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Abstract

Introduction: Focal epilepsies are diseases of neuronal excitability affecting macroscopic networks of cortical
and subcortical neural structures. These networks (*‘epileptogenic networks’’) can generate pathological electro-
physiological activities during seizures, and also between seizures (interictal period). Many works attempt to de-
scribe these networks by using quantification methods, particularly based on the estimation of statistical
relationships between signals produced by brain regions, namely functional connectivity (FC).

Results: FC has been shown to be greatly altered during seizures and in the immediate peri-ictal period. An in-
creasing number of studies have shown that FC is also altered during the interictal period depending on the de-
gree of epileptogenicity of the structures. Furthermore, connectivity values could be correlated with other clinical
variables including surgical outcome.

Significance: This leads to a conceptual change and to consider epileptic areas as both hyperexcitable and ab-
normally connected. These data open the door to the use of interictal FC as a marker of epileptogenicity and as a
complementary tool for predicting the effect of surgery.

Aim: In this article, we review the available data concerning interictal FC estimated from intracranial electro-
encephalograhy (EEG) in focal epilepsies and discuss it in the light of data obtained from other modalities
(EEG imaging) and modeling studies.
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In this article, we review the concept of the epileptogenic network and explained the basic notions of functional connectivity
(FC) and the potential biases when studying it using intracranial EEG ((EEG). We report the current body of published data
using iEEG. These data demonstrate that even at temporal distance from epileptic seizures there are differential changes in
FC between areas epileptic or not. It appears that the connectivity of epileptic zone remains relatively preserved and higher
than the connectivity of the nonepileptic zone (decreased). These data could help in locating epileptic areas and predicting the
surgical outcome.
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INTERICTAL iEEG CONNECTIVITY IN FOCAL EPILEPSIES

Introduction

Focal refractory epilepsy and the concept
of epileptogenic network

PILEPSY IS A SERIOUS and highly prevalent neurological
disease, affecting more than 1% of the population world-
wide (Fiest et al, 2016), and associated with a significant over-
mortality rate and frequent comorbidities (Thurman et al,
2017). Approximately 60% of patients with epilepsies have
focal seizures (Hauser et al, 1991). Pharmacoresistance to an-
tiseizure medications remains a major issue for up to one-third
of patients (Kwan et al, 2000). In these cases, epilepsy resec-
tive surgery, when possible, is the best option (Dwivedi et al,
2017; Ryvlin et al, 2014; Wiebe et al, 2001). For these patients
with drug-resistant focal epilepsies, the main prognostic factor
of surgery is to achieve complete resection of the epileptogenic
zone (EZ), the latter being defined on the basis of multimodal
data (clinical, electroencephalograhy [EEG], magnetic reso-
nance imaging [MRI], positron emission tomography [PET]).
In some cases, noninvasive data are not sufficient to accurately
define the EZ and its relationship with eloquent cortices. In these
cases, intracranial EEG (iEEG) recordings are mandatory (Isnard
etal, 2018; Jayakar et al, 2016). SuchiEEG recordings have led to
the observation that focal epilepsy is often organized as a network
with regard to the spatial organization of EZ, pattern of seizure
propagation, and connectivity alteration induced by recurrent sei-
zures (for a review, see Bartolomei et al, 2017). In the last 15
years, the notion of ‘“‘epileptogenic networks” has become
more and more popular in epileptology (Bartolomei et al,
2017) since its first description in the early 2000s (Bartolo-
mei et al, 2001; Spencer, 2002).

In this context, the important breaking point is to replace the
concept of epileptic focus (Rosenow and Luders, 2001) by that
of epileptogenic networks. This model involves spatiotempo-
ral dynamics in the genesis of ictal and interictal activities be-
tween a more or less extended set of distant brain regions. In
this model, there is a hierarchy of brain regions ranked accord-
ing to their epileptogenicity: (1) EZ network, (2) propagation
zone (PZ) network, and (3) noninvolved zone (NIZ) network
(Fig. 1). Indeed, the analysis of iEEG recordings of seizures
often reveals an involvement of multiple cerebral structures,
sometimes with different types of discharges (more or less
rapid) and with variable delays of involvement. It is thus not
always easy to define the limits of the area to be resected, es-
pecially in the case of short involvement times and extensive
rapid discharge at seizure onset.

Quantified analyses of seizure onsets actually show a gra-
dient of epileptogenicity between the different structures in-
volved (Bartolomei et al, 2017; Bartolomei et al, 2008). The
EZ network concerns the regions involved earlier in the sei-
zure with the most rapid discharges, whereas the PZ network
concerns regions involved later or through less rapid dis-
charges. Interestingly, studies with other modalities (PET
and MRI) also show such a gradient in the observed alter-
ations (structural connectivity and metabolic, respectively)
(Besson et al, 2017; Lagarde et al, 2020).

The MRI-visible lesion and the areas generating interictal par-
oxysms could, according to the patient, belong to one or more of
the above ictal-defined (epileptogenic, propagation, and nonin-
volved) networks. While numerous studies have shown modified
brain synchrony during seizures (preictal, ictal, and postictal
states) (see review in Bartolomei et al, 2017), cerebral connectiv-
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ity is also notably altered during the interictal period. However,
preictal, ictal, and interictal data reflect distinct pathophysiologi-
cal processes and should not be mixed up when interpreting the
existing literature. We focus the present review on the functional
connectivity (FC) alterations observed remotely from seizures,
that is, in the interictal period.

Functional connectivity

FC refers to the statistical link that can exist between activi-
ties recorded from distinct brain structures, reflecting more or
less synchronized functioning of underlying neuronal popula-
tions. The first methods of FC analysis from EEG signals
were developed in the 1950s (Barlow and Brazier, 1954), and
the first application to ictal signals in the 1980s (Gotman,
1983). The methods have developed in the following years, par-
ticularly with the rise of computers and digital EEG systems.
Today, the range of methods that can be used to estimate FC
is wide. These methods have been evaluated in studies using
simulated signals (Ansari-Asl et al, 2006; Wang et al, 2014).
The conclusion of these studies is that no method is universal
(i.e., most efficient in all the situations tested). They show dif-
ferent performances depending on the type of model and the
data used (electrophysiology or functional MRI [fMRI]).

Another observation is a strong influence of the choice of
the frequency band of interest (Courtens et al, 2016). Still,
methods belonging to the family of linear and nonlinear cor-
relations proved to be a good compromise in various tested
models (Wang et al, 2014; Wendling et al, 2009).

FC at the macroscopic scale can be measured by EEG
(scalp or intracranial), magnetoencephalography (MEG),
and fMRI. fMRI is an indirect marker of neural activity through
the hemodynamic response. It should be noted that this hemo-
dynamic response is delayed after the variation in neural activ-
ity (e.g., about 5 sec after the start of a stimulus) (Logothetis,
2008). Thus, if the fMRI allows whole-brain exploration, de-
rived measures of connectivity can only be estimated over rel-
atively slow timescales (seconds). The data concerning MRI
connectivity in focal refractory epilepsies have been reviewed
in previous works (Bernhardt et al, 2013; Tavakol et al,
2019) and are not the topic of this review.

