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Abstract
Aims/hypothesis  Excess adiposity is differentially associated with increased risk of cardiometabolic disease in men and women, 
according to observational studies. Causal inference studies largely assume a linear relationship between BMI and cardiometa-
bolic outcomes, which may not be the case. In this study, we investigated the shapes of the causal relationships between BMI 
and cardiometabolic diseases and risk factors. We further investigated sex differences within the causal framework.
Methods  To assess causal relationships between BMI and the outcomes, we used two-stage least-squares Mendelian ran-
domisation (MR), with a polygenic risk score for BMI as the instrumental variable. To elucidate the shapes of the causal 
relationships, we used a non-linear MR fractional polynomial method, and used piecewise MR to investigate threshold 
relationships and confirm the shapes.
Results  BMI was associated with type 2 diabetes (OR 3.10; 95% CI 2.73, 3.53), hypertension (OR 1.53; 95% CI 1.44, 1.62) 
and coronary artery disease (OR 1.20; 95% CI 1.08, 1.33), but not chronic kidney disease (OR 1.08; 95% CI 0.67, 1.72) or 
stroke (OR 1.08; 95% CI 0.92, 1.28). For cardiometabolic risk factors, BMI was positively associated with glucose, HbA1c, 
triacylglycerol levels and both systolic and diastolic BP. BMI had an inverse causal relationship with total cholesterol, LDL-
cholesterol and HDL-cholesterol. The data suggest a non-linear causal relationship between BMI and blood glucose levels, 
HbA1c and lipid fractions (p<0.001), more strongly in men than women. The piecewise MR results were consistent with the 
fractional polynomial results. The causal effect of BMI on coronary artery disease, total cholesterol and LDL-cholesterol 
was different in men and women, but this sex difference was only significant for LDL-cholesterol after controlling for mul-
tiple testing (p<0.001). Further, the causal effect of BMI on coronary artery disease varied by menopause status in women.
Conclusions/interpretation  We describe the shapes of causal effects of BMI on cardiometabolic diseases and risk factors, 
and report sex differences in the causal effects of BMI on LDL-cholesterol. We found evidence of non-linearity in the causal 
effect of BMI on diseases and risk factor biomarkers. Reducing excess adiposity is highly beneficial for health, but there is 
greater need to consider biological sex in the management of adiposity.
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Introduction

Cardiometabolic diseases (CMDs) are among the top ten 
causes of death and are associated with increased healthcare 
costs globally, making their relationship with adiposity a 
major public health concern [1–4]. Excess adiposity is asso-
ciated with increased risk of CMDs, as well as increased risk 
of all-cause mortality [5–8]. The BMI category at lowest risk 
of early death is 20–25 kg/m2 in populations of European 
ancestry, with average health worsening significantly within 
the ‘overweight’ category, and deteriorating further as BMI 
increases [9]. Both observational studies and some causal 
inference studies suggest that BMI has a J-shaped relation-
ship with all-cause and cardiovascular mortality [5, 10].

Observational studies often suffer from residual con-
founding and reverse causality, as do the relational shapes 
they describe. For example, the high mortality rate observed 
in some people with lower BMI (J-shaped relationship) is 
probably caused by the chronic disease cachexia [11]. While 
causal relationships between adiposity and CMDs have been 
determined previously, most studies assume these relation-
ships are linear [12–15]. In addition, observational studies 
have shown that sex confers differential CMD risk profiles in 
men and women, but extensive investigation of such differ-
ences within a causal framework is lacking [16–19]. There-
fore, understanding the nature of causal relationships between 
excess adiposity, CMDs and any sex differences therein may 
help to refine public health interventions [20].

Patterns of causal associations between excess adiposity 
and cardiometabolic outcomes remain understudied; given 

the shapes reported in observational studies, we hypothesised 
that adiposity has non-linear causal effects on cardiometabolic 
outcomes, with sex differences within this causal framework. 
The purpose of this study was to elucidate the nature of causal 
effects and explore the sex differences in the effects of BMI 
on CMDs (coronary artery disease [CAD], type 2 diabetes, 
chronic kidney disease [CKD], stroke and hypertension). We 
further extended these investigations to risk factor biomarkers: 
glycaemic markers (glucose, HbA1c), lipids (triacylglycerols, 
total cholesterol, LDL-cholesterol and HDL-cholesterol), 
lipoprotein A (LPA), urea and BP.

Methods

Population

We used individual-level data from the UK Biobank, a cohort 
of approximately 500,000 participants of mixed ancestries 
assessed across 22 centres in the UK. For this study, we selected 
individuals of white European descent only (n=409,584). In 
summary, participants aged 40–69 years were enrolled between 
2006 and 2010, and standard anthropometric measurements 
were taken, in addition to biological samples (urine, blood and 
saliva); socio-demographic, lifestyle and other health determin-
ing factors were recorded. The UK Biobank study received 
approval from the Multi-centre Research Ethics Committee 
(reference 16/NW/0274), and all participants gave informed 
consent [21]. Information about recruitment and data collection 
has been provided elsewhere [22]. The current analysis is based  
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on application number 57232 to the UK Biobank resource. 
Use of UK Biobank data for the analysis described here was 
approved by the Swedish Ethics Approval Authority (applica-
tion number 2021-03174).

