin et al, 2022a).
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2. METHODS

Resistor combines structural and genomic data to predict which protein residues, when mutated, may confer

resistance. The structural component consists of positive and negative affinity designs. Positive design refers to

optimizing an amino acid sequence to improve binding between a protein and its ligand, and conversely,

negative design to optimizing a sequence to ablate binding. Resistor models both positive and negative design

because resistance can occur when a mutation increases binding between a protein and its endogenous ligand

or ablates binding between a protein and its drug (or a combination of these two factors). The algorithms for

positive and negative design, and their implementations, are discussed in Frey et al (2010), Reeve et al (2015),

Ojewole et al (2018), Jou et al (2016, 2020), Hallen and Donald (2016), Lilien et al (2005), Hallen et al (2018),

and Donald (2011). Resistor computes how mutations affect binding affinity using the K� algorithm.

K� is an e-accurate algorithm implemented in OSPREY for computing a provable approximation to the

affinity constant Ka (Hallen et al, 2018; Lilien et al, 2005). K� is defined as the quotient of the bound over

unbound partition functions of a protein:ligand system for a given amino acid sequence. K� calculates an

e-accurate prediction for the Ka quotient and the partition functions of three structural states: the bound

protein:ligand complex (denoted PL), the unbound protein (denoted P), and the unbound ligand (denoted

L). Let X be a state, X 2 fP‚ L‚ PLg. The partition function is a sum of the Boltzmann-weighted energies for

all conformations in the thermodynamic ensemble of X. Let s denote an amino acid sequence, then the

partition function of s in state X (which we donate as q
X
(s)) is:

q
X
(s) =

X

c2Q
X

(s)

exp - E(c)=RTð Þ‚ (1)

where Q
X
(s) is the entire conformational ensemble of sequence s in state X, and c is a single conformation

in that ensemble. E(c) is the energy of conformation c as computed by an energy function (Hallen et al,

2018). R is the ideal gas constant and T is the temperature in absolute Kelvin. By using A� search with

iMinDEE over Q
X
(s) to enumerate an ordered gap-free sequence of lower bounds on conformational

energies (Georgiev et al, 2008), the K� algorithm generates an e-approximation of the partition function

q
X
(s). This allows the K� score for a sequence s to approximate Ka:

K�(s) =
q

PL
(s)

q
P
(s)q

L
(s)
: (2)

There are a number of algorithms that implement the computation of the K� score in OSPREY, including

iMinDEE (Georgiev et al, 2008), BBK� (Ojewole et al, 2018), and MARK� ( Jou et al, 2020). These three

aforementioned algorithms all employ continuous minimized rotamers.

The genomic component of Resistor exploits mutational signatures derived from whole genome and

whole exome sequencing of cancers (Alexandrov et al, 2020, 2013). A mutational signature is a distribution

representing the probability that one nucleotide will mutate to another nucleotide in a given codon context

and particular cancer type (Alexandrov et al, 2013). The different signatures are a result of diverse

mutational processes (Alexandrov et al, 2013), and different cancer types are associated with one or more

mutational signatures. And although a cancer type is associated with a set of signatures, not every asso-

ciated signature is found in all tumor samples of a particular cancer type. We use these empirical mutational

signature data to calculate the probability that an amino acid’s codon mutates to another amino acid.

Specifically, let C be the set of cancers and S the set of mutational signatures, with c 2 C and s 2 S. We

denote the set of signatures operative in a particular cancer c as Sc, and the proportion of tumor samples in c

exhibiting signature s as W
cs

. Let D be the set of amino acid-encoding codons and A the set of amino acids,

with d 2 D and a 2 A. We denote the set of codons encoding amino acid a as Da. Last, we denote Z as the

set of ways that d can mutate to any d
0 2 Da within two single mutational events. Then to calculate the

probability that codon d mutates to amino acid a we compute:

P d ! Dajcð Þ =
X

s2Sc

P d ! Dajsð ÞW
cs

(3)

=
X

s2Sc

X

d02Da

P d ! d0jsð ÞW
cs

(4)

=
X

s2Sc

X

z2Z

P zjsð ÞW
cs
: (5)
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We determine Z for all amino acids and compute the values P zjsð Þ using a recursive graph algorithm. For

this, we construct a directed graph G(v‚ e) for each mutational signature where the vertices v are codons

and edges e connect codons that differ by their center base. The weight assigned to each edge e is the

probability of one codon mutating to another codon, as provided in Alexandrov et al (2013). The input

codon d must contain two flanking bases to lookup the probability of the first or last base of the codon

mutating. Inputs to the algorithm are G, d, the path probability pð Þ, and the max number of mutational steps

(n). The algorithm enumerates all possible single point mutations in d in a function called step_codon.

