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Abstract
Aims/hypothesis Normalisation of blood glucose in individuals with diabetes is recommended to reduce development of diabetic
complications. However, risk of severe hypoglycaemia with intensive insulin therapy is a major obstacle that prevents many individ-
uals with diabetes from obtaining the recommended reduction in HbA1c. Inhibition of glucagon receptor signalling and liver-
preferential insulin action have been shown individually to have beneficial effects in preclinical models and individuals with diabetes
(i.e. improved glycaemic control), but also have effects that are potential safety risks (i.e. alpha cell hyperplasia in response to glucagon
receptor antagonists and increased levels of liver triacylglycerols and plasma alanine aminotransferase activity in response to glucagon
receptor antagonists and liver-preferential insulin). We hypothesised that a combination of glucagon inhibition and liver-preferential
insulin action in a dual-acting molecule would widen the therapeutic window. By correcting two pathogenic mechanisms (dysregu-
lated glucagon signalling and non-physiological distribution of conventional insulin administered s.c.), we hypothesised that lower
doses of each component would be required to obtain sufficient reduction of hyperglycaemia, and that the undesirable effects that have
previously been observed for monotreatment with glucagon antagonists and liver-preferential insulin could be avoided.
Methods A dual-acting glucagon receptor inhibitor and liver-preferential insulin molecule was designed and tested in rodent
models (normal rats, rats with streptozotocin-induced hyperglycaemia, db/db mice and mice with diet-induced obesity and
streptozotocin-induced hyperglycaemia), allowing detailed characterisation of the pharmacokinetic and pharmacodynamic prop-
erties of the dual-acting molecule and relevant control compounds, as well as exploration of how the dual-acting molecule
influenced glucagon-induced recovery and spontaneous recovery from acute hypoglycaemia.
Results This molecule normalised blood glucose in diabetic models, and was markedly less prone to induce hypoglycaemia than
conventional insulin treatment (approximately 4.6-fold less potent under hypoglycaemic conditions than under normoglycaemic
conditions). However, compared to treatment with conventional long-acting insulin, this dual-acting molecule also increased
triacylglycerol levels in the liver (approximately 60%), plasma alanine aminotransferase levels (approximately twofold) and
alpha cell mass (approximately twofold).
Conclusions/interpretation While the dual-acting glucagon receptor inhibitor and liver-preferential insulin molecule showed
markedly improved regulation of blood glucose, effects that are potential safety concerns persisted in the pharmacologically
relevant dose range.
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Abbreviations
ALT Alanine aminotransferase
BHK Baby hamster kidney
BIL Basal insulin lispro
EC50 Half maximal effective concentration
Fab Fragment antigen-binding region
GCGR Glucagon receptor
GCGRi Glucagon receptor inhibitor
HI Human insulin
hIR-A Human insulin receptor isoform A
hIR-B Human insulin receptor isoform B
I501 Insulin 501
I700 Insulin 700
IR Insulin receptor
NC Negative control
STZ Streptozotocin
STZ-DIO Streptozotocin-induced hyperglycaemia

and diet-induced obesity
TAG Triacylglycerol

Introduction

In individuals with diabetes, poor glycaemic control is correlated
with increased risk of micro- and macrovascular complications
[1]. Several trials (DCCT [2], UKPDS [3], VADT [4],
ADVANCE [5] and ACCORD [6]) have consistently

demonstrated that intensive glycaemic control with near-
normalisation of blood glucose is associated with a lower risk
for development of microvascular complications. However, in
the ACCORD and ADVANCE trials, intensive glycaemic
control did not lead to a reduced risk of development of macro-
vascular complications, and also increased the incidence of
hypoglycaemic events [5, 6]. Whether hypoglycaemic events
and macrovascular complications are directly linked is a matter
of some debate [7–9]. However, intensive glycaemic control
with a target HbA1c <48 mmol/mol (6.5%) is in any case not
recommended as the standard of care for all patients [10], and
diabetes treatment that normalises blood glucosewithout causing
hypoglycaemia is expected to reduce risk of complications.

Type 1 and type 2 diabetes are both characterised by impaired
glucagon secretion, which fails to counteract hypoglycaemia and
contributes to hyperglycaemia [11–15]. Furthermore, when indi-
viduals with diabetes are treated with insulin by s.c. injection,
lower levels of insulin reach the liver and higher levels reach
peripheral tissues compared with the distribution of endogenous
insulin in healthy individuals [16]. Thus, the combination of
impaired secretion of glucagon and non-physiological distribu-
tion of injectable insulin contributes to a higher risk of
hypoglycaemic events and long-term micro- and macrovascular
complications in diabetes patients [16, 17]. Correction of these
issues would improve both fasting and prandial glucose regula-
tion and reduce the risk of hypoglycaemia.

Glucagon receptor (GCGR) antagonists have been shown to
improve glucose regulation without increased risk of
hypoglycaemia in both type 1 and type 2 diabetes [18–20], and
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to increase plasma levels of glucagon-like peptide 1 and gluca-
gon, possibly as a result of alpha cell hyperplasia, which results
in increased glucagon-like peptide 1/glucagon production/
processing in pancreatic alpha cells [18, 21]. GCGR antagonists
have also been associated with increased triacylglycerol (TAG)
levels in the liver and elevated plasma alanine aminotransferase
(ALT) activity, suggesting liver damage [18, 19, 21]. Thus,
GCGR antagonists have both beneficial and undesirable effects
in patients. Beneficial and unwanted effects were also observed
for the liver-preferential basal insulin lispro (BIL), which was
reported to reduce the risk of hypoglycaemia [22] but at the same
time was associated with increased plasma ALT activity and
elevated levels of liver TAG in insulin-naive patients, which
are known safety concerns for liver-preferential insulin [23].