Both MEG and EEG offer a high temporal resolution and
allow for analysis of neural activity at the millisecond scale.
Despite whole brain covering, with some limitations for deep
structures, their spatial resolution is limited to the study of regions
with a volume of 1 cm?. Moreover, it is necessary to solve the
inverse problem to go from the sensor to the brain source
level. In this context, volume conduction effect and source leak-
age may influence the results of connectivity. However, several
methods have been developed, notably source imaging and also
specific connectivity analyses (e.g., imaginary part of coher-
ence), to limit this problem (He et al, 2019). It should be
noted that this problem of volume conduction is not absent in
iEEG either. A review concerning interictal FC data in EEG
and MEG can be found in van Mierlo et al (2019).

iEEG recordings bring complementary information to EEG/
MEQG data by a higher spatial resolution (with sampling at
the mm? level) and excellent temporal resolution (msec,
equivalent to scalp EEG and MEG), yet incomplete brain
sampling. Two main techniques of iEEG recording are being
used in routine: electrocorticography (ECoG) and stereo-EEG
(SEEQG). Several studies have now confirmed that SEEG
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Represents a seizure recorded in SEEG where we observe a simultaneous coimplication of several distinct/distant ce-

rebral areas at the time of the initiation and the propagation of the seizure. The frequent observation of this simultaneous involve-
ment of a “network” of brain areas during seizures, as well as the connectivity changes observed at the time of the seizures (not
shown here), led us to propose the concept of the three “‘networks”’: EZN, PZN, and NIN. (A) A 3D representation of the epilep-
togenicity of the sampled area in a patient with SEEG recordings. EZN are the nodes with a big red sphere, PZN are the nodes with
a medium orange sphere, and NIN are the nodes with a small yellow sphere. (B) Example of SEEG traces during a seizure within
the EZN, PZN, and NIN; and summary of the most frequent observed changes within each zone in terms of signal properties.
(C) Bar plot of the level of epileptogenicity for the nodes sampled in this example, showing a gradual decrease of epileptogenicity
(A, right middle temporal gyrus anterior part; B, right middle temporal gyrus anterior part; FCA, right middle temporal gyrus pos-
terior part; GC, right superior temporal gyrus posterior part; H, right planum temporale; I, right middle frontal gyrus posterior part;
OR, right superior frontal gyrus posterior part; OT, right middle temporal gyrus posterior part; PA, right angular gyrus; PM, right
middle frontal gyrus anterior part; SEEG, stereo-EEG; T, right planum polare; TB, right inferior temporal gyrus anterior part). 3D,

three dimensional; EZN, epileptogenic zone network; NIN, noninvolved zone network; PZN, propagation zone network.

has a lower morbidity rate than subdural recordings (Jehi
etal, 2021; Katz and Abel, 2019; Mullin et al, 2016; Tandon
etal, 2019). SEEG has currently gained worldwide popular-
ity due to its favorable morbidity profile, superior coverage
of subcortical structures, and the ability to perform multilo-
bar or bilateral explorations without the need for craniot-
omy. It is noteworthy that the assessment of FC and brain
networks is not superimposable when using SEEG or
ECoG data (Bernabei et al, 2021).

SEEG allows to record the activity of multiple and distant
brain regions, which are more likely to reveal large-scale net-
work activities, which probably explains why the development
of the concept of epileptogenic networks began with the pio-
neering work in the field (Bancaud and Talairach, 1992; Barto-
lomei et al, 1999; Chauvel et al, 1987). However, the number

of SEEG electrodes being obviously limited, the spatial sam-
pling remains incomplete, which requires certain precautions
to be taken when analyzing and interpreting FC and network
metrics from graph theory (see Graph measures sub-section).

An SEEG electrode records local field potentials (LFP)
corresponding to the electrical activity of cooperative activ-
ity in neuronal populations. Generally speaking, LFP depend
on the geometry of dendrites and on the features of the dipole
constituted by sinks and sources at the dendrites and soma of
pyramidal cells. It is well admitted that LFP reflect several
underlying processes such as synaptic potentials, afterpoten-
tials of somatodendritic spikes, and voltage-gated membrane
oscillations (Wendling and Lopes da Silva, 2018). Regarding
space, they reflect the mean activity of a neuronal population
between 1 mm® and 1cm® depending on the geometrical
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features of the extracellular electrode (micro- to mesoscale)
and on the level of synchrony (Logothetis, 2003). In the spe-
cific case of SEEG, the exact dimension of the recorded neu-
ronal population is not accurately known.

Still, in the last years, several SEEG studies have brought im-
portant knowledge on the alterations in interictal FC that are ob-
served in focal refractory epilepsy. This review aims at
providing a detailed description of these data, highlighting meth-
odological issues that should be considered for data interpreta-
tion and discussing the remaining questions to be addressed.

Overview of Methods for Measuring FC
FC estimation

It has been hypothesized that the synchronization of
neuronal oscillations between cerebral areas may allow trans-
fer of information in the brain. Therefore, several quantitative
methods have been developed to assess the statistical relation-
ship between signals, namely the FC. There is now a plethora
of available methods, each with its own advantages and disad-
vantages. These can be distinguished according to some of
their characteristics, which we briefly detail below. Inter-
ested readers can find a more detailed review on the subject
in Bastos and Schoffelen (2016) and He et al (2019).

A first distinction can be made between the methods,
model-based (e.g., linearity assumed for correlation or
granger causality) and model-free (e.g., mutual information,
transfer entropy, and nonlinear correlation being sensitive to
both linear and nonlinear interactions). The simplest measure
for estimating linear interactions is the Pearson correla-
tion coefficient, which measures the linear relationship be-
tween two variables. Other forms of nonlinear coupling
exist such as cross-frequency coupling (where the phase or
amplitude of a certain frequency interacts with the phase
or amplitude of another frequency), and then, other metrics
sensitive to this nonlinear coupling have been developed.

For example, as the relationship between signals in epilepsy
may be more complex than a simple shift, Pijn and da Silva
(1993) have thus proposed to use a nonlinear model for the
transformation, which consists in a nonparametric analysis
aiming at quantifying the correlation of a signal Y on a signal
X, independently of the type of the relationship between the
two signals. This is a more flexible method, while keeping
the number of parameters reasonably low (too many parame-
ters would lead to “overfit” that is, good description of any re-
lationship including noise). In reference to the 7, this nonlinear
measure has been named A2 (nonlinear correlation coefficient).

In practice, in a sliding window, a piecewise linear regres-
sion is performed between each pair of signals. The /? is the
coefficient of determination, which measures the goodness of
fit of the regression (equivalent to the 7* used in linear regres-
sion). The h? is bounded between 0 (no correlation) and 1
(maximal correlation) and is asymmetric. This method has
been shown to be sensitive to the following: nonlinear rela-
tionships between signals (Lopes da Silva et al, 1989),
phase-to-phase coupling (Wendling et al, 2009), amplitude-
to-amplitude coupling (Wendling et al, 2009), signals gen-
erated by nonlinear systems and coupled linearly or
nonlinearly (Wang et al, 2014; Wendling et al, 2009),
asymmetric relationships between signals (Lopes da Silva
et al, 1989), and signals containing epileptic discharges gen-
erated by neural mass models (Wendling et al, 2009).
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Regarding the cross-frequency coupling, the A is usually cal-
culated in broadband and is independent of the frequency, which
does not allow to evaluate this aspect. However, it is theoreti-
cally possible to calculate it on sub-band filtered signals to eval-
uate the cross-frequency coupling, and in this case, the results
are close to those obtained with a linear correlation. Finally,
R? is not a particularly designed method for evaluating phase—
amplitude coupling. Other methods that do not assume a linear
relationship have been developed such as mutual information or
transfer entropy (Bastos and Schoffelen, 2016) and have shown
a good sensitivity to nonlinear relationships (Wang et al, 2014).

Another important aspect is the distinction between meth-
ods that are computed from the time (e.g., correlation, cross-
correlation, mutual information, transfer entropy) or
frequency domain representation of the signals (e.g., coher-
ence, phase locking value, phase slope index). For the latter,
the equivalent of correlation in the frequency domain is co-
herence, introduced in the context of epilepsy by Brazier
(Brazier and Casby, 1952). This measure allows measuring
the strength of linear coupling at different frequencies. The
coherence measure (ranging between 0 and 1) is based on
the Fourier transform that decomposes each signal as a set
of sine waves at different frequencies, each having an ampli-
tude and a phase (temporal shift at a given frequency).

