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Background: We analyzed the FGF/FGFR and co-alteration cancer landscape, hypothesizing that combination therapy
might be useful in the presence of co-drivers.
Materials and methods:We describe FGF/FGFR-altered pathways, prognosis, and co-alterations [cBioPortal (N ¼ 7574)]
and therapeutic outcomes [University of California San Diego Molecular Tumor Board (MTB) (N ¼ 16)].
Results: Patients whose cancers harbored FGF/FGFR alterations (N ¼ 1074) versus those without them (N ¼ 6500) had
shorter overall survival (OS) (median: 23.1 versus 26.4 months, P ¼ 0.038) (cBioPortal). Only 6.1% (65/1074 patients)
had no pathogenic co-alterations accompanying FGF/FGFR axis abnormalities. The most frequently co-altered
pathways/genes involved: TP53 (70%); cell cycle (58%); PI3K (55%); and receptor tyrosine kinases and mitogen-
activated protein kinase (MAPK) (65%). Harboring alterations in both FGF/FGFR and in the TP53 pathway or in the
cell cycle pathway correlated with shorter OS (versus FGF/FGFR-altered without those co-altered signals) (P ¼
0.0001 and 0.0065). Four of 16 fibroblast growth factor receptor (FGFR) inhibitor-treated patients presented at MTB
attained durable partial responses (PRs) (9, 12, 22þ, and 52þ months); an additional two, stable disease (SD) of �6
months (13þ and 15 months) [clinical benefit rate (SD � 6 months/PR) ¼ 38%]. Importantly, six patients with
cyclin pathway co-alterations received the CDK4/6 inhibitor palbociclib (75 mg p.o. 3 weeks on, 1 week off) and the
multikinase FGFR inhibitor lenvatinib (10 mg p.o. daily); three (50%) achieved a PR [9 (ovarian), 12 (biliary), and
52þ months (osteosarcoma)]. Palbociclib and lenvatinib were tolerated well.
Conclusions: FGF/FGFR alterations portend a poor prognosis and are frequently accompanied by pathogenic co-
aberrations. Malignancies harboring co-alterations that activate both cyclin and FGFR pathways can be co-targeted
by CDK4/6 and FGFR inhibitors.
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INTRODUCTION
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regulate basic biologic process such as development, dif-
ferentiation, cell survival, migration, angiogenesis, and
carcinogenesis.1 FGFR forms a family of four tyrosine kinase
receptors (FGFR1-4), and one that lacks an intracellular
tyrosine kinase domain (FGFR5).2 In humans, >20 unique
ligands are identified, which are known as fibroblast growth
factors (FGFs).3 Ligand binding to FGFR leads to intracellular
phosphorylation of receptor kinase domains, a cascade of
intracellular signaling, and gene transcription.4 Downstream
signaling is triggered by intracellular receptor substrates
FGFR substrate 2 (FRS2) and phospholipase Cg (PLC-g),
leading to subsequent up-regulation of mitogen-activated
protein kinase (MAPK), phosphoinositide 3-kinase (PI3K),
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and signal transducer and activator of transcription (STAT)
signaling pathways.5

Aberrant FGFR signaling as a result of gene amplification,
point mutations, and gene fusions has been observed in
different tumor types; these alterations are promising tar-
gets for cancer therapeutics.6 An aberrantly activated FGF/
FGFR signaling axis is likely to contribute to tumor growth
and proliferation, promote neo-angiogenesis, and partici-
pate in acquired resistance to anticancer therapies. Using
next-generation sequencing (NGS) with a review of nearly
5000 cancer patients, FGFR aberrations were found in 7.1%
of malignancies.7

There are several non-selective multikinase inhibitors that
target FGF/FGFR pathways. Food and Drug Administration
(FDA)-approved agents include: ponatinib, regorafenib, pazo-
panib, and lenvatinib. FGFR alteration status is not required to
use those medications. Recently, selective FGFR inhibitors
have been investigated specifically for FGFR-altered solid tu-
mors.8 To date, the FDA has approved erdafitinib for urothelial
cancerwith FGFR2 or FGFR3 alterations, aswell as pemigatinib
and infigratinib for cholangiocarcinoma with FGFR2 fusions or
other rearrangements.9-11

Although multiple studies have found that the aberrant
FGFR signaling pathway is an attractive therapeutic target,
FGFR inhibitor-based therapies do not always benefit pa-
tients, even if one selects for FGFR-altered cancers.6 The
potential reasons for the variable efficacy of FGFR targeting
may be related to multiple factors, but we hypothesized that,
2 https://doi.org/10.1016/j.esmoop.2022.100647
in some patients, concomitant oncogenic alterations that
appear along with FGFR abnormalities could be associated
with primary and/or secondary resistance.7,12,13 Targeting
one specific signal in a complex network of genomic drivers
may not be sufficient to control cancer progression.