Outcome variables

Disease outcomes  For each of the disease outcomes (type 
2 diabetes, hypertension, stroke, CAD and CKD), informa-
tion was obtained from ICD-9 (http://​www.​icd9d​ata.​com/​
2007/​Volum​e1/​defau​lt.​htm) and ICD-10 (http://​apps.​who.​
int/​class​ifica​tions/​icd10/​browse/​2016/​en) diagnosis codes 
for both prevalent and incident disease, self-reported diag-
noses, enrolment interview reports and self-reported medi-
cation data. We excluded participants whose reported age 
of type 2 diabetes diagnosis was 20 years old or less, as 
it was deemed to be probable type 1 diabetes. For car-
diovascular disease (CAD, stroke and hypertension) and 
CKD, we additionally used information regarding surgi-
cal operations, plus interventional procedures related to 
each disease from OPCS4 codes (https://​class​brows​er.​nhs.​
uk/#/), self-reported surgical procedures, and details of 
vascular diseases diagnosed by a doctor, which contained 
specific coding for each disease outcome. Additional 
information was obtained from medication data for both 
men and women, based on self-reported data collected at 
enrolment. Details of codes and data fields used for each 
disease are provided in electronic supplementary material 
(ESM) Table 1.

Disease‑risk biomarkers  The disease-risk biomarkers that we 
included were glucose, HbA1c, triacylglycerols, cholesterol 
(total, HDL and LDL), urea and LPA, plus systolic BP (SBP) 
and diastolic BP (DBP). This information was obtained from 
the blood biochemistry categories of the UK Biobank, details 
of which are provided in ESM Table 2. For BP, we added 15 
and 10 mmHg, respectively, to the values for SBP and DBP 
in participants taking BP medication [23].

Genetic data

Details of enrolment and genetic data handling have been 
extensively explained by Bycroft et al [22]. For this project, 
we used version 3 of the imputed genotypes data from the UK 
Biobank. We excluded SNPs and individuals with a genotype 
call rate <99%, SNPs with a Hardy–Weinberg equilibrium 
p value <1×10−10, those with an imputation score <80%, 
any duplicated SNPs, and SNPs with a minor allele fre-
quency <0.01. Using quality control results provided by UK 
Biobank, we further excluded individuals deemed outliers for 
heterozygosity (indicating poor sample quality or contamina-
tion), those with sex ambiguity and aneuploidy, and one of 
any pair of related individuals (up to third-degree relatedness,  

kinship coefficient 0.0442–0.0882). After further exclusion 
of participants with missing anthropometric measurements or 
HbA1c beyond detectable ranges (>184 mmol/mol or 19%), 
our final sample comprised 333,582 individuals (ESM Fig. 1).

Computing the BMI polygenic risk score

We used genome-wide association study (GWAS) sum-
mary statistics from the latest GIANT meta-analysis of BMI 
GWASs (excluding participants from the UK Biobank), and 
selected only genetic variants that were associated with BMI 
at a genome-wide significance level (p5×10−8): n=1560 
SNPs [24]. Individual genetic data were obtained from the 
UK Biobank. A BMI polygenic risk score (PRS; PRSBMI) 
was calculated by weighting each SNP by its effect size from 
GWAS summary data and then summing these values for 
all SNPs for each individual in our sample. Prior to PRSBMI 
calculation, clumping restricted to r2=0.2 and a 250 kb win-
dow was performed to ensure that only SNPs that are not in 
linkage disequilibrium were used. After this quality con-
trol step, there were 89 uncorrelated BMI SNPs available 
for use in generating the PRSBMI. All PRSBMI calculations 
were performed using PRSice-2 software [25]. To reduce 
the chances of horizontal pleiotropy between PRSBMI and 
the various diseases and risk factors, we selected BMI SNPs 
specific to each trait. This was done by excluding any SNPs 
that were associated with the respective trait at genome-wide 
significance from the BMI SNPs by comparing with GWAS 
summary data for the trait. We then computed a trait-specific 
PRSBMI (for instance, a PRSBMI for CAD analysis that used 
BMI SNPs that were not associated with CAD) for use in 
downstream analyses involving that specific trait.

Statistical analysis

Causal effect assessment  We used two-stage least-squares 
(2SLS) Mendelian randomisation (MR), with PRSBMI as the 
genetic instrumental variable, to estimate causal effects of BMI 
on cardiometabolic traits. Prior to analysis, BMI was trans-
formed in the same way as in the discovery GWAS by Locke 
et al [24]. Specifically, the effects of age, age squared, smoking 
status, alcohol consumption, UK Biobank assessment centre 
and the Townsend Deprivation Index were regressed out sepa-
rately for men and women. Residuals from each of the models, 
men and women, were then inverse normal-transformed to cre-
ate a main exposure variable representing BMI.

In the first stage, the exposure was regressed on the 
PRSBMI in a linear model, adjusting for genotyping array 
and the first ten genetic principal components characterising 
the population substructure. Thereafter, fitted values were 
generated and used in the second stage of 2SLS, where logis-
tic and linear regression models were used for binary and 
continuous traits respectively, with the fitted values as the  

http://www.icd9data.com/2007/Volume1/default.htm
http://www.icd9data.com/2007/Volume1/default.htm
http://apps.who.int/classifications/icd10/browse/2016/en
http://apps.who.int/classifications/icd10/browse/2016/en
https://classbrowser.nhs.uk/#/
https://classbrowser.nhs.uk/#/
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exposure, adjusting for the same covariates as in the first 
stage. The regression coefficients of these fitted values in 
the second stage represent an estimate of the causal effect 
of BMI on the outcome [26]. We ran 2SLS models for each 
disease outcome and each biomarker, and also performed 
sex-stratified analyses.

Continuous outcomes were scaled so that the results repre-
sent a change in SD units of outcome per unit change in BMI. 
Cochran’s Q test was used to assess sex differences in the sex-
stratified analysis. To estimate the causal effect of BMI on any 
CMD, we used both fixed and random effects meta-analysis, 
and considered the combined outcome as the likelihood of 
any CMD. We performed 15 main hypothesis tests (for the 
five disease outcomes and ten disease-risk biomarkers) and 
30 sex-stratified tests; therefore, the Bonferroni-corrected sig-
nificance level was set at p=0.001 (0.05/45).