The profile of amplitudes across frequencies is the spectrum.
The coherence is simply the correlation of the Fourier coeffi-
cients across several time windows. Importantly, this requires
averaging across several time windows—coherence between
one time window and another one would be by construction
1. The coherence method assumes that signals are linked
both in amplitude and frequency. This can be separated in a
measure of amplitude correlations only and a measure of
phase locking only (i.e., constant delays between signals at a
given frequency across time windows, independently of the
amplitude). To be noted, interictal signals containing transient
patterns (e.g., interictal epileptiform discharges [IEDs]) may
not be described well by stable sine waves of the Fourier trans-
form. Thus, wavelet transform has been proposed, which is
based on the nonstationary wavelet transform, and correlation
can be applied to the wavelet coefficients (Amini et al, 2011).

One may be also interested in the direction of the flow of in-
formation in connectivity analyses, and several methods have
been developed to assess the directionality (e.g., cross-
correlation, granger causality, transfer entropy), whereas some
others cannot estimate this feature (e.g., correlation, mutual in-
formation, coherence, phase locking value). One of the easiest
ways for this estimation is to look to propagation delays and
then compute the correlation for shifted versions of one signal
with respect to the other. The shift with the highest correlation
is retained, together with the respective correlation value. This
is cross-correlation, which is adapted when one signal is simply
a delayed version of the other with no transformation. Using
nonlinear correlation (hz), directionality could be estimated
from the delay of the shift maximizing the 4” value and/or the
asymmetry of the values (Wendling et al, 2001).

Other methods have attempted to quantify the causal rela-
tionship between time series such as granger causality and
transfer entropy. The principle underlying Granger causality
can be described as follows: X ‘“‘granger causes” Y if Y is
better modeled using both the past of X and the past of Y
than only using the past of Y. This is a stronger statement
that simple correlation. Indeed, if signals happen to be
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oscillations at a constant frequency, then granger causality
will find that the relationship is low—one oscillation can
be well predicted by its own past alone (this is also possible
to detect in a repetition of the events where one would search
for constant phase relationship, i.e., phase locking).

Another important methodological point in the estimation
of FC is how to deal with the common input problem. Indeed,
the functional interaction between a pair of signals could be
caused by a common input from a third source (that may
have not been considered/sampled). To limit this problem,
methods using multivariate analysis have been developed.
Their principle is that information from all channels is
taken into account when estimating the FC between any
pair of channels (e.g., directed transfer function [DTF], par-
tial directed coherence [PDC], but also partial version of
cross-correlation linear or not) (Astolfi et al, 2008; Astolfi
et al, 2007; Astolfi et al, 2005; Florin et al, 2010).

Methodological considerations

In iEEG FC analyses, several parameters may influence
the results algorithms and parameters used (Ansari-Asl
et al, 2006; Wang et al, 2014), montage and reference used
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(Bartolomei et al, 1999; Bastos and Schoffelen, 2016), dura-
tion of the period analyzed (Chu et al, 2012; Goodale et al,
2020; Kramer et al, 2011; Wang et al, 2014), power spectrum
of the signals (Miiller et al, 2008), distance between recorded
channels (Goodale et al, 2020; Lagarde et al, 2018; Warren
et al, 2010), effect of the partial spatial sampling (Conrad
et al, 2020), signal-to-noise ratio (Bastos and Schoffelen,
2016), and IEDs (Bartolomei et al, 2013; Bettus et al,
2008)] and may lead to detection of spurious connectivity.
It should be kept in mind during the interpretation of results
(Fig. 2). For more details about methodological consider-
ations, see Supplementary Data and the reviews by Bastos
and Schoffelen (2016) and He et al (2019).

Graph measures

Connectivity measures across all channels of interest (that
can in addition evolve with time) lead to a high amount of
data that can be potentially very complex to analyze. It is
thus interesting to summarize these data using a mathemati-
cal tool such as graph theory. In this framework, channels
(single contacts in monopolar or pairs of contact in bipolar
montage) can be seen as nodes of a graph, and the value of
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FIG. 2. Illustrates the confounders influencing the estimation of functional connectivity through the example of the nonlinear cor-

relation coefficient (4%). (A) The connectivity value decreases with the increase of intercontact distance (possible solutions: normal-
ization by the distance (using noninvolved zone data)/multivariate analysis using the distance-effect). (B) The connectivity values
are lower for higher frequencies (possible solution: sub-band analysis/comparison of the frequency content before analysis). (C) The
IEDs (unprocessed data) increase slightly the connectivity value without changing the global trend of difference between zones
(higher connectivity when mesiotemporal structures are epileptogenic MTLE vs. nonepileptogenic NMTLE). *Statistically signifi-
cant. IEDs, interictal epileptiform discharges; MTLE, mesio-temporal lobe epilepsy; NMTLE, non mesio-temporal lobe epilepsy.
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connectivity between these channels as the link (edge) be-
tween these nodes. The advantage of this representation is
to summarize the specific properties of the studied network
and help to analyze its topology. Topology analysis aims at
quantifying the organization of the network, nodes with
dense connectivity, organization of the connections between
nodes, and so on (for further details, see Fornito et al, 2016).

Schematically, two types of measures have been proposed.
The first type measures the way a node (or a set of nodes=
zone) is integrated in the whole network (local topology).
The second type measures the overall organization of the net-
work (global topology). Local topology includes several
measures of “‘centrality,” that is, the importance of a node
in terms of its connectivity to the rest of the nodes (highly
or weakly connected =high or low centrality value). Several
metrics could be used (e.g., degree, node strength, between-
ness centrality [BC], eigenvector centrality), each with
its own advantage and inconvenience that we will not
detail here (interested readers may look at specific re-
views: Fornito et al, 2016; Fornito et al, 2013; Gleich-
gerrcht et al, 2015; Vecchio et al, 2017). In the case of
directed FC measures, one can estimate the ingoing and out-
going centrality of each node.

Global topology gives the relationship between short-
range and long-range connections and then the efficiency
of the whole network. For example, the small-world topol-
ogy is characterized by an efficient balance with several
short-range and some long-range connections. This is fre-
quently seen in real-life examples in many fields, for exam-
ple, transportation networks (the important nodes or ‘‘hubs”
are the large cities that connected with each other, while
smaller cities only need to be connected to the nearest
hub), including brain organization.

Graph theory allows simplifying the analysis of complex
networks such as those of the human brain (Stam, 2004)
and helps the comparison between patients. However, an im-
portant point concerning the use of graph theory metrics in
iEEG studies is the bias related to incomplete spatial sam-
pling. Thus, when we refer to centrality or topology in
these studies, we are not speaking in terms of absolute values
(at the scale of the entire brain as can be explored by fMRI,
EEG, or MEGQG), but in terms of relative values within the sub-
network of explored structures. These metrics nevertheless
make it possible to rank the structures according to their de-
gree of connectivity, and to appreciate the modifications of
topology within a subnetwork related to its epileptic charac-
ter or not.

Another important problem is the risk of biasing the esti-
mates of these metrics since some structures can be over-
sampled in iEEG which, if we consider all possible
connections, risks overestimating the centrality of these
structures. It is necessary to control this bias by limiting to
one the value of connectivity between regions of interest be-
fore performing the graph theory analysis. The centrality
metrics must be normalized (e.g., by the theoretical maxi-
mum of centrality) to take into account the difference in
the number of sampled regions between patients. Moreover,
not all centrality metrics are equally robust to the problem of
incomplete sampling. It appears that the simplest ones (node
strength) have good performance and some methods have
been suggested to estimate the confidence interval of these
metrics (Conrad et al, 2020).
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FC in the Interictal State
Links between FC and epileptogenicity

Table 1 synthesizes data from studies using ECoG and/or
SEEG recordings, as described above.