These findings led us to hypothesise that treatment with a
molecule that combined a GCGR antagonist and liver-
preferential insulin would widen the therapeutic window, i.e.
have the same beneficial effects as observed when the treatment
regimens were used alone, and at the same time have diminished
unwanted effects. As explained above, dysregulated glucagon
signalling and non-physiological insulin treatment both contrib-
ute to impaired glycaemic control. A novel treatment regimen
with combined correction of these two pathogenic mechanisms
may be hypothesised to require lower doses of each component
(i.e. GCGR antagonist and liver-preferential insulin) for normal-
isation of blood glucose compared to monotreatment with either
a GCGR antagonist or liver-preferential insulin, and thereby not
result in the unwanted effects of alpha cell hyperplasia, increased
liver fat and increased plasma ALT activity observed previously
for GCGR antagonists and liver-preferential insulin. In fact, it
has been reported that synergistic combination of compounds in
general can overcome toxic or other unwanted adverse effects
[24]. The aim of the present study was therefore to engineer a
dual-acting molecule with combined GCGR antagonistic effect
and liver-preferential insulin action and explore its pharmacolog-
ical effects. The liver-preferential effect of insulin would result
from the liver-preferential expression of GCGR. The present
study describes the structure and pharmacological properties of
this dual-acting molecule, with special focus on potential safety
concerns.

Methods

In addition to the descriptions below, relevant detailed
descriptions of materials, methods, assays and animal experi-
ments are available in the electronic supplementary material
(ESM Methods).

In vitro experiments

Compounds The GCGR inhibitor (GCGRi)–insulin fusion
molecule comprised a human inhibitory anti-GCGR fragment

antigen-binding (Fab) region including heavy chain and light
chain variable regions from the anti-GCGR Amgen A3 anti-
body (referred to as A-3 in US patent US-7947809-B2 [25]).
The Fab fragment was fused to residue B1 of a single-chain
insulin variant precursor (consisting of a B-chain [B1–B29]
linked to an A-chain [A1–A21] by a connecting peptide
[TGLGSGK]) via a 200 amino acid linker (50 GQAP
sequence repeats) [26] between the C-terminus of the Fab
light chain and insulin B1 (Fig. 1). The sequence of the Fab
fragment was chosen based on its high affinity and high inhib-
itory potency, to ensure targeting of the compound to the liver
and inhibition of GCGR (Table 1). A fusion molecule was
created for use as a negative control (NC), comprising the
single-chain insulin precursor variant used in the GCGRi–
insulin molecule and an anti-trinitrophenyl Fab fragment
instead of the anti-GCGR Fab fragment described above for
the GCGRi–insulin molecule. The anti-trinitrophenyl Fab
fragment and single-chain insulin precursor in the NC were
fused via a 200 amino acid linker with 50 GQAP repeats.

Native human insulin (HI) and the long-acting insulin
analogues insulin 501 (I501, desB30 HI conjugated at
B29Lys with octadecandioic acid via a γ-glutamic acid link-
er), insulin 700 (I700, HI conjugated at B29Lys with
hexadecandioic acid via a γ-glutamic acid linker) [27] and
BIL [28] used as comparators in this study were produced
by Novo Nordisk (Denmark). I700 was used as a comparator
because it has pharmacodynamic and pharmacokinetic char-
acteristics that are fully comparable to those of insulin
degludec (data not shown), a well-characterised insulin
analogue that is used in clinical practice, which it was impor-
tant to compare GCGRi–insulin with. I501 was used as a
comparator because, upon s.c. injection in mice, it had phar-
macokinetic characteristics comparable to those of s.c.
injected GCGRi–insulin (data not shown). Furthermore,
I501 was used in a dose that had a similar effect on blood

Fig. 1 Composition of the GCGRi–insulin molecule. The molecule
comprised a human inhibitory anti-GCGR Fab region including heavy
chain (HC) and light chain (LC) variable regions from the anti-GCGR
Amgen A3 antibody [25]. The Fab fragment was fused to residue B1 of a
single-chain insulin variant precursor (consisting of a B-chain [B1–B29]
linked to an A-chain [A1–A21] by a connecting peptide [TGLGSGK])
via a 200 amino acid linker (50 GQAP sequence repeats) between the C-
terminus of the Fab light chain and insulin B1. SC, single chain; VH,
heavy chain variable domain; VL, light chain variable domain; CH1,
heavy chain constant domain 1; IGKC, immunoglobulin kappa constant
domain; HPC4, protein C epitope tag peptide
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glucose as the chosen dose of GCGRi–insulin. It was impor-
tant to ensure that GCGRi–insulin and the conventional insu-
lin comparator had comparable pharmacokinetic/
pharmacodynamic effects when comparing the effects of the
two compounds on liver TAG content and plasma ALT activ-
ity, as differences in pharmacokinetic effect and effects on
blood glucose regulation in themselves influence liver TAG
and ALT activity. The HI, I700, I501, BIL and glucagon
(Hypokit, NovoNordisk) used in the animal experiments were
formulated in 5 mmol/l phosphate, 140 mmol/l NaCl, 70 ppm
polysorbate 20, pH 7.4. GCGRi–insulin, GCGRi and the NC
(Novo Nordisk) were formulated in 25 mmol/l histidine and
150 mmol/l NaCl.

Insulin receptor and glucagon receptor binding Affinities for
human insulin receptor isoforms A and B (hIR-A and hIR-B)
were determined by scintillation proximity radio-ligand compe-
tition binding assays as previously reported [29]. Competitive
125I-glucagon binding was performed on plasma membranes
prepared from baby hamster kidney (BHK) cells expressing
human GCGR and Cre recombinase–firefly luciferase.

Inhibition of glucagon receptor signalling in BHK cells
Inhibition of GCGR signallingwas determined in the presence
of 20 pmol/l glucagon (Novo Nordisk) in BHK cells stably
overexpressing human GCGR and cAMP-sensitive Cre
recombinase–firefly luciferase (Novo Nordisk).