Determining the shape of the causal relationships  To 
describe the shape of the causal relationships between 
BMI and each of the traits, we used a non-linear MR frac-
tional polynomials method [27]. This involves calculating 
the local average causal effect (LACE) in quantiles of the 
exposure. These LACE estimates are then meta-regressed 
against the means of the exposure in each quantile, and tests 
of non-linearity are applied to test the null hypothesis that 
the resultant non-linear model is no different from a linear 
model. Given that stratifying directly on the exposure can 
lead to collider bias [27], we used two methods to construct 
these quantiles: the residual [27] and the doubly ranked [28] 
methods. In the residual method, the exposure is regressed 
on the genetic instrument, and the quantiles are derived from 
the residuals of this regression. While this ensures that the 
strata are independent from the genetic instrument, it has 
the caveat that it assumes homogeneity in the relationship 
between the genetic instrument and the exposure [28]. In 
the doubly ranked method this issue is addressed through 
a two-step process. First, individuals are categorised into 
pre-strata according to their level of the genetic instrument. 
Subsequently, within each of these pre-strata, individuals are 
ranked based on the level of the exposure. The final quan-
tiles are then constructed by selecting individuals with equal 
ranks in the pre-strata, thus making the distribution of the 
genetic instrument similar across the final quantiles, while 
ensuring that the average level of the exposure is increasing 
across these final quantiles.

To obtain a deeper understanding of causal shapes, we 
also performed piecewise MR using the LACE estimates 
to investigate whether any of the relationships had a thresh-
old effect and to confirm the results of the non-linearity 
tests. Unlike fractional polynomial MR, this method does 
not smooth over the different quantiles. Instead, it fits a 
linear model in each quantile, with the slope representing 
the LACE. For each trait, we also conducted sex-stratified 

analysis. All analyses were performed in R versions 3.6.2 
and 4.3.2 (https://​www.R-​proje​ct.​org/).

Sensitivity analyses

To address potential bias due to extreme values, varying 
incompleteness of phenotype data (e.g. LPA) and effects 
of factors such as menopause and waist–hip ratio, we per-
formed several sensitivity analyses as follows: (1) using 
complete cases only; (2) excluding outliers of BMI, defined 
using Tukey’s lower and upper fences [29]; (3) including 
residuals from the first stage in the second stage (two-
stage residual inclusion, 2SRI); (4) adjusting for lipid-
lowering medication and waist–hip ratio; (5) excluding 

Table 1   Participant characteristics (n=333,582)

Continuous variables are presented as mean (SD) and categorical var-
iables as percentages

Characteristic Men Women

Proportion 46.2 53.8
Age (years) 57.1 (8.1) 56.7 (7.9)
BMI (kg/m2) 27.8 (4.2) 27.0 (5.1)
Townsend deprivation index −1.59 (2.9) −1.53 (3.0)
Smoking status
  Never 41.2 58.8
  Previous 51.1 48.9
  Current 53.7 46.3
Alcohol intake status
  Never 24.7 75.3
  Previous 43.0 57.0
  Current 46.8 53.2
Mortality 60.0 40.0
CMDs
  CAD 67.4 32.6
  Type 2 diabetes 61.5 38.5
  Stroke 61.3 38.7
  CKD 55.2 44.8
  Hypertension 53.7 46.3
Biomarkers
  SBP (mmHg) 145.0 (19.4) 138.0 (21.2)
  DBP (mmHg) 86.6 (11.0) 82.4 (11.1)
  Glucose (mmol/l) 5.2 (1.4) 5.1 (1.0)
  HbA1c (mmol/mol) 36.3 (7.3) 35.7 (5.7)
  HbA1c (%) 6.1 (1.9) 6.0 (1.7)
  Cholesterol (mmol/l) 5.5 (1.1) 5.9 (1.1)
  HDL-cholesterol (mmol/l) 1.3 (0.3) 1.6 (0.4)
  LDL-cholesterol (mmol/l) 3.5 (0.9) 3.6 (0.9)
  Triacylglycerols (mmol/l) 2.0 (1.2) 1.6 (0.9)
  LPA (mmol/l) 43.4 (49.3) 44.6 (49.5)
  Urea (mmol/l) 5.6 (1.4) 5.3 (1.3)

https://www.R-project.org/
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premenopausal or postmenopausal women, stratifying 
women by menopause status (self-reported or by age cut-
point of 55 years), and stratifying both men and women by 
age; and (6) using a G-estimator method [30] to calculate 
causal estimates. All sensitivity analyses were also sex-
stratified where applicable.

In 2SRI, the residuals are included as a control function 
to minimise bias of the standard 2SLS, especially when the 
effect measure is non-linear. The G-estimator gives a con-
sistent estimate of the causal effect that varies the least. The 
causal effect estimates obtained using these methods should 
therefore not differ substantially from each other. We finally 
used two-sample MR to assess bidirectional causation.

Results

Participants’ characteristics are shown in Table  1. The 
dataset included slightly more women (n=179,522, 53.8%) 
than men (n=154,060, 46.2%). On average, women had 
slightly lower BMI (27.0±5.1 kg/m2) compared with 
men (27.8±4.2 kg/m2). There was no difference in the 
mean age, men 57.1±8.1 years, women 56.7±7.9 years. 
Men had higher baseline mean BP (SBP=145±19.4 
mmHg; DBP=86.6±11.0 mmHg) compared with women 
(SBP=138±21.2 mmHg; DBP=82.4±11.1 mmHg), and a 
higher prevalence of CMDs (e.g., 67.4% in men vs 32.6% in 
women for CAD). Differences in anthropometric measures 
and disease prevalence persisted across age groups (ESM 
Figs 2 and 3).