We have previously shown that dual inhibition of MAPK and
cell cycle pathways, when both were co-altered, could be
effective, even if single-agent targeting was mostly inactive.14

This has been suggested to be akin to ‘whack a mole’.15

Furthermore, recent tumor agnostic studies demonstrate that
the greater the proportion of genomic alterations targeted, the
better the outcome, and studies targeting single alterations
may not always show salutary effects.16-21 Combination ap-
proaches may conceivably overcome the limitation of single-
agent FGFR suppression. However, there are limited data
reflecting actual clinical practice regarding matched therapy
targeting both the FGFR pathway and the co-alterations.

Herein, we provide evidence that FGFR pathway alter-
ations are associated with a poor prognosis. Even so,
co-targeting FGF/FGFR axis alterations and concomitant
deleterious alterations showed activity in advanced re-
fractory malignancies.
MATERIALS AND METHODS

Analysis of 1074 patients from cBioPortal

A total of 1074 patients with FGF/FGFR alterations of FGF3/
4/19 and FGFR1/2/3/4, and 6500 patients without those
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FGF/FGFR alterations were analyzed from the Memorial
Sloan Kettering-Integrated Mutation Profiling of Actionable
Cancer Targets (MSK-IMPACT) Clinical Sequencing Cohort
from cBioPortal (cBio cancer genomics portal) for cancer
genomics to evaluate correlations between FGF/FGFR al-
terations and other pathway perturbations at the genomic
level, as well as outcome (Supplementary Figure S1, avail-
able at https://doi.org/10.1016/j.esmoop.2022.100647).22
Study population receiving FGFR-targeted treatment after
MTB presentation

A total of 715 patients with malignancies and available
molecular diagnostics were discussed at the (face-to-face)
University of California San Diego (UCSD) Molecular Tumor
Board (MTB) (Supplementary Figure S2, available at https://
doi.org/10.1016/j.esmoop.2022.100647).20 Among these
patients, 16 patients who received an FGFR inhibitor to
target alterations in FGF3/4/6/14/19/23, FGFR1/2/3/4, and
FRS2 were identified [note: fibroblast growth factor recep-
tor substrate 2 (FRS2) is an adaptor protein that plays a
critical role in FGFR signaling].23
Somatic alteration identification and annotation

Somatic alterations were identified in tumor tissues by
hybrid capture-based targeted DNA sequencing using
FoundationOne CDx.24 Somatic alterations in blood-derived
cell-free DNA (cfDNA) were detected by Guardant360.25

Both assays apply NGS of cancer-related genes. The figure
of the landscape of somatic mutations was created using
the visualized data feature by the OncoPrinter tool in
cBioPortal.26,27 Somatic mutation annotation of the bio-
logical and oncogenic effects was extracted from the
OncoKB knowledge base.28
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Figure 1. KaplaneMeier survival curves for overall survival stratified by FGF/FGFR
derived from cBio cancer genomics portal, MSK-IMPACT Clinical Sequencing Coho
patients still alive at last follow-up. Overall survival from time of metastatic/advance
pathway-altered cancers. FGF/FGFR pathway alterations included FGF3/4/19, FGFR1
listed since they were not assessed in the MSK-IMPACT Clinical Sequencing Cohort. O
to FGF/FGFR pathway-unaltered cases (N ¼ 6500), FGF/FGFR pathway-altered cases
0.038).
CI, confidence interval; HR, hazard ratio; MSK-IMPACT, Memorial Sloan Kettering-In
California San Diego.
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Molecular matching

The MTB made recommendations to optimize molecular
matching for each patient, trying to cover as many aberrant
genomic alterations by cognate therapies as
possible.16,18,20,21 Physicians, however, ultimately chose the
patient’s therapy and they could decide to follow MTB
recommendations or not.
Statistical analysis