Insulin receptor signalling in primary rat hepatocytes
Hepatocytes from ad libitum-fed male Sprague Dawley rats
(bodyweight 200 g) were isolated in situ by a two-step perfusion
technique as described previously [30]. The following day, the
primary hepatocytes were used for assessment of insulin receptor
(IR) phosphorylation (p-Tyr1150/1151) or Akt phosphorylation
(p-Ser473) upon stimulation with increasing concentrations of
HI, the dual GCGRi–insulin compound or the NC for 15 min,
using the AlphaScreen SureFire assay kit (Perkin-Elmer,
Denmark).

Inhibition of glucagon receptor signalling in primary rat
hepatocytes Primary rat hepatocytes were incubated with
increasing concentrations of the dual GCGRi–insulin compound
or GCGRi in the presence of 3 nmol/l glucagon for 30 min, and
cAMP production in the cells was subsequentially quantified
using a FlashPlate assay kit (Perkin-Elmer).

Glycogen synthesis in primary hepatocytes Primary rat hepa-
tocytes were incubated in Medium 199 (Gibco, Denmark, see
ESM Methods for detailed description) containing 14.5
mmol/l glucose for 24 h with increasing concentrations of
HI, the dual GCGRi–insulin compound or the NC. Cells were
then lysed by freezing in liquid nitrogen and treated with
amyloglucosidase, and cellular glucose content (glycogen)
was quantified using a BioVision glucose assay kit
(BioVision Research Products, USA).

Table 1 Overview of the animal
experiments Experiment Aims Results described in

A To compare the effect of a single treatment (i.v. injection)
with GCGRi–insulin, NC or GCGRi on blood glucose
in STZ-treated rats

Fig. 2a–c

B To compare the effect of a single treatment (i.v. injection)
with GCGRi–insulin with the effect of conventional
insulin treatment (I700) on blood glucose in db/db mice

Fig. 2d–f

C To compare the response to glucagon (i.v. bolus) between
rats in which hypoglycaemia was induced by constant
i.v. infusion with either GCGRi–insulin or conventional
insulin (HI)

Fig. 3a–c, Table 3

D To compare the spontaneous recovery from hypoglycaemia
induced by an i.v. bolus of fast-acting insulin in rats in
which plasma glucose had been decreased to 4 mmol/l
(normoglycaemia) by constant i.v. infusion of either
GCGRi–insulin or conventional insulin (HI)

Fig. 3d–g, Table 3

E To compare the doses (i.e. infusion rates) required to decrease
plasma glucose in rats to 3 or 4 mmol/l by constant i.v.
infusion of either conventional insulin (HI or I700)
or liver-preferential insulin (BIL)

Table 3

F To compare the effect of treatment (s.c. injection) for
21 days with either GCGRi–insulin or conventional
insulin (I501) on glucose uptake (i.e. 2-deoxy-glucose)
in adipose tissue and skeletal muscle, plasma NEFA,
plasma ALT, liver TAG content and alpha cell mass,
at matched blood glucose-lowering doses in STZ-DIO mice

Figs 4 and 5
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Lipogenesis in primary mouse adipocytes The effect of
GCGRi–insulin and NC on lipogenesis was determined in
primary mouse adipocytes isolated from epididymal fat pads
by measuring the incorporation of [3H]-labelled glucose into
fat as described previously [31].

Animal experiments

This study comprised six animal experiments (experiments A–F;
see Table 1 and ESMTable 1). All animals included in this study
were male and housed in type IV Makrolon cages with unre-
stricted access to a pelleted rodent diet (Altromin 1324
[Brogården, Denmark] in experiments A–E; high-fat diet
D12492 [with 60% energy from fat; Research Diets, USA] in
experiment F) and tap water (non-chlorinated, non-acidified).
The animals were housed at 18–24°C, with relative humidity
30–70%, air change 8–15 times/h and a light/dark cycle of 12
h/12 h. All animals were acclimatised for at least a week prior to
initiation of experimental procedures, which were ethically
approved by the Danish Animal Experiments Inspectorate. In
brief, acute effects on blood glucose of a single treatment with
a bolus of GCGRi–insulin, NC, GCGRi or the basal insulin
comparator I700 were explored in Sprague Dawley rats (10–11
weeks old) made hyperglycaemic using streptozotocin (STZ)
and in db/dbmice (BKS.Cg-Dock7m+/+LeprdbJ; strain number
000642; The Jackson Laboratory, USA) (10–11 weeks old).
SpragueDawley rats (12–13weeks old) were also used in exper-
iments in which GCGRi–insulin, HI, I700 or BIL were infused
i.v. to a target plasma glucose of 3 or 4 mmol/l (i.e.
hypoglycaemia). After reaching the target plasma glucose, rats
were challenged using either a bolus of vehicle, a bolus of gluca-
gon or a bolus of fast-acting HI, to assess recovery from
hypoglycaemia. The infusion rates of HI, I700, BIL or
GCGRi–insulin from 90–180 min in rats given vehicle at
90 min in the 3 and 4 mmol/l glucose studies were used for a
post hoc analysis. The effects of the basal insulin comparator
I501 or GCGRi–insulin on blood glucose, 2-deoxy-glucose
uptake in adipose tissue and skeletal muscle, HbA1c, plasma
NEFA levels, plasmaALT activity, liver TAG levels and pancre-
atic alpha cell mass after treatment for 3 weeks were explored in
C57BL/6J mice (strain number 380050; The Jackson
Laboratory, USA) with diet-induced obesity and STZ-induced
hyperglycaemia (STZ-DIO mice). The STZ-DIO mice were 16
weeks old when treatment was started.