In the 2SLS analyses, BMI was associated with type 
2 diabetes (OR 3.10; 95% CI 2.73, 3.53; p=1.38×10−67), 
hypertension (OR 1.53; 95% CI 1.44, 1.62; p=8.92×10−44) 
and CAD (OR 1.20; 95% CI 1.08, 1.33; p=6.86×10−4), but 
not CKD (OR 1.08; 95% CI 0.67, 1.72; p=0.76) or stroke 
(OR=1.08; 95% CI 0.92, 1.28; p=0.34) (Table 2).

For disease-risk biomarkers (coefficients expressed in 
SD units), urea (β=0.05; 95% CI 0.01, 0.08; p=0.01) and 
LPA levels (β=0.02; 95% CI −0.02, 0.05, p=0.31) were 
not significantly associated with BMI, after correcting for 
multiple testing (pBonferroni=0.001). A positive causal effect 
of BMI was observed for glucose (β=0.16; 95% CI 0.13, 
0.20; p=4.90×10−24), HbA1c (β=0.22; 95% CI 0.19, 0.26, 
p=2.30×10−34), and triacylglycerol levels (β=0.13; 95% CI 
0.09, 0.16, p=2.38×10−13). BMI had an inverse causal rela-
tionship with total cholesterol (β=−0.18; 95% CI −0.21, 
−0.14, p=1.37×10−24), LDL-cholesterol (β=−0.10; 95% 
CI −0.14, −0.07, p=9.59×10−10) and HDL-cholesterol 
(β=−0.26; 95% CI −0.30, −0.22, p=4.36×10−35). The 
effect of BMI on DBP variation (β=0.15; 95% CI 0.12, 0.19, 
p=1.30×10−18) was almost twice the effect on SBP variation 
(β=0.09; 95% CI 0.06, 0.12, p=2.31×10−7) (Table 2).

Sex‑stratified analyses

As shown in Table 2, the causal effect of BMI on CAD in 
women was not statistically significant (OR=0.97; 95% 
CI 0.81, 1.18, p=0.78), but it was in men (OR=1.30; 
95% CI 1.15, 1.47, p=2.55×10−5) (p value for sex dif-
ference=0.01; however, this was not significant after 

Table 2   Estimates of causal relationships between BMI and cardiometabolic outcomes using 2SLS MR in the UKB

Combined Men Women

Trait OR/β (95% CI) p value OR/β (95% CI) p value OR/β (95% CI) p value

CMDs
  CAD 1.20 (1.08, 1.33) 6.86 × 10−4 1.30 (1.15, 1.47) 2.55 × 10−5 0.97 (0.81, 1.18) 0.78
  Type 2 diabetes 3.10 (2.73, 3.53) 1.38 × 10−67 2.85 (2.43, 3.33) 2.61 × 10−38 3.51 (2.84, 4.33) 2.99 × 10−31

  Stroke 1.08 (0.92, 1.28) 0.34 1.14 (0.92, 1.40) 0.23 1.00 (0.77, 1.30) 0.98
  CKD 1.08 (0.67, 1.72) 0.76 1.13 (0.62, 2.06) 0.69 0.99 (0.47, 2.06) 0.97
  Hypertension 1.53 (1.44, 1.62) 8.92 × 10−44 1.50 (1.38, 1.63) 1.49 × 10−22 1.55 (1.42, 1.70) 9.28 × 10−23

Biomarkers
  DBP 0.15 (0.12, 0.19) 1.30 × 10−18 0.13 (0.09, 0.18) 4.91 × 10−8 0.17 (0.12, 0.22) 7.25 × 10−12

  SBP 0.09 (0.06, 0.12) 2.31 × 10−7 0.10 (0.06, 0.15) 2.71 × 10−5 0.07 (0.03, 0.12) 2.37 × 10−3

  Glucose 0.16 (0.13, 0.20) 4.90 × 10−24 0.18 (0.13, 0.23) 6.76 × 10−12 0.15 (0.10, 0.20) 7.77 × 10−9

  HbA1c 0.22 (0.19, 0.26) 2.30 × 10−34 0.23 (0.18, 0.28) 3.85 × 10−18 0.22 (0.17, 0.27) 4.09 × 10−18

  Cholesterol −0.18 (−0.21, −0.14) 1.37 × 10−24 −0.23 (−0.28, −0.18) 3.96 × 10−19 −0.13 (−0.18, −0.08) 5.13 × 10−8

  HDL-cholesterol −0.26 (−0.30, −0.22) 4.36 × 10−35 −0.32 (−0.37, −0.26) 3.66 × 10−28 −0.25 (−0.31, −0.20) 5.69 × 10−19

  LDL-cholesterol −0.10 (−0.14, −0.07) 9.59 × 10−10 −0.17 (−0.21, −0.12) 4.79 × 10−11 −0.05 (−0.09, 0.00) 0.05
  Triacylglycerols 0.13 (0.09, 0.16) 2.38 × 10−13 0.14 (0.09, 0.18) 3.76 × 10−8 0.12 (0.07, 0.17) 1.82 × 10−6

  LPA 0.02 (−0.02, 0.05) 0.31 0.01 (−0.05, 0.05) 0.99 0.04 (−0.01, 0.09) 0.16
  Urea 0.05 (0.01, 0.08) 0.01 0.02 (−0.03, 0.07) 0.37 0.06 (0.02, 0.11) 8.70 × 10−3
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accounting for multiple testing, p<0.001, Table 3). No 
significant differences between sexes were observed 
for the causal effects of BMI on type 2 diabetes, stroke, 
hypertension or CKD.