Summary statistics were used to describe patient charac-
teristics. We evaluated progression-free survival (PFS),
which was defined as the time between the start of the
treatment and disease progression confirmed by imaging or
clinical findings. Overall survival (OS) was measured as the
time between the onset of therapy until the last follow-up.
Patients without progression at the last follow-up date were
censored for PFS at that date. Patients alive at last follow-up
were censored for OS at that point. PFS and OS data were
represented by KaplaneMeier estimation and the survival
endpoints were compared using log-rank tests. OS data
from cBioPortal represents the time to metastatic/advanced
disease to death or censoring as above. Hazard ratio (HR)
was computed by log-rank test and Cox regression analysis.
All P values � 0.05 were considered significant. All statis-
tical analyses were carried out using R version 4.1.1.
Ethics statement

Our study was carried out according to the guidelines of the
UCSD Institutional Review Board [Profile Related Evidence
Determining Individualized Cancer Therapy (PREDICT),
NCT02478931] and I-PREDICT (NCT02534675) and for any
investigational interventions forwhich thepatients consented.

Data for our study will be made available by the corre-
sponding author upon reasonable request.
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Figure 2. Summary of selected co-altered oncogenic genes along with FGF/FGFR pathway alterations. (A) Integrated view of oncogenic genes co-occurring with FGF/
FGFR alterations from cBio cancer genomics portal (N ¼ 1074, MSK-IMPACT Clinical Sequencing Cohort, data from cBio cancer genomics portal, http://www.
cbioportal.org/). Each column denotes an individual patient, and each row displays a gene. Genetic alterations are color coded by the type of alterations. Co-
alterations in oncogenic pathways were observed in TP53 pathway genes (70%), cell cycleeassociated genes (58%), receptor tyrosine kinases and MAPK pathway-
associated genes (65%), PI3K signaling-associated genes (55%), and other genomic alteration genes (78%). FGF6, FGF23, FRS2, TERC, ZNF703, CHD4, and PRKCL
genes that were found in the UCSD cohort were not listed since they were not assessed in the MSK-IMPACT Clinical Sequencing Cohort. Selected genes of relevant
pathways were listed. The diagram was prepared in OncoPrinter tool using cBio cancer genomics portal (http://www.cbioportal.org/). (B) Integrated view of co-
occurring somatic oncogenic alterations in 16 cases with FGF/FGFR pathway alterations who received FGFR inhibitors (N ¼ 16, UCSD patients). Each column de-
notes an individual patient, and each row displays a gene. Genetic alterations are color coded by the type of alterations. Co-alterations in oncogenic pathways were
observed in TP53 pathway genes (71%), cell cycleeassociated genes (53%), receptor tyrosine kinases and MAPK pathway-associated genes (35%), PI3K signaling-
associated genes (41%), and other genomic alteration genes (76%). The diagram was prepared in OncoPrinter tool using cBio cancer genomics portal (http://
www.cbioportal.org/).
MSK-IMPACT, Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets; UCSD, University of California San Diego.
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RESULTS

Patients with FGF/FGFR-altered cancers have a worse
prognosis than patients with wild-type FGF/FGFR

When compared to patients with FGF/FGFR-unaltered can-
cers (N ¼ 6500), patients who harbored cancers with FGF/
FGFR gene alterations (N¼ 1074) had significantly shorter OS
[median OS: 26.4 months versus 23.1 months, HR: 0.89, 95%
confidence interval (CI): 0.79-0.99, P ¼ 0.038; Figure 1].

FGF/FGFR pathway alterations were frequently
accompanied by alterations in other signaling pathways

When interrogating the cBioPortal cohort (N ¼ 1074), the
most frequently co-altered pathways/genes were: TP53
4 https://doi.org/10.1016/j.esmoop.2022.100647
[70% (753/1074)]; cell cycle [58% (624/1074)]; PI3K
pathway [55% (588/1074)]; receptor tyrosine kinases and
MAPK pathway [65% (694/1074)]; and other genomic al-
terations [78% (834/1074) patients] (Figure 2A). Only 65
patients of 1074 (6.1%) had no co-alterations accompanying
their FGF/FGFR axis genomic abnormalities.

The landscape of FGF/FGFR pathway and co-occurring al-
ternations in the UCSD cohort of FGFR inhibitor-treated pa-
tients (N¼ 16) is shown in Figure 2B and in Tables 1 and 2 and
is similar to those derived from the larger cBioPortal cohort
with regard to the commonly co-altered genes/pathways
accompanying FGF/FGFR axis aberrations. The median num-
ber of alterations in the FGF/FGFR genes was 1 (range, 1-4).
Alterations in FGF3, FGF4, FGF19, and CCND1 often
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co-occurred, probably because they reside on the same
amplicon on 11q13. Alterations in MDM2 and FRS2 were
mostly concomitant, probably because they reside on the
same amplicon on 12q15. Among UCSD patients with FGF/
FGFR pathway alterations, a wide variety of gene co-
alterations were seen (Figure 2B). The most frequently
co-altered pathways/genes were: TP53 [69% (11/16)]; cell
cycle [50% (8/16)]; PI3K pathway [38% (6/16)]; receptor
tyrosine kinases and MAPK pathway [31% (5/16)]; and other
genomic alterations [75% (12/16)] patients.
Patients harboring cancers with FGF/FGFR pathway gene
alterations accompanied by TP53 pathway or cell cycle
pathway alterations had worse overall survival compared
to patients with FGF/FGFR-altered cancers without those
co-alterations

