Skip to main content
. 2022 Dec 28;19(12):970–980. doi: 10.11909/j.issn.1671-5411.2022.12.002

Table 1. Characteristics of the included studies.

Study True
positive
False
positive
False
negative
True
negative
ECG
data
Machine
learning
model
Dataset Definition
of heart
failure
Sample
size
Number of
subjects
Origin
CHF: congestive heart failure; cML: classical machine learning; DL: deep learning; ECG: electrocardiogram; HRV: heart rate variability; LVSD: left ventricular systolic dysfunction.
Pecchia, et al.[20] 26 0 3 54 HRV cML Public CHF < 1000 83 America
Chen, et al.[22] 36 0 1 22 HRV cML Public CHF < 1000 116 America
Acharya, et al.[21] 779 15 24 840 HRV cML Public CHF > 1000 73 America
Acharya, et al.[23] 29,660 794 340 79,206 ECG
signals
DL Public CHF > 1000 73 America
Attia, et al.[28] 3567 6977 564 41,762 Raw
ECG
DL Patient-level LVSD > 1000 97,829 America
Hussain, et al.[24] 39 5 3 69 HRV cML Public CHF < 1000 116 America
Lih, et al.[25] 29,811 213 189 120,055 ECG
signals
DL Public CHF > 1000 262 America &
Europe
Adedinsewo, et al.[29] 121 183 43 1259 Raw
ECG
DL Patient-level LVSD > 1000 1606 America
Yang, et al.[27] 7348 642 152 11,858 ECG
signals
DL Public CHF > 1000 40 America &
Europe
Attia, et al.[30] 7 111 19 4140 Raw
ECG
DL Patient-level LVSD > 1000 4277 America
Jahmunah, et al.[26] 29,790 241 210 120,027 ECG
signals
DL Public CHF > 1000 262 America &
Europe