Of the biomarkers, LDL-cholesterol was not signifi-
cantly associated with BMI in women (β=−0.05; 95% 
CI −0.09, 0.00, p=0.05), but it was in men (β=−0.17; 
95% CI −0.21, −0.12, p=4.79×10−11), and this sex dif-
ference was significant even after adjusting for multiple 
testing (pBonferroni=0.001). The causal effect of BMI on 
total cholesterol in men (β=−0.23; 95% CI −0.28, −0.18, 
p=3.96×10−19), was almost double the effect seen in 
women (β=−0.13, 95% CI −0.18, −0.08, p=5.13×10−8), 
but the sex difference did not persist after correcting for 
multiple testing (pBonferroni=0.001). In men, urea was 
not significantly associated with BMI (β=0.02; 95% CI 
−0.03, 0.07, p=0.37); however, a positive association 
was observed in women (β=0.06; 95% CI 0.02, 0.11, 
p=8.70×10−3), although this was not significant after Bon-
ferroni correction. BMI was associated with DBP in both 
men and women, but was associated with SBP in men only 
(Tables 2 and 3).

Effect of BMI on any cardiometabolic disease 
outcome

In combined meta-analysis of the causal effect sizes of 
BMI on CMD, BMI was significantly associated with 
increased causal odds of any CMD (fixed effects OR 1.55; 
95% CI 1.48, 1.62; p=8.23×10−78; random effects OR 1.48; 
95% CI 1.00, 2.19; p=0.05). In men, BMI was also causally 

linked to any CMD using both fixed and random effects, 
but in women this association was only significant when 
considering fixed effects (Fig. 1).

2SLS sensitivity analyses

In the combined analyses, results did not differ across the 
three methods used to estimate causal effects (2SLS, 2SRI 
and G-estimator) for any trait except BP, HbA1c and LPA 
levels, where use of the G-estimator gave larger effect 
sizes with wider 95% CIs (ESM Tables 3 and 4). Adjust-
ing for lipid-lowering medication or waist–hip ratio did not 
materially change the results in either the main analysis or 
when excluding outliers for BMI (ESM Figs 4 and 5; ESM 
Tables 5 and 6).

A sex difference in effects of BMI on hypertension 
was observed when comparing men to premenopausal 
women, but this was not significant after accounting for 
multiple testing (pBonferroni=0.001). Significant sex differ-
ences were observed for the relationship between BMI and 
LDL-cholesterol after multiple testing correction, but not 
when comparing men to postmenopausal women (ESM 
Table 7). In the age-stratified analyses (i.e., <55 years or 
55 years and above), BMI was associated with CAD across 
all groups in men and in premenopausal (self-reported) 
women only. The causal effect of BMI was statistically 
significant in all groups for hypertension and type 2 diabe-
tes, but not stroke or CKD (ESM Fig. 6 and ESM Table 8). 
Analyses performed to assess bidirectional causation did 
not yield results supporting such relationships. The asso-
ciation between SBP and BMI had a null effect size, while 

Table 3   Cochran’s Q test of the 
difference between men and 
women for causal effects of 
BMI on cardiometabolic traits

Trait Men vs all women Men vs premenopausal 
women

Men vs postmenopausal 
women

CMDs
  CAD 0.011 0.115 0.006
  Type 2 diabetes 0.121 0.325 0.541
  Stroke 0.440 0.434 0.139
  CKD 0.783 0.615 0.570
  Hypertension 0.578 0.003 0.542
Biomarkers
  DBP 0.333 0.083 0.710
  SBP 0.369 0.102 0.157
  Glucose 0.355 0.729 0.098
  HbA1c 0.893 0.286 0.481
  Cholesterol 0.005 0.001 0.067
  HDL-cholesterol 0.111 0.913 0.009
  LDL-cholesterol 5.94 × 10−4 2.31 × 10−4 0.032
  Triacylglycerols 0.600 0.136 0.077
  LPA 0.328 0.897 0.201
  Urea 0.239 0.268 0.467
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that between DBP and BMI suffered from horizontal plei-
otropy (ESM Table 9).

Shapes of causal relationships

From the non-linear MR fractional polynomials (FP), there 
was evidence to support a non-linear causal effect of BMI 

on type 2 diabetes. A quadratic model (pQuadratic=9.45x10–5) 
and a fractional polynomial model (pFP=1.80x10–4) were 
both a better fit than a linear model. In sex-specific analyses, 
we found support for a non-linear relationship between BMI 
and type 2 diabetes only in men (pQuadratic and pFP <0.001). 
Nor was there evidence to suggest that BMI had a non-linear 

Fig. 1   Forest plots of a sum-
mary meta-analysis combining 
the causal effect estimates of 
BMI on CMDs in (a) men, (b) 
women, and (c) all participants. 
The common outcome in both 
fixed and random effect lines 
represents any CMD. T2D, type 
2 diabetes
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causal association with CKD in sex-stratified analyses (see 
Fig. 2).