Interrogating all 1074 individuals with FGF/FGFR-altered
tumors, those harboring alterations in both FGF/FGFR and
in the TP53 pathway (HR: 0.61, 95% CI 0.48-0.79, P ¼

Volume 7 - Issue 6 - 2022
0.0001; Figure 3A) or in the cell cycle pathway (along with
the FGF/FGFR genes) (HR: 0.74, 95% CI 0.59-0.92, P ¼
0.0065; Figure 3B) had significantly shorter OS when
compared to patients with FGF/FGFR-altered cancers
without those co-altered anomalies. However, patients who
had both FGF/FGFR abnormalities and co-alterations in re-
ceptor tyrosine kinases or MAPK or PI3K pathway showed
no significant difference in OS when compared to patients
with cancers harboring FGF/FGFR pathway alterations
without those co-altered pathways (Figure 3C and D).
Characteristics of patients with FGF/FGFR-altered cancers
who received FGFR inhibitor therapy

Sixteen patients with FGF/FGFR pathway alterations
received FGFR inhibitors (Supplementary Figure S2, avail-
able at https://doi.org/10.1016/j.esmoop.2022.100647) at
UCSD. Demographics and patient characteristics are shown
in Table 1. The median age was 61 years. Six patients
(37.5%) were men. The most common diagnosis was
https://doi.org/10.1016/j.esmoop.2022.100647 5
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Table 1. Characteristics of patients with FGF/FGFR pathway gene alter-
ations who received FGFR inhibitor-based therapies (N [ 16; UCSD
cohort)

Patient characteristics N [ 16

Median agea (range), year 61 (21-82)
Sex, n (%)
Men 6 (37.5)
Women 10 (62.5)

Type of cancer, n (%)
Gastroesophageal 4 (25.0)
Biliary 3 (18.8)
Bladder 1 (6.3)
Urothelial 1 (6.3)
Ovarian 1 (6.3)
Endometrial 1 (6.3)
Glioneuronal 1 (6.3)
Osteosarcoma 1 (6.3)
Gastrointestinal stromal 1 (6.3)
Adenoid cystic carcinoma 1 (6.3)
Undifferentiated sarcoma 1 (6.3)

FGF/FGFR alterations,b n (%)
Amplification 12 (75.0)
Single-nucleotide variant 3 (18.9)
Fusion 2 (12.5)

Type of FGFR inhibitor, n (%)c

Lenvatinib 12 (75.0)
Ponatinib 2 (12.5)
Pazopanib 1 (6.3)
Infigratinib 1 (6.3)

Number of molecularly matched drugs, n (%)
Monotherapy 5 (31.3)
�Two matched therapies 11 (68.8)

Best response, n (%)
Progressive disease or stable disease <6 months 10 (62.5)
Stable disease �6 months 3 (18.8)
Partial response 3 (18.8)

Median number of lines of prior therapies (range) 2 (1-12)
Median number of deleterious co-alterations (range)d 5 (0-10)
Median progression-free survival, month (range) 4.6 (2.8-51.7)
Median overall survival, month (range) 13.5 (1.2-51.7)

FGFR, fibroblast growth factor receptor; UCSD, University of California San Diego.
a Age at the time of metastatic/locally advanced disease.
bOne patient had both amplification and a single-nucleotide variant.
c See Supplementary Table S1, available at https://doi.org/10.1016/j.esmoop.2022.
100647 for 50% inhibitory concentrations (IC50) of these drugs.
d Variants of unknown significance excluded.
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gastroesophageal cancer [25.0% (4/16)], followed by biliary
cancer [18.8% (3/16)]. FGF/FGFR amplification occurred in
12 patients, single-nucleotide variant (SNV) in three pa-
tients, and fusions in two patients (Table 1). One patient
had both amplification and SNV. Five patients (31%)
received FGFR inhibitors as monotherapy; 11 patients (69%)
received a customized combination. The median number of
prior therapies was 2 (range, 1-12). The median number of
co-alterations, excluding FGF/FGFR alterations, was 5
(range, 0-10). The median PFS and OS were 4.6 months and
13.5 months, respectively.
FGFR inhibitors have activity in the UCSD cohort of
patients with FGF/FGFR axis alterations, especially in
combination with cyclin inhibitors when cyclin-activating
genes are co-altered