ECoG studies. Several studies have investigated iEEG
functional interictal connectivity in epilepsy using ECoG
data. First, Towle et al (1998) demonstrated areas of locally
increased coherence on ECoG within/nearby the epileptic
zone, mostly in patients with temporal lobe epilepsy
(TLE). Following studies using a mix of ECoG and depth-
electrodes within hippocampi confirmed a greater interde-
pendence between structures belonging to the EZ compared
with structures in the NIZ (Arnhold et al, 1999; Dauwels
et al, 2009). Schevon et al (2007) found areas of increased
synchrony using several distinct FC measures (correlation,
phase synchrony, coherence magnitude, granger causality)
with stability over time, in a group of nine patients. In this
study, the authors found a strong overlap between the EZ
and areas of hypersynchrony for both ECoG and depth elec-
trodes and, using mean phase coherence, found areas of local
hypersynchrony (between 2 and 5 cm) with temporal stabil-
ity across time.

This suggested that an increase in local synchrony could
be a marker of epileptogenicity. Nevertheless, the overlap
was not always perfect and the hypersynchrony clusters
were sometimes located at the edge of, and not within, the
EZ. Moreover, complete resection of areas of local hypersyn-
chrony was associated with a favorable surgical outcome.
Ortega et al (2008) described a cluster of local hypersyn-
chrony within the temporal neocortex of patients with TLE
explored using intraoperative ECoG. In this study, the au-
thors failed to find a correlation between complete resection
of the clusters of local hypersynchrony and surgical out-
come. This could be explained by the fact that most of
their patients benefited from anterior temporal lobectomy
and that ECoG is mostly sensitive to the activity of lateral
temporal neocortex. Wilke et al (2011) also showed a change
in BC obtained with DTF in gamma band within the EZ.

Finally, only one iEEG study by Warren et al (2010) was
able to compare data from patients with epilepsy with pa-
tients without epilepsy (implanted for refractory facial
pain), using ECoG, linear correlation, and mean phase coher-
ence. This study demonstrated that FC (1) between the EZ
and other nonepileptogenic areas and (2) between the none-
pileptogenic areas was lower than the corresponding connec-
tions in controls. These results suggested a disconnection of
epileptogenic structures from nonepileptogenic structures
and a decrease of connectivity within the nonepileptogenic
cortices.

SEEG studies. The ECoG recording technique has sev-
eral limitations (limited spatial sampling, exclusion of mesial
cortical and subcortical structures, relatively indirect record-
ing of cortical activity, mostly unilateral sampling, and, for
some reports, recordings performed under anesthesia for
intraoperative ECoG). SEEG studies may overcome some
of these limitations. A first set of SEEG studies used bilateral
recordings with two depth electrodes implanted along the
posterior—anterior axis of both hippocampi in patients with
mesiotemporal epilepsy for whom the question of bilateral
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epileptogenicity was raised. This type of implantation allows
for comparison of epileptogenic versus nonepileptogenic
mesiotemporal structures (hippocampus and amygdala mostly).

Mormann et al (2000) showed a local increase in syn-
chrony (mean phase coherence) between the structures of
the EZ, in a group of 17 patients. Following studies us-
ing the same approach confirmed these findings (Arnhold
et al, 1999; Dauwels et al, 2009) and showed a disconnection
(lower strength and eigenvector centrality) of the EZ from
the contralateral analogous (Van Diessen et al, 2013).

Other studies have then used a more complete SEEG sam-
pling typically including neocortical temporal and extratem-
poral cortices. Three studies compared connectivity across
the mesiotemporal structures according to their epilepto-
genicity (patients with mesiotemporal epilepsy compared
with patients with extratemporal epilepsy), using a nonlinear
analysis through the h? method (Bettus et al, 2011; Bettus
et al, 2008) or the synchronization likelihood (Bartolomei
et al, 2013). The authors have found a higher connectivity
between these structures when they belong to the EZ (Barto-
lomei et al, 2013; Bettus et al, 2011; Bettus et al, 2008). A
methodological question was to know the role of interictal
spikes and actually they could increase the connectivity val-
ues (Bartolomei et al, 2013; Bettus et al, 2008). However, the
suppression of sections comprising interictal spikes did not
change the results of both FC (Bettus et al, 2008; Jiang
et al, 2022) and graph theory metrics (Bartolomei et al,
2013).

Varotto et al (2012) specifically addressing FC in patients
with focal cortical dysplasia (FCD) type II estimated the role
of the epileptogenic lesion itself. They showed an increase in
outgoing connections between 30 and 80 Hz in FCD com-
pared with the other structures of the EZ. Using measures
of centrality from graph theory, this study also showed
higher BC values within the FCD.

We recently reported a study of interictal FC (nonlinear
correlation, A7) in a large series of 59 patients with various
forms of focal epilepsies not limited to temporal epilepsies
and with a broad SEEG sampling (Lagarde et al, 2018). In
this study, the different epileptogenic networks were first de-
fined as precisely as possible by quantifying the ictal activity
recorded in SEEG, thanks to the epileptogenicity index (Bar-
tolomei et al, 2008). Thus, the epileptogenic networks were
defined as EZ, PZ, and NIZ networks. Independently of the
intercontact distance, there was a gradual decrease of FC
from the EZ (disclosing the highest connectivity) to the PZ
(characterized by an intermediate level of connectivity),
and finally, to NIZ (with the lowest connectivity). Moreover,
the areas belonging to the EZ were preferentially connected
with the areas belonging to the PZ. The EZ was also more
interconnected than connected to the NIZ.

This result confirmed the findings of previous studies
showing a trend for a “‘disconnection’’ of the epileptogenic
structures with the nonepileptic brain areas (Van Diessen
et al, 2013; Warren et al, 2010). Our findings were consistent
in broadband, but also in frequency subbands. The direction-
ality of connectivity (estimated from time delays) did not
allow for identification of significant leaders in broadband
analysis, but the EZ was found to be the leading zone in
alpha and beta frequency bands. Goodale et al (2020) con-
firmed our findings and found a higher clustering coefficient,
nodal BC, and edge BC for the epileptogenic areas. They also
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fitted a model to predict the epileptogenicity of structures
based on the connectivity measured and obtained an accuracy
of 80.4% (sensitivity 82.5% and specificity of 60.4%).

Narasimhan et al (2020) extended these data using several
methods for connectivity estimation: imaginary coherence,
mutual information, PDC, and directed transfer entropy.
The definition of the EZ was not quantified in the study
and not precisely defined, but authors found a gradual de-
crease of connectivity values from epileptogenic to propaga-
tion to irritative (defined as noninvolved during seizure) and
to NIZ. Looking at the predictive value of interictal connec-
tivity to predict the epileptogenicity of the structures, the au-
thors found the best predictive value (area under the curve
[AUC]) for the three following methods (by decreasing per-
formance): undirected mutual information, DTF, and undi-
rected imaginary coherence. Furthermore, the combination
of connectivity measures improved the predictive value
moderately (+4% on AUC). Notably, the model performed
equally well in the subset of patients who were seizure-free
after surgery (higher confidence in the exact definition of
the EZ).