There was no statistically significant evidence to sup-
port a non-linear causal relationship between BMI and 
LPA, DBP, SBP and urea after correcting for multiple 
testing (pBonferroni=0.001), but the results were significant 

for glycaemic and lipid biomarkers. When considering 
men and women separately, the data supported a non-
linear causal association between BMI and HbA1c in each 
group; and a non-linear causal association between BMI 
and HDL-cholesterol and triacylglycerols only in men (see 
Table 4 and Fig. 3). The piecewise MR results were con-
sistent with these results; however, interpretation of the 

Fig. 2   Plots showing the 
estimated shapes of the causal 
relationships between BMI 
and CMDs in combined and 
sex-specific analyses. Shape 
estimates are derived from the 
function of fractional polynomi-
als based on the doubly ranked 
method that best fits the data. 
The solid black line repre-
sents the function curve, the 
blue band represents the 95% 
CI, the red dot represents the 
reference BMI of 25 kg/m2, and 
the dashed red line represents 
the null effect size. The plots 
have been cropped to depict 
estimated causal associations 
up to an OR of 3.0 for ease of 
comparison. HTN, hyperten-
sion; T2D, type 2 diabetes
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Table 4   Tests for shapes of causal relationships between BMI and cardiometabolic phenotypes derived from the residual and doubly ranked 
methods

Outcome Subset pQ pQuadratic pFP pFP degree

Residual Doubly ranked Residual Doubly ranked Residual Doubly ranked Residual Doubly ranked

CMDs
CAD Combined 0.36 0.13 0.02 6.07×10–3 0.10 0.05 0.18 0.09

Women 0.00 0.13 0.28 0.04 0.43 0.29 0.44 0.11
Men 0.44 0.59 0.08 0.14 0.10 0.11 0.83 0.92

T2D Combined 0.60 0.06 4.25×10–3 9.45×10–5 0.01 1.80×10–4 0.28 0.45
Women 0.02 0.75 0.08 0.22 0.17 0.20 0.10 0.93
Men 0.73 8.80×10–4 0.02 5.47×10–6 0.05 5.53×10–5 0.21 0.03

HTN Combined 0.73 2.17×10–3 0.83 0.06 1.00 0.15 0.15 0.03
Women 0.03 0.14 0.08 0.82 0.08 1.00 0.20 0.27
Men 0.21 0.41 0.10 0.02 0.23 0.02 0.27 0.78

Stroke Combined 0.10 0.02 0.79 0.92 0.74 0.90 0.99 0.99
Women 0.51 0.12 0.55 0.11 0.70 0.38 0.54 0.32
Men 0.75 0.44 0.34 0.18 0.44 0.32 0.85 0.60

CKD Combined 0.51 0.64 0.50 0.53 0.44 0.61 0.26 0.70
Women 0.00 0.61 0.01 0.83 4.68×10–3 0.90 1.00 0.95
Men 0.00 0.14 0.06 0.51 0.01 0.64 0.06 0.61

Stroke Combined 0.10 0.02 0.79 0.92 0.74 0.90 0.99 0.99
Women 0.51 0.12 0.55 0.11 0.70 0.38 0.54 0.32
Men 0.75 0.44 0.34 0.18 0.44 0.32 0.85 0.60

Biomarkers
DBP Combined 0.24 0.17 3.33×10–3 0.21 9.12×10–3 0.30 0.38 0.32

Women 0.40 0.13 0.31 0.99 0.46 1.00 0.34 0.46
Men 0.24 0.70 1.12×10–3 0.11 1.36×10–3 0.11 0.61 0.98

SBP Combined 0.48 0.16 0.04 0.93 0.04 1.00 0.97 0.60
Women 0.22 0.41 0.56 0.66 0.60 0.82 0.90 0.38
Men 0.48 0.64 0.02 0.22 9.36×10–3 0.21 0.96 0.99

Glucose Combined 0.24 9.04×10–4 2.17×10–5 1.40×10–5 2.16×10–4 3.46×10–5 0.02 0.18
Women 0.67 0.48 0.22 0.03 0.25 0.03 0.82 0.81
Men 0.39 1.31×10–5 1.32×10–3 2.17×10–4 2.34×10–3 9.05×10–4 0.01 0.06

HBA1c Combined 1.38×10–4 6.68×10–10 9.54×10–10 4.12×10–12 7.25×10–8 7.46×10–11 3.27×10–3 1.86×10–3

Women 0.00 2.79×10–3 3.11×10–4 5.27×10–5 9.13×10–4 1.31×10–4 0.33 0.02
Men 0.04 1.45×10–6 3.69×10–7 1.54×10–7 2.77×10–5 1.82×10–6 0.01 0.03

Total cholesterol Combined 5.68×10–5 0.02 2.50×10–10 6.73×10–3 3.42×10–8 7.98×10–3 6.75×10–3 0.59
Women 0.23 0.18 3.47×10–5 0.10 1.55×10–3 0.11 0.02 0.86
Men 0.01 0.03 4.95×10–5 0.50 1.86×10–4 1.00 0.09 0.14

HDL-c Combined 0.02 9.06×10–5 7.04×10–8 1.63×10–6 1.82×10–6 1.83×10–5 0.03 9.04×10–3

Women 0.19 0.37 1.62×10–4 0.10 2.31×10–3 0.15 0.01 0.46
Men 0.02 0.04 2.45×10–5 1.07×10–4 3.02×10–5 2.08×10–4 0.62 0.52

LDL-c Combined 7.94×10–4 5.17×10–6 2.56×10–13 7.76×10–6 2.78×10–5 4.00×10–5 9.00×10–9 0.21
Women 0.11 0.02 1.91×10–6 1.90×10–3 9.09×10–3 0.01 2.64×10–4 0.07
Men 0.09 0.05 4.41×10–6 0.05 2.85×10–3 0.07 4.52×10–3 0.29

TG Combined 2.61×10–5 1.04×10–5 2.36×10–9 8.82×10–7 4.07×10–5 1.44×10–4 8.76×10–8 2.54×10–4

Women 0.34 0.48 2.36×10–3 0.34 0.05 0.48 1.24×10–3 0.45
Men 0.12 3.02×10–3 3.34×10–7 6.37×10–5 1.16×10–3 8.84×10–4 8.05×10–4 0.08

LPA Combined 0.74 0.57 0.07 0.50 0.47 0.59 0.97 0.90
Women 0.74 0.68 0.51 0.65 0.60 0.68 0.86 0.84
Men 0.75 0.16 0.07 0.06 0.55 0.40 0.16 0.24
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plots can be difficult, especially at the tails of the effect 
estimate distribution, where the linear segments are unre-
stricted and thus extrapolate to the most extreme values 
(ESM Fig. 7).