It looks up the probability of mutating from the current codon to the next codon using G and recursively

calls itself n times. When the terminating condition is met the algorithm returns the set of codons it reached

in � n steps and their probabilities. See Algorithm 1 for pseudocode of the algorithm.

3. HOW TO USE RESISTOR TO PREDICT RESISTANCE MUTATIONS

In this section, we describe how a medicinal chemist could use Resistor in OSPREY to predict

resistance mutations.

Algorithm 1: calc_probs computes the complete set of paths that can be reached within n mutational steps from

codon. The parameter path_prob is the probability of reaching the current codon via a particular path. After

calc_probs is executed, the codons reached by all paths and their associated probabilities are in the paths
variable. The codons in this variable are then grouped and summed by the amino acid they encode (omitted below). The

initial invocation of calc_probs initializes path_prob to 1. The step_codon function produces all 9

variants of a codon with a single mutated base.

paths )[]

def cal_probs (codon, path_prob, G, n):

if n =0:

return

for next_codon in step_codon(codon):

mutational_prob ) G [codon, next_codon]
next_prob ) path_prob * mutational_prob
push(paths, (next_codon, next_prob))
calc_probs(next_codon, next_prob, G, n - 1)

3.1. Inputs to RESISTOR

There are a number of requisite inputs to running Resistor. First, two structural models of a protein must

be obtained, one with the protein binding the endogenous ligand (for the positive design) and one with the

drug (for the negative design), preferably from the Protein Databank (Berman et al, 2003) if experimentally

determined models are available. If models are lacking, it is possible to use docking, homology model-

ing, or other computational modeling techniques to generate structures (Frey et al, 2010; Guerin et al,

2022a; Reeve et al, 2015; Roberts et al, 2012; Wang et al, 2022). The structures must be protonated, and if

small molecules are used, their connectivity templates and forcefield parameters must be generated using

Ambertools (Case et al, 2021). A detailed instructional example is included in the Supplementary

Information from Guerin et al (2022b).

We have added a new YAML-based design specification file format to OSPREY to simplify the process

of performing a computational mutational scan and computing K� scores. In searching for resistance

mutations, we are often interested in interrogating all residues within a certain radius (called the mutational

radius) from the drug or endogenous ligand. A mutational scan allows one to specify a target molecule or

residue, a mutational radius, and a flexibility radius. Executing the scan generates a set of complete, ready-

to-run OSPREY design files.

These design specification files are also in YAML format, and a separate file is generated per residue

within the mutational radius. The mutational scan automatically sets all residues within the flexibility radius

of the mutable residue as continuously flexible [see Gainza et al (2012) for background on the importance
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of continuous flexibility]. The scan can be used to generate a design file for each residue of interest for both

the positive and negative design states. These design files are used as input to the affinity command in

OSPREY to compute the K� score.

3.2. Running RESISTOR

This section describes how to create the design template, do the mutational scan, and then run the

individual OSPREY designs. All of the following code snippets are typed into a Unix shell.

3.2.1. Create the design template. First create the design template file. This file is a simplified

version of the affinity design file type omitting the specification of flexibility or mutability in the

protein or ligand. In other words, the residue_configurations properties of the protein and

ligand objects in the design file must be empty lists. Copy the protein and ligand coordinates into the

template file. Then add a new top-level property called scan. Under the scan property add a target
property, and set that property to the ligand. Then the following command creates the set of designs

(substitute your template file for template.yaml):

osprey affinity --do-scan --design template:yaml

You need to do this for two structures: the protein interacting with its endogenous ligand (the positive

design) and the protein with its drug (the negative design).

3.2.2. Compute the positive and negative K� scores. After the mutational scan has created the

positive and negative design files, run the OSPREY K� algorithm on each. There are a number of different

options you can select, such as the --cuda flag to accelerate the energy function calculations if your

computer has CUDA-capable GPUs, and the --epsilon flag to specify the accuracy of the K� ap-

proximation [we showed in Ojewole et al (2018) that e of 0.683 guarantees that the approximated K� score

is within one order of magnitude of the K� score without approximation]. The following is just an example;

run osprey affinity--help for the full list of options.