Recently, Paulo et al (2022) investigated the impact of
time in epilepsy monitoring unit, changes in antiseizure med-
ication doses, seizure burden, and differences between eyes-
closed formal resting states and eyes-open pseudoresting
states on interictal SEEG FC (imaginary coherence and
PDC computed in the alpha band). They confirmed that non-
directed and inward connectivity measures are higher in the
EZ compared with the NIZ, but most importantly demon-
strated that: (1) FC measures are stable over time; (2) FC
measures are not influenced by the seizure burden; (3) anti-
seizure medication dose may influence some FC measures
(imaginary coherence with a smaller difference between
EZ and NIZ in case of smaller dose of antiseizure medica-
tion) but not some others (PDC); and (4) the type of resting
state (formal eyes-closed or not) may influence some FC
measures (PDC with a higher difference between EZ and
NIZ during formal eyes-closed resting state), but not some
others (imaginary coherence).

Finally, Jiang et al (2022) looked specifically at the asym-
metry of connectivity between EZ and NIZ. They observed
that resting-state information flows from NIZ to EZ across
all frequencies and that FC measures remain stable across
several periods of recording. Moreover, using cross-
frequency coupling analyses, they showed that information
from NIZ high-frequency activities lead EZ low-frequency
activity. Based on these features, the authors found that a
random forest classifier had an accuracy of 88% to predict
the EZ.

These studies discussed above used a definition of the EZ
based on iEEG biomarkers (visual or quantified) and have of
course an inherent limitation as these markers do not have a
perfect performance. It is possible that in some cases, espe-
cially in nonseizure free patients, the EZ has been misjudged.
This is possibly suggested by some studies showing differ-
ences in connectivity according to the surgical outcome
(see below). Thus, future studies focusing only on seizure-
free patients after complete surgery of their EZ, thus with
an a priori correct definition, would be useful to control
this potential bias. To control this potential bias, some au-
thors have also focused their analyses on an operational def-
inition of the EZ, namely the resection zone (RZ).
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Although this definition is pragmatic and close to clinical
practice of epilepsy surgery, it has several disadvantages, in-
cluding the following: exclusion of nonoperated patients
(often more complex cases with a wider EZ and counting
up to 50% of SEEG-explored patients), inclusion of nonepi-
leptogenic regions within this zone (e.g., anterior temporal lat-
eral neocortex in standard anterior temporal lobectomy/lateral
structures on the surgical access to mesial EZ), and exclusion
of some EZs (e.g., located in eloquent cortices). Following
such methodology, Park and Madsen (2018) demonstrated
that interictal connectivity (estimated from Granger causality
on a mix of depth-electrodes and ECoG recordings in 25 pa-
tients) predicts significantly better than the chance location
of EZ/RZ. Shah et al (2019b) have recently replicated this
finding in a study on 27 patients recorded using a mix of
ECoG and depth electrodes (with a majority of ECoG).

An interesting method in this study is the normalization by
a spatially constrained null model. In line with previous find-
ings, these authors showed a gradual decrease of connectiv-
ity values (edge weight) from the following: (1) connections
within the RZ (highest values), (2) connections linking RZ
and non-RZs, and (3) connections within non-RZ (lowest
values).

Taken as a whole, data from SEEG studies demonstrated a
higher connectivity of the EZ than NIZ and that EZ is rela-
tively disconnected from the NIZ. These findings seem robust
across time and methods used. Moreover, the information
from connectivity could be useful to locate the EZ.

Cortico-cortical-evoked potential studies. Directed FC
can also be estimated from cortico-cortical-evoked potentials
(CCEPs) generated by direct cortical electrical stimulation
using intracranial electrodes (Boulogne et al, 2016; Trebaul
et al, 2018). The foundations of this approach were laid
more than 50 years ago when the Saint-Anne’s team in
Paris proposed to study the functional connections between
the hippocampus and the amygdala from SEEG recordings
(Buser et al, 1969). CCEPs consist in delivering bipolar
single-pulse electrical stimulations in a given region and
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probing other regions for significant evoked potentials that
reflect actual anatomical connections between the stimulated
and the responding regions (either direct or passing through
synapses that delay the evoked response). CCEPs correspond
to early potentials beginning in the first 100 msec after the
stimulation. From the presence or the absence of CCEP re-
sponses, it is possible to infer the directed (and causal) con-
nectivity between two areas and then to obtain a connectivity
matrix.

Table 2 synthesizes data from studies using CCEPs to
infer anatomo-functional/effective connectivity in iEEG re-
cordings. Lacruz et al (2007) failed to observe a difference
in the hemispheric CCEPs according to their epileptogenicity.
However, following studies using a more refined methodology
achieved to observe connectivity differences according to
the epileptogenic nature of the structures. For example, look-
ing at a centrality metric derived from CCEP, Keller et al
(2014) found higher in-degree in the seizure-onset zone
than outside (without difference in out-degrees). Interest-
ingly, Parker et al (2018) reported results that are very close
to SEEG studies demonstrating the following: (1) a higher
effective connectivity for the connections within the EZ, in
comparison with the connections within zones outside the
EZ; and a (2) higher outdegree and normalized outdegree
for contacts belonging to the EZ.

Zhao et al (2019) also confirmed a higher connectivity
within the EZ in comparison with the non-EZs, with a signif-
icantly higher degree centrality and nodal shortest path
length (not significant for BC, clustering coefficient, and
local efficiency). It should be noted that, in these studies,
the majority of other nodal graph theoretical parameters
(in-degree, clustering coefficient, centrality) showed no sig-
nificant difference between epileptogenic and nonepilepto-
genic contacts (Parker et al, 2018; Zhao et al, 2019),
pointing out the importance of the choice of the centrality
measure (Coito et al, 2019; Geier and Lehnertz, 2017).

Following these studies, Guo et al (2020) demonstrated in
25 patients, recorded using SEEG electrodes, that directed
connectivity differs significantly between EZ and non-EZ

TABLE 2. SUMMARY OF STUDIES ON CONNECTIVITY USING CORTICO-CORTICAL-EVOKED POTENTIAL

Authors Population

Recording’s modality

Main results

Lacruz et al (2007) Fifty-one patients

Keller et al (2014) Fifteen patients (10 TLE)

Parker et al (2018) Seven patients with
neocortical epilepsy

Zhao et al (2019) Eight patients (three TLE)

ECoG + depth electrodes
(frontal and temporal
recordings)

ECoG + depth electrodes

SEEG

ECoG (during presurgical

No difference in ipsilateral and
contralateral hemispheric CCEP
according to the side of the EZ

Higher in-degree in EZ (no
difference in out-degree)

Higher FC within-EZ than within-
NIZ

Higher out-degree of EZ

Higher FC of EZ > NIZ

monitoring) Higher degree centrality and shorter
path length of EZ
Guo et al (2020) Twenty-five patients SEEG Gradual decrease of FC: within-EZ

(10 TLE)

> between EZ-PZ > within-PZ >
between EZ-NIZ and PZ-NIZ >
within-NIZ

No difference in directionality

Studies are presented in chronological order.
CCEDP, cortico-cortical evoked potential.
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after controlling for the intercontact distance. They found a
decrease of connectivity from intra-EZ connections (with
the highest value) to ‘‘between epileptogenic and propaga-
tion zones’’; to ‘‘intrapropagation zone connections’’; to
connections ‘‘between noninvolved zone and propagation
or epileptogenic zone’’; to ‘“‘intranoninvolved zone con-
nections’’ (with the lowest value). The authors did not find
significant directionality between zones (e.g., no difference
between connectivity values from EZ to PZ, and connectivity
values from PZ to EZ).

Overall, CCEP studies confirmed findings from resting-
state SEEG studies and demonstrated a higher connectivity
within EZ and PZ, than within NIZ.

Changes in network topology

Varotto et al (2020) found a higher BC (i.e., ratio between
the number of shortest paths passing through a specific node
and the total number of shortest paths in the network) within
FCD type II than outside the lesion area. Goodale et al (2020)
found also higher centrality metrics within the EZ (BC and
clustering coefficient, the latter reflecting the degree to
which nodes tend to cluster together). Using CCEPs, Zhao
et al (2019) found a higher degree centrality and a shorter
path length within the EZ. Therefore, studies suggest higher
centrality of the EZ.