Histology The fixed pancreas was weighed, processed for
paraffin embedding, and randomly cut into four slabs for
stereological assessment of alpha and beta cell mass. Alpha
cells were detected using a mouse anti-glucagon antibody
(Novo Nordisk), and beta cells were visualised using a guinea
pig anti-insulin antibody (Dako, Denmark). The stained slides
were scanned using a VS120 slide scanner (Olympus,
Germany). Total tissue area, glucagon area (alpha cells) and

insulin area (beta cells) were quantified in the digital images
using VIS software (Visiopharm, Denmark). Alpha and beta
cell mass were estimated by multiplying the fractional areas
by the total pancreas mass as described previously [32].

Statistical analysis

Statistical analysis was performed using GraphPad Prism
(GraphPad Software, USA), JMP (SAS Institute, USA) or SAS
software (SAS Institute). All in vitro data were fitted to a four-
parameter logistic model, and the estimated EC50/IC50 values
were subsequently used for calculation of geometricmean values
and 95% CI. In vivo data were analysed using general linear
models, followed by pairwise comparison of treatment groups,
with Tukey’s adjustment for multiple parallel pairwise compari-
sons. Data were log-transformed prior to analysis if assumptions
of normal distribution and/or variance homogeneity were not
fulfilled. The individual molar infusion rates required to obtain
plasma glucose of 3 or 4 mmol/l in experiments C, D and Ewere
used in a post hoc analysis. All data were log-transformed and
analysed using two-way ANOVA with interaction between the
factors compound and plasma glucose target level. Separate vari-
ances were estimated to take variance inhomogeneity into
account. Furthermore, differences between each compound and
HI were estimated on the log scale. The double difference (i.e.
[compound X vs HI at 3 mmol/l] vs [compound X vs HI at 4
mmol/l]) was also estimated on the log scale. Estimated differ-
ences and double differences on the log scale were back-
transformed to ratios (i.e. [compound X at 3 mmol/l/HI at 3
mmol/l]/[compound X at 4 mmol/l/HI at 4 mmol/l]). In all anal-
yses, p values <0.05 were considered statistically significant.

Results

The GCGRi–insulin compound bound to and inhibited
the GCGR

Fusion of insulin to the GCGRi Fab fragment did not influence
the binding affinity of GCGRi to the GCGR (Table 2). The
inhibitory potency of GCGRi–insulin was found to be only
slightly lower than that of GCGRi in BHK cells expressing
human GCGR as well as in primary rat hepatocytes (Table 2).

GCGRi–insulin and the NC bound to the IR with similar
affinity in the absence of GCGR

The binding affinities of GCGRi–insulin and the correspond-
ing NC for hIR-A and hIR-Bwere fully comparable at approx-
imately 0.05% relative to HI for hIR-A [(1/[IC50(GCGRi–
insulin)/IC50(HI)]) × 100%; see Table 2] and approximately
0.04% relative to HI for hIR-B [(1/[IC50(GCGRi–insulin)/
IC50(HI)]) × 100%; see Table 2].
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GCGRi–insulin induced signalling and glucose
metabolic effects in hepatocytes with higher potency
than the negative control

GCGRi–insulin induced a concentration-dependent increase in
IR phosphorylation with much higher potency (EC50 54
nmol/l) than NC (EC50 5019 nmol/l) (Table 2). In the presence

of 10 μmol/l GCGRi, the potency of GCGRi–insulin
decreased towards the potency of NC (Table 2). By contrast,
the concentration–response curves for NC remained
unchanged in the presence of the antagonist, as this NC only
binds to the IR. This indicated that binding of the dual
GCGRi–insulin compound to both the GCGR and IR was
necessary to achieve the higher IR potency in hepatocytes, as
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Fig. 2 Effect on blood glucose in hyperglycaemic STZ-treated rats and
db/db mice. (a) Blood glucose in hyperglycaemic STZ-treated rats after
treatment by i.v. injection with vehicle (black circles, n=5), 10 nmol/kg
GCGRi–insulin (blue circles, n=5), 30 nmol/kg GCGRi–insulin (blue
squares, n=5), 10 nmol/kg NC (red circles, n=5) or 30 nmol/kg NC (red
squares, n=5). Values are means ± SD. **p<0.01, ***p<0.001 as indi-
cated. (b) Plasma concentrations of test compounds measured in
hyperglycaemic STZ-treated rats after treatment by i.v. injection with
10 nmol/kg GCGRi–insulin (blue circles, n=5), 30 nmol/kg GCGRi–
insulin (blue squares, n=5), 10 nmol/kg NC (red circles, n=5) or 30
nmol/kg NC (red squares, n=5). Values are means ± SD, y-axis is loga-
rithmic (log10). (c) Blood glucose in hyperglycaemic STZ-treated rats
after treatment by i.v. injection with vehicle (black circles, n=5) or 60
nmol/kg GCGRi (grey circles, n=5). Values are means ± SD. (d) Blood
glucose in hyperglycaemic db/db mice after treatment by i.v. injection