osprey affinity \
--design design:yaml n
--epsilon 0.683
--cuda

3.2.3. Compute the mutational probabilities. Create a CSV file with three columns: the residue

number, the wild-type amino acid, and the mutant amino acid. Do this for each of the wild-type+mutant

pairs. Assuming you have downloaded the OSPREY source code, run the following command to add a

mutational probabilities column:

julia --project=. main.jl \
--mut-prob mut - prob - file n
--fasta cDNA - fasta - file n
--identifier identifier - in - cDNA - fasta - file n
--csv CSV - file

The --mut-prob argument should be a path to a JSON file. This JSON file contains a JSON object

with the per-cancer type codon-to-codon mutational probabilities [see the Supplementary Information

from Guerin et al (2022b) for the precise form]. The --fasta argument should be provided a path to a

FASTA file with the coding DNA for the protein. Since FASTA files can contain multiple sequences,

the --identifier argument must contain the sequence identifier of the sequence of interest (viz. the

text following the ‘‘>’’ from the header/description line). The --csv argument should be the path to the

3-column CSV file created earlier. This program outputs a new CSV file with the added mutational

probability column.
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3.2.4. Run pareto optimization. The last step is to run Pareto optimization on the four axes.

Append the K� scores associated with the positive and negative design results to the spreadsheet pro-

duced in Section 3.2.3. Create a JSON file with the names of the column headings and whether a column

must be maximized or minimized [see the Supplementary Information from Guerin et al (2022b) for the

precise form]. The following command will append a column with the Pareto rank of each sequence:

julia --project=. main.jl CSV - file pareto - settings

where the first argument CSV-file refers to the input CSV file and the second argument pareto-settings

refers to the JSON settings file you created earlier.

3.3. Interpreting the results to predict resistance mutants

The results of Resistor are in tabular form. Table 1 is excerpted from a result set from Guerin et al

(2022a). The results are listed in order of the Pareto Rank, with those with rank 1 being on the Pareto

frontier. The Sig Prob, Lig WT, Lig Mut, Drug WT, Drug Mut, and count columns can be used to interpret

the different contributions to a mutant’s Pareto rank.

4. SUMMARY

We provide Resistor to predict and prioritize resistance mutations for therapeutic design. Although we

have incorporated four resistance-causing criteria, Resistor’s use of Pareto optimization as a general

method for ranking prospective mutants allows the incorporation of additional criteria. As free and open-

source software, we encourage others investigating therapeutic resistance to incorporate and contribute

additional objective functions into Resistor. Potential future applications include predicting resistance to

antimicrobials (Frey et al, 2010; Reeve et al, 2015), antivirals, antifungals, and other antineoplastic therapies.

A comprehensive tutorial demonstrating an application of Resistor to predict resistance mutations in the

epidermal growth factor receptor to the tyrosine kinase inhibitor erlotinib is provided in the Supplementary

Information in Guerin et al (2022b). OSPREY with Resistor, installation instructions, additional documenta-

tion, and tutorials are available on the OSPREY software suite’s website,* and further discussions on OSPREY

and structure-based computational protein design can be found in Hallen et al (2018) and Donald (2011).
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NG: Conceptualization, Methodology, Software, Validation, Writing: Original Draft. TK: Con-
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Table 1. Example Resistor Resistance Mutation Predictions

Pos WT AA Mut AA Sig Prob Lig WT Lig Mut Drug WT Drug Mut Count Rank

593 GLY ILE 4.55E-05 18.66 19.8 37.17 30.24 16 1

593 GLY SER 6.09E-02 18.66 18.83 37.17 34.27 16 1

466 GLY GLN 7.24E-05 18.80 12.55 37.16 11.37 11 2

593 GLY THR 2.67E-05 18.66 19.06 37.17 27.33 16 2

464 GLY GLN 7.24E-05 18.58 2.95 37.09 11.05 1 3

‘‘Pos’’ is the position of the residue. ‘‘WT AA’’ is the wild-type identity of the amino acid. ‘‘Mut AA’’ is the resistance mutation.

‘‘Sig Prob’’ is the mutational signature probability for the mutation from ‘‘WT AA’’ to ‘‘Mut AA.’’ ‘‘Lig WT’’ and ‘‘Lig Mut’’ are the

K� scores of the endogenous ligand with the wild-type and mutant residues, respectively. ‘‘Drug WT’’ and ‘‘Drug Mut’’ are the K�

scores of the drug with the wild-type and mutant residues, respectively. ‘‘Count’’ is number of resistance mutations at the position.

‘‘Rank’’ is the Pareto rank of the mutation. Note: K� scores are in log10 units.

*https://www2.cs.duke.edu/donaldlab/software/osprey/docs/
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