Bartolomei et al (2013), looking at the SEEG data of 11
patients with mesial TLE in comparison with 8 patients
with nonmesial TLE, found an increase in the clustering co-
efficient and path length within the epileptogenic temporal
lobe. This result suggested a more regular organization of
the FC between temporal structures when they belong to
the EZ. These studies suggest that some measures of central-
ity may be correlated with the degree of epileptogenicity of
structures. However, the choice of the metric used seems cru-
cial and future studies are needed.

Directionality of FC

Several studies investigated the directionality of connec-
tivity to identify the leading zone. This directionality could
be estimated from the causality method (Granger causality
and its extensions such as PDC and DTF) or using delays
and/or asymmetry of nonlinear correlation values. The liter-
ature in the domain is not unanimous with some studies sug-
gesting a leading role (higher out-connectivity) of the EZ
(Bettus et al, 2011; Lagarde et al, 2018; Varotto et al,
2012) and some others suggesting a higher inward connectiv-
ity toward the EZ (Jiang et al, 2022; Narasimhan et al, 2020;
Paulo et al, 2022; Vlachos et al, 2017). Moreover, using
CCEPs, Parker et al (2018) highlighted the higher outward
connectivity of the EZ, whereas Guo et al (2020) did not
find a significant difference between the inward and outward
connectivity of the EZ. These discrepancies could be due to
the variable methods used for connectivity estimation.

To be noted, some studies using the same method, namely
the PDC, have opposite results (Narasimhan et al, 2020;
Paulo et al, 2022; Varotto et al, 2012). Another explanation
could be the impact of interictal spikes on connectivity direc-
tionality, because some authors included spikes in their ana-
lyses (Bettus et al, 2011; Lagarde et al, 2018; Varotto et al,
2012) and others did not (Narasimhan et al, 2020; Paulo
et al, 2022). Therefore, despite the relatively low effect of ep-
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ileptic spikes on the overall connectivity value (Bartolomei
et al, 2013; Bettus et al, 2008; Jiang et al, 2022; Park and
Madsen, 2018), it is possible that spikes affect the direction-
ality of connectivity (Karunakaran et al, 2018). Further stud-
ies looking at the effect of spikes and methods used for
estimating the directionality of the connectivity of the EZ
are still needed.

Association with other variables

Van Dellen et al (2009) investigated the effect of epilepsy
duration on FC (phase lag index) in the temporal neocortex.
They showed a decrease in connectivity value with an in-
crease in epilepsy duration, and a more random configuration
of the network (decrease of the clustering coefficient and of
the small-world index) in case of a longer epilepsy duration.
The authors did not find a significant association for age at
epilepsy onset and seizure frequency. Unfortunately, the in-
formation about the type of epilepsy (mesiotemporal or later-
otemporal) and the type of surgery performed was not
available in this study. It is therefore difficult to speculate
on the precise epileptogenicity of the studied structures. Bar-
tolomei et al (2013) suggested that the topology of interictal
networks evolves with time. They observed an increase of
the ‘‘small-worldness” (S index) with the increase in epi-
lepsy duration (being essentially due to a decrease of the
path length over time).

While the pattern of connectivity changes during a peri-
ictal state (pre-, per-, and postictal) is increasingly known
(Bartolomei et al, 2004; Courtens et al, 2016; review in Bar-
tolomei et al, 2017), few studies have focused on the tempo-
ral variation/dynamics of interictal FC measured from iEEG
recordings. Geier and Lehnertz (2017) have shown fluctua-
tion of the degree of centrality of brain regions across
long-term intracranial recordings on timescales of hours to
days, with strong contributions of daily rhythms. This
study found differences in the variation across time of
centrality metric between the EZ and noninvolved re-
gions, with a slightly higher variation for EZ. The ampli-
tude of variation was also higher using BC rather than
strength centrality.

However, Kramer et al (2011) demonstrated the emer-
gence of a stable network pattern across long-term record-
ings. Similarly, others studies have reported stability of the
FC results across days of iEEG recordings in patients with
epilepsy (Dauwels et al, 2009; Jiang et al, 2022; Mormann
et al, 2000; Paulo et al, 2022; Schevon et al, 2007). This re-
sult strengthens the confidence in the use of connectivity data
for EZ delineation purpose in practice. However, it remains
unclear what could be the added value of the estimation of
interictal FC dynamics into the delineation of the EZ, and
further studies on the topic are needed.

Association with surgical outcome

Table 3 summarizes the data concerning the association
between FC data and surgical outcome. Schevon et al
(2007) have first suggested a link between the level of inter-
ictal FC impairment and postsurgical prognosis. Antony et al
(2013) analyzed the FC (linear correlation) between mesio-
temporal and neocortical structures in 23 patients operated
for drug refractory TLE. They found that the smaller the
mean and the variation of the connectivity values, the better
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TABLE 3. LINKS BETWEEN FUNCTIONAL CONNECTIVITY DATA AND POSTSURGICAL SEIZURE OUTCOME

Recording
Authors Population modality Methods Main results
Schevon et al Nine patients with ECoG (during Mean phase Complete resection of area of
(2007) neocortical presurgical coherence local hypersynchrony
epilepsy monitoring) associated with good
outcome
Ortega et al Twenty-nine patients ECoG (during Linear correlation, No correlation between
(2008) with TLE surgery) mutual complete resection of
information, and cluster of local
phase hypersynchrony and
synchronization postsurgical outcome
Antony et al Twenty-three SEEG Linear correlation Better outcome if weaker
(2013) patients with TLE overall FC and more
homogenous overall FC
(Iess outlier with high FC)
Lagarde et al Fifty-nine patients SEEG Nonlinear Worse outcome is higher FC

(2018) with FCD or NDT

(20 TLE)
Thirty-six patients

Grobelny et al ECoG (during

(2018) presurgical
monitoring)
Goodale et al Fifteen patients (12 SEEG

(2020) TLE)
Shah et al Twenty-seven ECoG + depth
(2019b) patients (18 TLE) electrodes
Guo et al Twenty-five patients SEEG
(2020) (10 TLE)
Paulo et al Thirty-two patients SEEG
(2022) (18 TLE)
Jiang et al Twenty-seven SEEG
(2022) patients (23 TLE)

correlation (hz) within NIZ

Granger causality Worse outcome if higher
overall betweenness
centrality and more outlier
with high values

Better outcome if higher FC
within-RZ

Better outcome if higher FC
within RZ

Better outcome with higher
overlap between RZ and
nodes with the highest FC

Imaginary coherence

Linear correlation

CCEP Better outcome if higher FC
within EZ
Imaginary No difference in EZ FC
coherence, partial between patients being
directed Engel I or not

coherence (in
alpha band)
Directed transfer
function, cross-
frequency
directionality

Larger within-frequency
information flow
asymmetry between EZ
and NIZ is associated with
favorable outcome

Studies are presented in chronological order. For studies using ECoG recordings, we precise if the recordings were performed during a

surgery procedure (with anesthesia) or long-term monitoring.

the surgical outcome. The performance of connectivity data
was very good (accuracy =87%) for distinguishing patients
categorized with a favorable and unfavorable postsurgical
outcome, but the association with the SEEG-defined EZ
was not formerly studied. In contrast, Goodale et al (2020)
suggest that patients with higher connectivity within the
RZ could have a more favorable surgical outcome.
Recently, and in the same vein, Shah et al (2019b) found
that patients with favorable outcomes had higher within-RZ
connectivity than patients with an unfavorable outcome.
Moreover, the higher the overlap between the RZ and the
nodes with the highest strength, the better the postsurgical
seizure outcome. In addition, the distinction between patients
with a good or bad outcome was better using beta-band con-
nectivity. Nevertheless, the great variability of values across
patients seems to preclude easy application at the individual
level because of the difficulty to set a common threshold. A
study using CCEPs to estimate directed FC showed a posi-

tive correlation between the values of FC within the EZ
and the surgical outcome (Guo et al, 2020).