with vehicle (black circles, n=8) or 1 nmol/kg (open pink circles, n=8), 4
nmol/kg (open pink squares, n=8), 16 nmol/kg (pink triangles, n=8), 64
nmol/kg (closed pink circles, n=8) or 256 nmol/kg (closed pink squares,
n=10) of I700. Values are means ± SD. (e) Blood glucose in
hyperglycaemic db/db mice after treatment by i.v. injection with vehicle
(black circles, n=8) or 5 nmol/kg (open blue circles, n=5), 20 nmol/kg
(blue squares, n=5), 80 nmol/kg (blue triangles, n=5) or 320 nmol/kg
(closed blue circles, n=5) of GCGRi–insulin. Values are means ± SD.
(f) Change in blood glucose 240 min after treatment, plotted against the
i.v. administered dose of I700 (closed pink circles: 1 nmol/kg, n=8; 4
nmol/kg, n=8; 16 nmol/kg, n=8; 64 nmol/kg, n=8; 256 nmol/kg, n=10)
or GCGRi–insulin (closed blue circles: 5 nmol/kg, n=5; 20 nmol/kg, n=5;
80 nmol/kg, n=5; 320 nmol/kg, n=5). The lines indicate the dose–
response relationship for I700 (pink) and GCGRi–insulin (blue)
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described previously for a fusion molecule of insulin and an
anti-asialoglycoprotein receptor antibody [33]. Concentration–
response curves also revealed that GCGRi–insulin had a higher
potencywith respect to activation of Akt, found downstream of
the IR (EC50 32 nmol/l), compared with NC (EC50 764 nmol/l)
(Table 2). GCGRi–insulin also stimulated glycogen synthesis
in hepatocytes with a higher potency than NC (EC50 3.72
nmol/l and 199.2 nmol/l, respectively) (Table 2). In primary
mouse adipocytes, which do not express the GCGR, GCGRi–
insulin and NC stimulated lipogenesis with similar potency
(approximately 0.04% of that of HI) (Table 2). Taken together,
the in vitro data demonstrate that the GCGRi–insulin molecule
had much higher potency than the NC in hepatocytes (which
express GCGR) compared with adipocytes (which do not
express GCGR). This finding supported the hypothesis that

GCGRi–insulin molecule would have a liver-preferential
effect in vivo.

A single injection of GCGRi–insulin induced prolonged
blood glucose lowering in hyperglycaemic rats and
mice

GCGRi–insulin decreased blood glucose 0–240 min after treat-
ment in a dose-dependent manner and significantly more than
equimolar doses of the NC in hyperglycaemic STZ-treated rats
240 min after treatment (p=0.005 and p<0.0001, respectively;
Fig. 2a). As the plasma concentration of the NC was compara-
ble or higher than that of GCGRi–insulin (Fig. 2b), the
GCGRi–insulin appeared more potent than the NC in vivo.
This was probably caused by a liver-preferential effect of the
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GCGRi–insulin, as treatment with vehicle or GCGRi alone at
60 nmol/kg did not decrease blood glucose in STZ-treated rats

(Fig. 2c). It is perhaps surprising that treatment with 60 nmol/kg
GCGRi did not decrease blood glucose in STZ-treated rats.
This is probably due to low levels of glucagon, which in this
model does not have a major impact on hepatic glucose output.
In other animal models, the GCGRi had aminor effect on blood
glucose, comparable to that of the NC (data not shown).

GCGRi–insulin also decreased blood glucose in a dose-
dependent manner in db/db mice (Fig. 2e). Interestingly,
GCGRi–insulin decreased blood glucose more potently than
conventional basal I700 at low to medium doses, but the effect
on blood glucose was less potent than that of I700 at doses above
20 nmol/kg (Fig. 2d–f). This observation supports the hypothesis
that the GCGRi–insulin molecule had a liver-preferential action,
as lower potency of the compound at higher doses may be a
result of lower IR activation in peripheral tissues such as skeletal
muscle and adipose tissue. Furthermore, this observation indi-
cates that GCGRi–insulin may be less prone to induce
hypoglycaemia than traditional insulin treatment.

Recovery from hypoglycaemia using glucagon
occurred more rapidly when hypoglycaemia was
induced by GCGRi–insulin compared with HI

Glucagon-mediated recovery from hypoglycaemia induced by
constant infusion with either HI or GCGRi–insulin was
explored in rats (Fig. 3a–c). Surprisingly, plasma glucose
increased significantly more upon glucagon challenge in the
group of rats in which hypoglycaemia was induced using
GCGRi–insulin (p<0.001), and plasma glucose was elevated
for a longer time compared with animals in which
hypoglycaemia was induced using HI (Fig. 3a,b). A possible
explanation may be that GCGRi–insulin inhibited the action of
endogenous glucagon. When challenged with exogenous
glucagon, a larger amount of glycogen would consequently
be available for glycogenolysis, compared with the group in
which hypoglycaemia was induced using HI.

�Fig. 3 Recovery from acute hypoglycaemia. (a) Reduction of plasma
glucose to a target of 3 mmol/l by i.v. infusion of HI (pink symbols) or
GCGRi–insulin (blue symbols). After 90 min (arrow), the rats treated
with HI by constant i.v. infusion received an i.v. bolus of 10 nmol/kg
glucagon (closed pink squares, n=6) or vehicle (open pink circles, n=6).
The rats treated with GCGRi–insulin by constant i.v. infusion also
received an i.v. bolus of 10 nmol/kg glucagon (closed blue squares,
n=6) or vehicle (open blue circles, n=6) at 90 min. Values are means ±
SD. The grey-shaded area indicates the period with i.v. infusion of HI or
GCGRi–insulin. (b) Plasma glucose levels 10 min after administration of
a glucagon bolus to rats receiving GCGRi–insulin (blue squares, n=6) or
HI (pink squares, n=6) by i.v. infusion (i.e. 100 min after the start of
infusion). Symbols indicate observations from individual animals.
Horizontal lines indicate means; bars indicate SD. ***p<0.001 vs the
HI-treated group. (c) Infusion rates in rats administered either HI and an
i.v. bolus of vehicle (open pink circles, n=6), HI and an i.v. bolus of
glucagon (closed pink squares, n=6), GCGRi–insulin and an i.v. bolus
of vehicle (open blue circles, n=6) or GCGRi–insulin and an i.v. bolus of
glucagon (closed blue squares, n=6). Values are means ± SD. (d)
Reduction of plasma glucose to a target of 4 mmol/l by i.v. infusion of
HI (pink symbols) or GCGRi–insulin (blue symbols). After 90 min
(arrow), the rats treated with HI by constant i.v. infusion received an
i.v. bolus of 1.1 nmol/kg HI (closed pink squares, n=7) or vehicle (open
pink circles, n=8). The rats treated with GCGRi–insulin by constant i.v.
infusion also received an i.v. bolus of 1.1 nmol/kg HI (closed blue
squares, n=8) or vehicle (open blue circles, n=7) at 90 min. Values are
means ± SD. The grey-shaded area indicates the period with i.v. infusion
of HI or GCGRi–insulin. (e) Plasma glucose levels 20 min after
administration of an i.v. bolus of HI to rats receiving GCGRi–insulin
(blue squares, n=8) or HI (pink squares, n=7) by constant i.v. infusion
(i.e. 110 min after the start of infusion). Symbols indicate observations
from individual animals. Horizontal lines indicate means; bars indicate
SD. **p<0.01 vs the HI-treated group. (f) Infusion rates in rats
administered either HI and an i.v. bolus of vehicle (open pink circles,
n=8), HI and an i.v. bolus of HI (closed pink squares, n=7), GCGRi–
insulin and an i.v. bolus of vehicle (open blue circles, n=7) or GCGRi–
insulin and an i.v. bolus of HI (closed blue squares, n=8). Values are
means ± SD. (g) Plasma glucose plotted against infusion rate for rats
treated with HI (pink symbols: plasma glucose 3 mmol/l, n=6; plasma
glucose 4mmol/l, n=8) or GCGRi–insulin (blue symbols: plasma glucose
3 mmol/l, n=6; plasma glucose 4 mmol/l, n=7). Values are means ± SD