Discussion

In this study, we investigated the shapes of causal relation-
ships between BMI, CMDs and biomarkers of disease risk. 
We further investigated sex differences within the causal 
framework, and estimated the causal effect of BMI on 
each CMD studied. The estimates from combined analy-
ses showed that BMI is significantly associated with type 2 
diabetes, CAD and hypertension, but not CKD or stroke; it 
is also associated with all assessed biomarkers except LPA 
and urea levels after controlling for multiple testing. In men, 
BMI associations mirrored those of the unstratified analy-
ses, but BMI was not causally associated with CAD, LDL-
cholesterol or SBP in women. BMI was causally associated 
with increased odds of any CMD in both sex-combined and 
sex-stratified analyses, when assuming fixed effects. When 
assuming random effects, the association in women was no 
longer significant. Sex differences persisted for causal effects 
of BMI on LDL-cholesterol only (with threefold attenua-
tion of effect towards the null in women) after correcting 
for multiple testing. In investigations of non-linearity, after 
triangulation, the data support non-linear causal relation-
ships between BMI and blood glucose levels, HbA1c and all 
tested lipid fractions. In sex-stratified analyses, triangulated 
evidence supported a non-linear association between BMI 
and type 2 diabetes,  glucose, HDL-cholesterol and triacyl-
glycerols only in men.

Causal associations between excess adiposity and cardio-
metabolic health have been reported previously, with results 
that are largely consistent with ours [13, 14, 31]. In our anal-
ysis, BMI was inversely associated with all cholesterol types 
and directly associated with triacylglycerol levels. This may 
reflect dyslipidaemic obesity, characterised by high levels 
of triacylglycerols and NEFAs, decreased HDL-cholesterol 
with HDL dysfunction (a shift towards proinflammation and 
altered reverse cholesterol transport), and normal or slightly 
increased LDL-cholesterol, attributed to altered metabolism 

favouring hypertriglyceridaemia [32]. One study assessed 
sex differences for causal effects of BMI in leading causes of 
death including cardiometabolic diseases such as type 2 dia-
betes, CAD and stroke [15]. In that study, BMI was causally 
related to the three diseases in men and women; the relation-
ship with type 2 diabetes, but not CAD or stroke, varied by 
sex. In our study, BMI was not associated with stroke, and 
sex differences in type 2 diabetes were not replicated; the 
inconsistent findings between these studies may reflect our 
decision not to use sex-specific SNP effect estimates.

We found that BMI was associated with CAD in men 
but not all women. While some reasons for such findings 
may include weak instruments or violations of MR assump-
tions (conditional restriction), the ‘weak instrument test’ 
was not suggestive of weak instruments in our case (statis-
tic=3015.08, p<2×10−16), and the Durbin–Wu–Hausman 
test supported the instrumental variable analysis as more 
consistent (p=1.04×10−6) than the ordinary least-squares 
regression. It is possible that a BMI PRS that is weighted 
using effect sizes from combined GWASs may not fully cap-
ture general adiposity in women, or that general adiposity 
itself is a poor predictor of CAD in all women. However, 
when women were grouped by menopause status, BMI was 
found to be significantly associated with CAD in premeno-
pausal women only. This possibly points to detrimental 
effects of excess adiposity, which nullify the ‘protective 
effects’ of sex hormones [33]. In this cohort, premenopau-
sal women with obesity had more than twice the prevalence 
of CAD compared with their non-obese counterparts (ESM 
Table 10). The null association observed in postmenopausal 
women may reflect dampened effects of general adiposity 
(or the presence of other competing/stronger risk factors) 
on CAD risk in this group. In two prospective studies of 
postmenopausal women, central or truncal obesity was asso-
ciated with CAD/cardiovascular disease risk, but not general 
adiposity [34, 35]. We did not investigate different adiposity 
phenotypes, and the relationship between such phenotypes 
and CAD warrants further investigation within a causal 
framework.

Sexual dimorphism in lipid metabolism and the patho-
physiology of CMDs is well-established [36–38]. For 
example, obesity tends to peak about 10 years earlier in 
men (50–54 years) compared with women (60–64 years). 

Table 4   (continued)

Outcome Subset pQ pQuadratic pFP pFP degree

Residual Doubly ranked Residual Doubly ranked Residual Doubly ranked Residual Doubly ranked

Urea Combined 0.48 0.30 3.33×10–3 0.06 2.28×10–3 0.05 0.50 0.63

Women 0.96 0.03 0.43 0.47 0.23 0.45 0.75 0.96

Men 0.13 0.34 1.43×10–3 0.10 0.04 0.19 0.05 0.30

HDL-c HDL-cholesterol, HTN hypertension, LDL-c LDL-cholesterol, T2D type 2 diabetes, TG triacylglycerol
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Even at the same BMI and age or fitness levels, men have 
a worse cardiometabolic health profile despite women hav-
ing higher fat mass and lower skeletal muscle mass [9, 36, 
38, 39]. Women tend to store excess lipids in subcutaneous 
adipose tissue (which is considered to be protective against 
CMDs), especially in the gluteal–femoral region, while in 
men excess fat is more centrally distributed in the visceral 

adipose tissue (which increases risk of CMDs). These differ-
ences are diminished when perturbations in oestrogen levels 
occur, as in the menopause (low levels) or when taking oral 
contraceptives (supraphysiological levels) [38, 40].