These results are in line with a study using MEG showing
that higher connectivity within the RZ was associated with
a favorable outcome (Englot et al, 2015). Looking at the di-
rectionality of the FC, Jiang et al (2022) demonstrated that
a larger resting-state, within-frequency information flow
asymmetry between EZ and NIZ was associated with a fa-
vorable seizure outcome. Interestingly, using this informa-
tion, a random forest classifier had an accuracy of 86% to
predict the surgical outcome.

In our abovementioned study, we have suggested that a
larger disturbance of cerebral connectivity (higher connec-
tivity outside EZ and PZ, i.e., within-NIZ and between PZ-
NIZ) is associated with worse prognosis (Lagarde et al,
2018). Similar findings were recently reported using ECoG
and BC: patients not seizure free after surgery had a higher
value of BC in the interictal and postictal period, and a
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greater proportion of extreme-valued BC nodes (Grobelny
et al, 2018). However, the individual predictive value of
these connectivity measures on the postsurgical prognosis
is not yet known. Future studies may investigate how these
connectivity data can be used in clinical practice to predict
the chance of surgical success.

Overall, studies showed that the higher the connectiv-
ity within the EZ and the larger the difference with the
connectivity of the NIZ, the better the surgical out-
come. The potential predictive value for surgical outcome
obtained from presurgical connectivity has been also
reported in several works using tractography MRI data. It
was suggested that pathologically increased limbic and
extralimbic structural connectivity can explain worse sei-
zure outcome after epilepsy surgery (Bonilha et al, 2015;
Bonilha et al, 2013), including a role of thalamocortical
connectivity (He et al, 2017; Keller et al, 2015). Notewor-
thy, these studies reported a better predictive value of
connectivity than the sole usual clinical variables for post-
surgical outcome (He et al, 2017; Keller et al, 2015; Morgan
et al, 2019).

Connectivity changes induced
by neurostimulation techniques

Another important and growing field in epilepsy surgery
is neurostimulation: vagal nerve stimulation (VNS), deep-
brain stimulation, and responsive neurostimulation (Fisher
and Velasco, 2014; Fisher et al, 2010; Geller et al,
2017; Jobst et al, 2017; Ryvlin et al, 2021; Ryvlin et al,
2014). Studies have evaluated the impact of these techniques
on iIEEG FC. Bartolomei et al (2016) focused on VNS-
induced connectivity changes (comparison of ON and OFF
periods) in five patients explored by SEEG. They found
that nonresponder patients exhibited an increase in overall
connectivity, while the responder patients exhibited a de-
crease. These findings are in line with scalp EEG studies
showing an association between the ability of VNS to de-
crease FC during ON periods and its efficacy (Bodin et al,
2015; Sangare et al, 2020). Moreover, VNS was able to in-
duce some changes of connectivity within the EZ (increase
in one nonresponder patient and decrease in the responder
one) (Bartolomei et al, 2016). Yu et al (2018) focused on
the effect of anterior nucleus of the thalamus (ANT) deep
brain stimulation (DBS) in nine patients explored by SEEG.
In this study, authors found that high-frequency stimulation
of the ANT decreased the connectivity of the brain networks
during ON periods. In line with these results, a recent study
has shown that pulvinar stimulation can decrease the duration
of temporal seizures and the associated alteration of conscious-
ness (Filipescu et al, 2019), and that in responders, stimulation
leads to a decrease in synchrony between the extratemporal
brain regions (Deutschova et al, 2021).

These preliminary studies suggested that neuromodulation
techniques may act also by modulating FC. Further studies
investigating systematically the effect of different parame-
ters of neuromodulation on large-scale SEEG connectivity
under various and neurostimulation protocols would be inter-
esting, to help choosing optimal parameters to use for VNS
or DBS. This is especially important as different frequencies
seem to induce different changes on connectivity (Bartolo-
mei et al, 2016; Yu et al, 2018).
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Comparison with Other Modalities
Magnetic resonance imaging

Only a few studies have compared iEEG and MRI FC.
Bettus et al (2011) compared FC as extracted from SEEG re-
cordings with that obtained from fMRI. This latter study
reported some multimodal agreement: (1) in the directional-
ity of connectivity, the EZ influenced the NIZ; and (2) in the
decrease of FC between the EZ and the NIZ (delta band
SEEG) and within the NIZ in fMRI. Nevertheless, there
were some discrepancies with an increase in SEEG FC (in
the beta band) in the EZ and secondary irritative zone
(IZ2), while the blood-oxygen-level dependent FC was de-
creased in IZ2. These results can be explained by the fact
that the two modalities do not study the same processes, espe-
cially at different timescales.

Ridley et al (2017) looked at the comparison between FC
recorded simultaneously in fMRI and SEEG. They showed
that there was a good intermodality correlation in nonepileptic
areas, but an alteration of this correlation in epileptic regions.

Besson et al (2017), focusing on the link between the
structural connectivity alterations according to the brain
network involved during seizure as defined by SEEG in pa-
tients with temporal lobe epilepsies, revealed that structural
connectivity was significantly preserved within epileptic
zones (EZ and PZ) and decreased in nonepileptic structures.
Taken together with other structural connectivity MRI stud-
ies, these findings suggest that: (1) areas involved in seizure
generation and propagation (e.g., thalamus in TLE) have a
relatively preserved (higher) structural connectivity (Besson
et al, 2017; Bonilha et al, 2012; Dinkelacker et al, 2015);
and (2) other remote areas have a widely decreased struc-
tural connectivity (Besson et al, 2014). This pattern of
local “‘hyperconnectivity’’ within epileptic structures com-
bined with widespread ‘‘hypoconnectivity’”’ outside these
areas is concordant with iEEG findings and other studies
on FC extracted from noninvasive electrophysiological re-
cording (see below).

This similarity confirms both the tight relationships between
structural and FC known to exist in healthy conditions (Goni
et al, 2014; Honey et al, 2007), and the increased structural—
functional correlation in epilepsy (Wirsich et al, 2016).

MEG/EEG

MEG studies have demonstrated an increase in FC be-
tween regions within the EZ network (Englot et al, 2015;
Juarez-Martinez et al, 2018; Nissen et al, 2016; Wu et al,
2014), associated with a decrease in FC between these re-
gions and other noninvolved brain regions (Englot et al,
2015; Nissen et al, 2016). Interestingly, Englot (source-
space MEG connectivity) found that the degree of global
reductions in FC was related to epilepsy duration and fre-
quency of consciousness-impairing seizures, and thus may
reflect the deleterious effects of seizures on brain networks
over time (Englot et al, 2015). Moreover, in this study, the
increased regional connectivity appears to be a marker of fa-
vorable seizure outcome after surgery. Changes in network
topology have also been identified in MEG (Chavez et al,
2010; Horstmann et al, 2010), in particular an increase in
the BC in the network of epileptogenic regions (Nissen
et al, 2018; Nissen et al, 2017).
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FIG. 3. Synthesizes the main data
on interictal functional connectiv-
ity. In comparison with healthy

control, the EZN shows a relatively
preserved connectivity, while the
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Nevertheless, the correlation between MEG and iEEG
connectivity seems limited, as well as the ability of connec-
tivity results to distinguish between resection areas and non-
resection areas (Juarez-Martinez et al, 2018; Nissen et al,
2018). These discrepancies could be due to the metrics
used to analyze connectivity (Coito et al, 2019) and fur-
ther studies are needed.