Table 3 Absolute and relative infusion rates to reach normoglycaemic and hypoglycaemic plasma glucose for GCGRi–insulin and comparators

Compound Infusion rate to reach target plasma
glucose (pmol kg–1 min−1)

Infusion rate relative
to HI (ratio)

Double ratio
with 95% CIa

p

3 mmol/l 4 mmol/l 3 mmol/l 4 mmol/l

HI 12.7 (9.0, 18.0)b

10.4 (6.3, 17.0)c
4.5 (2.9, 6.9)b

5.0 (2.7, 9.3)c
– – – –

I700 31.0 (20.2, 47.8)c 16.9 (9.1, 31.3)c 3.0 (1.7, 5.2)c 3.4 (1.7, 6.5)c 0.9 (0.4, 2.1)c 0.7933

BIL 79.0 (45.4, 137.3)c 16.2 (8.6, 30.8)c 7.6 (3.8, 15.3)c 3.2 (1.7, 6.2)c 2.4 (0.9, 6.1)c 0.0766

GCGRi–insulin 76.5 (61.3, 95.4)b 5.9 (2.6, 13.0)b 6.0 (4.2, 8.6)b 1.3 (0.6, 3.0)b 4.6 (1.9, 11.0)b 0.0025

Data for infusion rate are geometric means and 95% CI
a The double ratio was calculated as [compound X at 3 mmol/l/HI at 3 mmol/l]/[compound X at 4 mmol/l/HI at 4 mmol/l]
b Data from experiments C and D
cData from experiment E
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GCGRi–insulin was less prone to cause hypoglycaemia
following a bolus of HI

The ability of endogenous counter-regulatory mechanisms to
rescue acute hypoglycaemia induced by fast-acting insulin
was explored in rats in which blood glucose was reduced to
4 mmol/l by constant infusion of either GCGRi–insulin or HI,
and a bolus of HI was subsequently administered (Fig. 3d–f).
This set-up thereby mimicked accidental overdose with fast-
acting insulin in an individual who is also using basal insulin
treatment. The bolus of fast-acting HI decreased plasma
glucose significantly less in the rats receiving a constant infu-
sion of GCGRi–insulin compared with the group given HI by
constant infusion (p=0.0017, Fig. 3e).

Constant infusion of GCGRi–insulin induced
hypoglycaemia less potently than HI

The molar infusion rates of GCGRi–insulin required to decrease
plasma glucose to 3 and 4mmol/l were compared with the corre-
sponding infusion rates of HI (Fig. 3g and Table 3). To obtain a
plasma glucose of 4 mmol/l, the required infusion rate of
GCGRi–insulin was 1.3-fold higher than for HI. However, the
infusion rate of GCGRi–insulin required to reach the
hypoglycaemic target of 3 mmol/l was 6.0-fold higher than for
HI, i.e. to obtain a hypoglycaemic plasma glucose of 3 mmol/l,
the dose of GCGRi–insulin had to be increased approximately
4.6-fold more than required to obtain a plasma glucose of 4
mmol/l. This double ratio of 4.6 was significantly different from
1.0 (p=0.0025, Table 3), and demonstrated that GCGRi–insulin
was significantly less potent relative to HI under hypoglycaemic
conditions (relative potency of approximately 17%) than under
normoglycaemic conditions (relative potency of approximately
77%).When tested in the same experimental set-up, therewas, as
expected, no significant difference in the doses of I700 required
to obtain plasma glucose levels of 3 and 4mmol/l comparedwith
HI (Table 3). For BIL, calculation of the double ratio showed that
the dose had to be increased 2.4-foldmore to reach 3mmol/l than
to reach 4 mmol/l compared with HI (Table 3). This non-
significant difference (p=0.0766) is in good agreement with
previous studies showing that BIL was liver-preferential and
caused fewer hypoglycaemic events than conventional insulin
treatment in individuals with diabetes [22, 34, 35].

GCGRi–insulin had a diminished effect on glucose
uptake in adipose tissue and skeletal muscle

At matched effects on the whole-body blood glucose level (Fig.
4a), GCGRi–insulin stimulated significantly less uptake of 2-
deoxy-glucose in skeletal muscle (p=0.0128; Fig. 4b) and
adipose tissue (p=0.0378; Fig. 4c) than the basal insulin compar-
ator I501. Furthermore, GCGRi–insulin decreased plasma levels
of NEFA significantly less than I501 did (p=0.0475; Fig. 4d).