While the observed sex differences do not stand after 
correcting for multiple testing, except for LDL-cholesterol, 
they are worth considering given the documented role of 

Fig. 3   Plots showing the 
estimated shapes of the causal 
relationships between BMI 
and selected cardiometabolic 
biomarkers in combined and 
sex-specific analyses. Shape 
estimates are derived from the 
function of fractional polynomi-
als based on the doubly ranked 
method that best fits the data. 
The solid black line represents 
the function curve, the blue 
band represents the 95% CI, the 
red dot represents the reference 
BMI of 25 kg/m2, and the red 
dashed line represents the null 
effect size. HDL-c, HDL-cho-
lesterol; LDL-c, LDL-choles-
terol; TChol, total cholesterol; 
TG, triacylglycerol
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sexual dimorphism in energy homeostasis and cardiometa-
bolic health. Further, despite mixed results from studies, 
sexual dimorphism may have implications for weight loss 
interventions in men and women with different levels of 
metabolic health [41–45]. Complications during preg-
nancy, such as gestational diabetes and pre-eclampsia, 
confer additional risk for CMDs in women. Furthermore, 
from our results, excess adiposity appears to be detrimen-
tal to women both pre- and post menopause, while men 
have a higher burden of CMD at an earlier age compared 
with women of similar BMI. Such differences may have 
clinical implications. For men, screening for CMD at an 
earlier age and at a lower BMI threshold could identify 
people predisposed to CMD earlier, who would benefit 
from timely interventions. In women, targeted screening 
for CMD should take into consideration obesity in pre-
menopausal women.

Non-linear MR has been previously used to assess 
causal relationships (e.g., the effect of alcohol on cardio-
vascular disease [46] or BMI on socioeconomic status 
[47]), but there is a dearth of literature on the nature of the 
causal effects of BMI on cardiometabolic health between 
the sexes. In one study focused on CKD, BMI was found 
to be causally associated with CKD using summary data 
MR, with evidence of non-linearity in the UK Biobank 
using the residual method [48]. We found no such associa-
tion in our analyses using the doubly ranked method. This 
may be partly explained by our selection of CKD cases, 
which was more detailed than the previous study (ESM 
Table 1). Determining the shapes of causal associations 
may help estimate the relative benefits of interventions at 
different levels of exposure. For instance, lowering BMI 
from 40 to 25 kg/m2 would result in an approximately two-
fold decrease in the causal risk of type 2 diabetes (Fig. 2). 
Use of causal estimates could therefore provide a powerful 
tool for public health decision-making.

Causal inference studies using MR attempt to give an 
unbiased estimate of a causal effect of a given exposure on 
an outcome of interest, provided that the assumptions of 
MR are not violated, and the instruments explain sufficient 
variance in the exposures and/or outcomes of interest. To 
mitigate potential bias, we specifically used SNPs generated 
from GWASs that did not overlap with the UK Biobank, 
as the latter dataset was used in our primary analyses. We 
also performed sensitivity analyses to assess whether the 
results would change, and chose SNPs unrelated to each 
specific outcome to mitigate chances of horizontal pleiot-
ropy. Although other problems of MR, such as canalisation, 
cannot be formally assessed, we believe that the estimates 
provided in this study offer a glimpse into the differences in 
causal effects of BMI on CMD between men and women, 
supporting further investigation.

Strengths

In this study, we used MR, which offers a powerful alter-
native to assess causal relationships between exposures 
and outcomes of interest [49]. Conventional MR methods 
assume a linear relationship to estimate the population-aver-
aged causal effect; however, we tested those linear assump-
tions to offer better insights for formulating public health 
policies and interventions [50]. Further, we used both resid-
ual and doubly-ranked non-linear MR and piece-wise linear 
MR to triangulate the evidence. We also had the advantage 
of a large sample size from the UK Biobank.

Weaknesses

We used BMI as our sole measure of adiposity. BMI does not 
account for differential adiposity, nor is it a reliable measure 
of relative adiposity across different populations or ethnici-
ties, making it hard to generalise the findings. However, BMI 
has been shown to be a reliable population-level measure for 
assessing general adiposity. MR faces challenges of hori-
zontal pleiotropy and canalisation. While there is no formal 
method to test the latter, we selected BMI SNPs that were 
not associated with each respective outcome assessed, hence 
reducing the chances of horizontal pleiotropy. We also could 
not rule out methodological limitations, in that there may be 
other shapes, unavailable to us, that better fit these data. The 
field of MR is evolving quickly, and it may be that analy-
ses need to be updated if and when there are fundamental 
changes in state-of-the-art in MR methods.

Conclusion

In this analysis, BMI was found to be causally associated 
with increased risk of type 2 diabetes, CAD and hyperten-
sion, but not stroke or CKD, and was also associated with 
variation in disease-risk biomarkers, except LPA and urea. 
Further, BMI was causally associated with any CMD when 
considering fixed effects, in combined and sex-stratified 
analyses. We found evidence in support of a non-linear 
causal relationship between BMI and glycaemic and lipid 
biomarkers, except LPA. The adverse consequences of BMI 
on CAD risk are similar in men and premenopausal women. 
However, although BMI continues to confer increased CAD 
risk in men, it seems to be no longer a strong risk factor in 
postmenopausal women. These results further our under-
standing of the complex nature of the causal relationships 
between BMI and CMD. It also highlights the role of sex in 
CAD and lipid and glucose homeostasis in the context of 
causal risk conferred by excess adiposity, and underscores 
the need for consideration of sex in the management of 
excess adiposity. Finally, reducing excess adiposity remains 
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highly beneficial in improving energy and lipid metabolism, 
as well as reducing the risk of CMD.
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