Some scalp EEG studies have shown a decrease in the
influence (in terms of out-connections) of the default
mode network, and an increase of in-connections into
the epileptic hippocampus in patients with TLE (Coito
et al, 2016). Coito et al used high-density EEG and
source-space FC in IED-free epochs (60 sec). They dem-
onstrated that patients had a significantly reduced connec-
tivity within regions belonging to the default-mode
network. Moreover, the strongest connections arose from
the posterior cingulate cortex in controls and from the ep-
ileptic hippocampus in patients. Noteworthy, the connec-
tivity results differ according to the disease duration, the
cognitive (learning deficit) and psychiatric status (depres-
sion or not).

Using a similar methodology in epochs without IEDs, Ver-
hoeven et al (2018) applied two-class random forest classifiers
on FC and were able to differentiate healthy control from pa-
tients, and left from right TLE, at the individual level. The
classification achieved a high accuracy, sensitivity, and speci-
ficity (between 85% and 95%). As in the previous study by
Coito et al (2015), the most important features for diagnosis
were the outflows from the left and right medial temporal
lobe. However, it was important to consider the whole connec-
tome (i.e., including connectivity values of several brain areas
in the predictive model) to achieve correct classification.

Overall, FC data from noninvasive recording techniques
(EEG and MEG) confirmed the higher connectivity within
the EZ and highlighted the widespread hypoconnectivity out-
side the EZ.

NIN has a decreased connectivity.
PZN shows an intermediate level of
connectivity. EZN is preferentially
connected to the PZN and relatively
disconnected of the NIN. For the
clarity of the figure, all nodes are
not interconnected, and the con-
nectivity is considered as equal be-
tween all nodes in healthy condition
(it is not the case in human brain).
The directionality is not represented
in this graph as the existing data are
contradictory on the role of the
epileptogenic zone: sender or
receiver?

Summary

Taken as a whole, the data about connectivity from
iEEG studies and from whole-brain noninvasive modalities
[especially MEG (Englot et al, 2015) and structural MRI
data (Besson et al, 2017)] suggested that focal refractory ep-
ilepsies are associated with a global profile of large-scale net-
work alteration, including the following: (1) a wide decrease
of connectivity outside the EZ; (2) an EZ exhibiting, rather
than an increase, a relative preservation of its intrinsic con-
nectivity (Fig. 3); (3) an EZ with a preferential connection
to PZ and with a relative disconnection from NIZ.

From Excitability to Connectivity:
Conceptual Comments

While most historical works have focused on the importance
of the hyperexcitability of epileptic areas, it is increasingly ap-
parent that the underlying connectivity is also essential for un-
derstanding the organization of interictal events and seizures.
This hypothesis was suggested early on by Wendling et al
(2005, 2001) using a computational model. The authors
showed that the interictal-ictal transition was not explained
solely by the excitation/inhibition balance, but rather by the in-
teractions between pyramidal cells and interneuron popula-
tions. Noteworthy, this concept has also been highlighted in
experimental models (in vivo and in vitro); some authors
have demonstrated how specific changes in the topology or
synaptic strength can impact brain epileptogenicity (Morgan
and Soltesz, 2008; Netoff et al, 2004). It has also been
shown that a minor change in the topology of a network can
explain the emergence of explosive changes in synchrony as
observed during the generation and propagation of epileptic
seizures (Wang et al, 2017).

The phenomenological model has shown that the net-
work’s ability to generate seizures is highly dependent on
its topology. Hebbink et al (2017) have demonstrated that:
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(1) even in the presence of a hyperexcitable node, some net-
works do not generate seizures; (2) the existence of a driv-
ing node greatly increases the number of seizures; and (3)
the presence of reciprocal connections between two nodes
could act as a stabilizer reducing the number of seizures.
Proix et al (2014), using a different phenomenological
model (Jirsa et al, 2014), systematically explored the impact
of excitability and coupling values on the behavior of two os-
cillators mimicking the activity of two brain regions.

Variations in these two parameters were sufficient to in-
duce different behaviors: (1) systematic seizure propagation,
(2) partial seizure propagation, (3) change in the seizure-
generating area across time, (4) lack of seizure propagation,
and (5) lack of seizure genesis. This study has clearly dem-
onstrated that both excitability and coupling of brain struc-
tures determine the behavior of epileptic network. These
concepts were recently confirmed in studies demonstrating
that the dynamics of focal seizures is related to the underly-
ing structural connectivity and that seizure spread is tightly
controlled by structural connections (Proix et al, 2017; Shah
et al, 2019a).

This principle is used in large-scale seizure modeling
called “‘virtual epileptic patient” that is a whole-brain model
(based on the architecture of the ‘‘virtual brain’’) using the
structural connectivity of the patient coupled with a neural
mass model, able to reproduce epileptic seizure dynamics
(Jirsa et al, 2017; Jirsa et al, 2014) and to simulate the pattern
of seizure spread. Interestingly this model was able to repro-
duce in silico the spatiotemporal dynamics of seizure evi-
denced in SEEG at the patient level (Jirsa et al, 2017;
Makhalova et al, 2022; Proix et al, 2018; Proix et al, 2017).

Conclusions and Perspectives

The different studies reviewed in this article were per-
formed mainly with the aim of discriminating the EZ from
less epileptogenic regions from invasive EEG data. Our re-
sults as well as data from the literature suggest a potential in-
terest to distinguish the EZ from other areas (Narasimhan
et al, 2020). In fact, an important point from our data
(Lagarde et al, 2018) is the small difference in connectivity
strengths between EZ and PZ. This observation makes it dif-
ficult for connectivity methods to distinguish between EZ
and PZ, a classic goal of the presurgical workup. However,
it suggests that there is probably more a gradient of epilepto-
genicity than a true “‘clear cut” difference between these
regions. Furthermore, because EZ has high intrinsic connec-
tivity but low connectivity to nonepileptic areas, centrality
measures (obtained by averaging the connectivity values of
these two types of connections) may be insufficient to accu-
rately determine EZ.

Thus, the use of other markers may be relevant (e.g., direc-
tionality). Indeed, the literature suggests that only the EZ be-
haves as a ““module”” (higher connectivity within the EZ than
between the EZ and other areas) (Lagarde et al, 2018), and
then, some specific graph theory metrics could be markers
to be tested in further studies. In addition, the added value
of markers from connectivity analyses compared with classi-
cal markers of epileptogenicity such as ictal (e.g., epileptoge-
nicity index) (Bartolomei et al, 2008) and interictal (e.g.,
spikes, high frequency oscillations) (Roehri and Bartolomei,
2019) neuromarkers could also be investigated.
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Moving forward, several studies have recently exam-
ined the value of simulation/modeling methods in surgical
decision-making. Most studies used ictal/peri-ictal ECoG
data (An et al, 2019; Goodfellow et al, 2016; Junges et al,
2019; Khambhati et al, 2016; Kini et al, 2019; Lopes et al,
2018; Lopes et al, 2017; Miiller et al, 2018; Olmi et al, 2019;
Steimer et al, 2017) and only one used interictal ECoG
data (Sinha et al, 2017). Further studies examining the
added value of this simulation/modeling technique in surgi-
cal decision-making based on interictal SEEG FC data could
be useful.

Further study could also consider performing connectivity
analysis over IED-centered time windows and especially
looking at directionality (Bou Assi et al, 2020). Such an anal-
ysis could add information about the differences between
spikes inside and outside the EZ and help to delineate the
EZ more effectively from the interictal period. The goal
would be to find markers of epileptogenicity from spike
propagation. These methods could be compared with results
obtained from co-occurrences (Bourien et al, 2005; Lambert
et al, 2018; Malinowska et al, 2014), which have proven to
identify interictal spike networks.
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