Taken together, these data demonstrated that GCGRi–insulin had
a diminished effect in skeletal muscle and adipose tissue, which
suggests a liver-preferential effect of GCGRi–insulin in vivo.

Compared with conventional insulin, subchronic
treatment with GCGRi–insulin resulted in elevation of
liver TAGs and plasma ALT activity, and caused alpha
cell hyperplasia

Treatment of STZ-DIOmice for 3 weeks with GCGRi–insulin
or I501 resulted in comparable reductions of HbA1c in STZ-
DIO mice compared with vehicle (Fig. 5a). As GCGRi–
insulin and I501 had matched effects on blood glucose, it is
reasonable to compare the GCGRi–insulin-treated group
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Fig. 4 Blood glucose levels, 2-deoxy-glucose (2-DG) uptake in skeletal
muscle and adipose tissue, and plasma NEFA levels in STZ-DIO mice
after treatment with vehicle, GCGRi–insulin or I501 by s.c. injection at
day 21 in experiment F. (a) Blood glucose levels measured before treat-
ment (i.e. t=0 min), at 3 h and at 3 h 45 min after treatment on day 21.
Values are means ± SD (n=22 for all treatments). The blood glucose level
in mice with diet-induced obesity is generally between 6 and 9 mmol/l, as
indicated by the horizontal lines. The STZ-DIO mice were exposed to 2-
DG from 3 h after treatment until euthanasia at 3 h 45min, as indicated by
the grey area. (b) 2-DG content in skeletal muscle samples. Symbols
indicate observations from individual animals, horizontal lines indicate
means, and error bars indicate SD. **p<0.01 vs the vehicle-treated group,
***p<0.001 vs the vehicle-treated group. †p<0.05 vs the I501-treated
group. (c) 2-DG content in adipose tissue. Symbols indicate observations
from individual animals, horizontal lines indicate means, and error bars
indicate SD. †p<0.05 vs the I501-treated group. (d) Plasma NEFA levels
in samples collected immediately before euthanasia (at 3 h 45 min after
the last treatment). Symbols indicate observations from individual
animals, horizontal lines indicate means, and error bars indicate SD.
**p<0.01 vs the vehicle-treated group. †p<0.05 vs the I501-treated group
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directly with the I501-treated group for other key variables
that are known to be influenced by the level of glycaemic
control in the mice. As expected for a conventional insulin
treatment, I501 decreased liver TAG compared with vehicle
(p=0.0033; Fig. 5b). However, in the group treated with
GCGRi–insulin, liver TAG levels were significantly increased
by approximately 60% compared with I501 (p=0.0008), but
were not significantly different from those observed in mice
treated with vehicle. I501 reduced plasma ALT compared
with the vehicle-treated mice (p=0.0012; Fig. 5c), whereas
plasma ALT activity in GCGRi–insulin-treated mice was
significantly increased by approximately twofold compared
with the I501-treated group (p=0.0002), but was not signifi-
cantly different from that in the vehicle-treated group. Finally,
treatment with GCGRi–insulin resulted in approximately
twofold increased amounts of alpha cells (p<0.0001; Fig. 5e)
and approximately 1.7-fold increased amounts of beta cells

(p=0.0049; Fig. 5f) compared with the vehicle-treated group.
In other similar experiments, I501 did not influence alpha or
beta cell mass significantly (data not shown).

Discussion

It is estimated that only approximately 64% of individuals with
diabetes achieve individualised HbA1c targets [36], and a recent
study reported that approximately 79% of adults with type 1
diabetes fail to obtain the recommended target HbA1c of <53
mmol/mol (7%) [37]. Hypoglycaemia is the major limiting
factor in glycaemic management of type 1 and type 2 diabetes
[10], and increased incidence of severe hypoglycaemia is asso-
ciatedwith a higher risk ofmajor adverse cardiovascular events,
possibly due to rhythm abnormalities [9, 38, 39]. Thus, while
better glucose regulation is needed to reduce the risk of both

Fig. 5 Effects of subchronic treatment with vehicle (n=22), GCGRi–
insulin (n=22) or conventional I501 (n=22), administered by s.c. injec-
tion, for 3 weeks in STZ-DIO mice (experiment F). (a) Change in HbA1c

(%) from day 1 to day 21. Symbols indicate observations from individual
animals, horizontal lines indicate means, and error bars indicate SD.
***p<0.001 vs the vehicle-treated group. (b) Liver TAG levels at the
end of the study. Symbols indicate observations from individual animals,
horizontal lines indicate means, and error bars indicate SD. **p<0.01 vs
the vehicle-treated group. †††p<0.001 vs the I501-treated group. (c)
Plasma ALT levels at the end of the study. Symbols indicate observations
from individual animals, horizontal lines indicate means, and error bars
indicate SD. **p<0.01 vs the vehicle-treated group. †††p<0.001 vs the

I501-treated group. (d) Representative picture of an islet of Langerhans in
a pancreas from an STZ-DIO mouse. Alpha cells were identified by
positive staining for glucagon (red), beta cells were identified by positive
staining for insulin (green), and nuclei were identified by DAPI staining
(blue). White scale bar, 50 μm. (e) Pancreatic alpha cell mass quantified
at the end of the study. Symbols indicate observations from individual
animals, horizontal lines indicate means, and error bars indicate SD.
***p<0.001 vs the vehicle-treated group. (f) Pancreatic beta cell mass
quantified at the end of the study. Symbols indicate observations from
individual animals, horizontal lines indicate means, and error bars indi-
cate SD. **p<0.01 vs the vehicle-treated group
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micro- and macrovascular complications, the risk of
hypoglycaemia remains a limiting factor in insulin-dependent
patients. A novel treatment that reduces the incidence of
hypoglycaemia would therefore be very attractive. In this study,
the novel dual-acting liver-preferential GCGRi–insulin mole-
cule combined high potency under hyper- and normoglycaemic
conditions with a dramatically reduced potency under
hypoglycaemic conditions. Such a molecule would probably
enable improved glycaemic control in individuals with diabe-
tes, without increased risk of hypoglycaemia.

Several pharmaceutical companies have pursued develop-
ment of GCGR antagonists (using various molecular formats),
which have been shown to improve glucose regulation without
increasing the risk of hypoglycaemia in patients with type 1
diabetes as well as those with type 2 diabetes [40]. These bene-
ficial effects were also present when a GCGR antagonist was
combined with basal and prandial insulin treatment in type 1
diabetes patients [20]. The liver-preferential BIL also reduced
hypoglycaemia in type 2 diabetes patients [22]. Combination of
glucagon antagonism and liver-preferential insulin action in a
dual-acting molecule has not been explored previously in clin-
ical trials.We explored the effects of such amolecule in preclin-
ical models that have high translational value with respect to
effects on blood glucose regulation, and the results indicate that
this novel treatment concept would have considerable benefits
for individuals with diabetes.

However, the GCGRi–insulin molecule also displayed poten-
tial safety concerns in animal models. Treatment of STZ-DIO
mice with GCGRi–insulin for 3 weeks did not reduce liver TAG
levels and plasma ALT activity, in contrast to conventional insu-
lin treatment. The relative increase in liver TAG levels compared
to mice treated with I501 is in good agreement with previous
findings in rodents and individuals with type 2 diabetes [21, 41],
and may be caused by inhibition of GCGR signalling, as it is
known that glucagon increases hepatic lipolysis and oxidation of
fatty acids [42, 43]. However, it is also possible that the increase
in liver TAG is a result of the liver-preferential insulin effect of
the GCGRi–insulinmolecule. The liver-preferential BIL failed to
decrease liver TAG levels in insulin-naive patients, and increased
liver TAG levels when BIL replaced conventional insulin treat-
ment [23], probably because of reduced inhibition of lipolysis in
the adipose tissue [34].

Inhibition of GCGR in type 2 diabetes patients also increased
plasma ALT activity [18, 19, 21]. This elevation was reversible,
as ALT activity was normalised after termination of treatment.
Elevation of plasma ALT has been suggested to be an effect of
the increased amount of fat in the liver [21]. However, glucagon
is also known to have an important role in regulation of amino
acidmetabolism [44]. GCGRknockout mice and humanswith a
mutation resulting in an inactive GCGR had hyper-
aminoacidaemia, with particularly high levels of alanine in plas-
ma [45, 46]. Elevation of plasma ALT may therefore be a result
of effects of the GCGRi–insulin molecule on amino acid

metabolism. It is also possible that the liver-preferential insulin
action may contribute to the increased ALT activity. Individuals
with diabetes treated with BIL had increased plasma ALT activ-
ity compared to patients treated with conventional insulin [23],
but the mechanism behind this effect is not clear.

The GCGRi component in the GCGRi–insulin molecule also
induced a modest hyperplasia of alpha cells (approximately
twofold) compared with vehicle-treated STZ-DIO mice. Alpha
cell hyperplasia has also been observed in previous animal stud-
ies with GCGR antagonists, and there is concern that such
hyperplasia is a pre-neoplastic lesion that eventually could
undergomalignant transformation, as reported in GCGR knock-
outmice and a human patient with a loss-of-functionmutation in
the GCGR, in which dramatically increased glucagon levels and
alpha cell hyperplasia were observed [47–49]. However, treat-
ment of hyperglycaemicmicewith aGCGR antagonist had only
a mild effect on plasma glucagon levels, and alpha cell numbers
per islet only increased approximately 1.3-fold [50]. This is
comparable to the twofold increase in alpha cell mass observed
in the present study, and also in agreement with the effect
observed in a clinical trial with a GCGR antagonist, in which
plasma glucagon levels did not increase above approximately
200 pmol/l [18]. Taken together, GCGRi–insulin is comparable
to other GCGR antagonists in terms of its effect on alpha cell
hyperplasia in animal models, and the combination with insulin
did not reduce this effect. Whether the elevated levels of gluca-
gon remain a safety concern for GCGR inhibition therapiesmust
be addressed in longer clinical studies.

A reduced capability to rescue hypoglycaemia induced by
accidental overdose with insulin is a special safety concern for
combined treatment with insulin and glucagon antagonists [44].
Surprisingly, treatment with the GCGRi–insulin molecule
resulted in an improved effect of treatment with exogenous
glucagon as well as an improved effect of the spontaneous
counter-regulatory response to hypoglycaemia, probably
because the GCGRi inhibited glycogenolysis in the liver, so a
larger amount of glycogen was available for glycogenolysis
during hypoglycaemia. Based on the present data from an
animal model, concerns relating to GCGRi regarding insulin-
induced hypoglycaemia therefore appear to be less relevant.

In conclusion, combination of GCGR inhibition and liver-
preferential insulin action in one molecule did result in
improved blood glucose regulation, but the potential safety
concerns (alpha cell hyperplasia and increased levels of liver
fat and plasma ALT activity) persisted. While it is not under-
stood how a modest and reversible increase in liver TAG and
plasma ALT may influence progression of non-alcoholic fatty
liver disease, these potential safety concerns cannot be
ignored. In order to clear a dual-acting molecule comprising
glucagon inhibition and liver-preferential insulin action of
these safety concerns, the compound should resemble conven-
tional insulin in its effect on liver TAGs and liver enzymes,
and preferably have no effect on alpha cell mass.
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