Overall, 16 patients with FGF/FGFR alterations were treated
with drugs with potent FGFR inhibitory activity (5 with
6 https://doi.org/10.1016/j.esmoop.2022.100647
monotherapy and 11 with an FGFR inhibitor combined with
one or more other drugs that matched co-activated signals)
(Supplementary Tables S1 and S2, available at https://doi.
org/10.1016/j.esmoop.2022.100647). Partial responses
(PRs) were seen in four patients (9, 12, and 22þ, and 52þ
months) and an additional two patients achieved stable
disease (SD) �6 months (13þ and 15 months). Therefore, 6
of 16 patients attained clinical benefit (SD � 6 months/PR)
[clinical benefit rate (CBR): 38%] (Table 2).

Five patients received monotherapy with an FGFR in-
hibitor; two achieved SD � 6 months/PRdboth with single
alterations on NGS [FGFR2 fusion (biliary tract cancer
treated with infigratinib) and FGFR K656E mutation (glio-
neuronal tumor treated with lenvatinib)]; the other
patients, who did not respond, had pathogenic genomic
co-alterations in their cancers.

Four of 11 patients (36%) who received customized
combination therapy achieved SD � 6 months/PR; all of
these patients had tumors harboring pathogenic co-
alterations in addition to their FGF/FGFR genomic anoma-
lies. These four patients had malignancies as follows
(Table 2 and Supplementary Table S2, available at https://
doi.org/10.1016/j.esmoop.2022.100647): (i) a biliary can-
cer with an FRS2 amplification and CDKN2A alteration
treated with a combination of the FGFR inhibitor lenvatinib
and the CDK4/6 inhibitor palbociclib (achieving a PR for
w12 months); (ii) a patient with osteosarcoma whose tu-
mor harbored amplifications in FGF23, FGF6, FRS2 as well as
CDK4 and CCND2 amplifications [treated with lenvatinib and
palbociclib with an ongoing PERCIST 1.0 (PET) response at
52þ months29]; (iii) an ovarian cancer harboring FGFR4 and
CDK6 amplification (also treated with lenvatinib and pal-
bociclib with a PR that lasted w9 months); and (iv) a
gastrointestinal stromal tumor (status after four prior sys-
temic therapies) with FGFR1 amplification as well as MYC
and ERBB2 amplification, and KIT, ARID1A, and NOTCH2
mutations treated with lenvatinib and pembrolizumab
(ARID1A alterations may induce sensitivity to immune
checkpoint blockade30) (achieving SD ongoing at 13.1þ
months).

Importantly, six patients received a combination of drugs
that included the CDK4/6 inhibitor palbociclib (adminis-
tered because of the presence of alterations in the cyclin
pathway) and the multi-tyrosine kinase inhibitor (including
FGFR inhibitor) lenvatinib. Three of the six patients (50%)
achieved a PR (lasting 9, 12, and 52þ months) (Table 2).
The doses used were palbociclib 75 mg p.o. 3 weeks on/1
week off (approved dose ¼ 125 mg p.o. 3 weeks on and 1
week off) and lenvatinib 10 mg p.o. daily (approved dose ¼
24 mg p.o. daily). In each case, the lower modified dose
was the starting dose, and because tolerability was good
and efficacy was seen, the doses were not further titrated
upwards. The most common side effects in these patients
were grade 1-2 rash and fatigue, which were manageable
without dose adjustments. There was one patient who
experienced grade 3 neutropenia and required dose
modification of palbociclib (dose decreased to 75 mg p.o. 1
week on and 1 week off).
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Table 2. Clinical and molecular characteristics as well as clinical outcomes of patients treated with FGFR inhibitor-based therapies (N [ 16)

ID Age,
years

Sex Diagnosis Molecular characteristics
(laboratory vendor,
source)

PD-L1 CPSa TMB (muts/Mb) Treatment
regimen

Number of prior
line of therapies

PFS
(month)

OS
(month)

Best response

1 37 F Gastroesophageal
cancer

(FM, tissue)
FGFR2 amplification
CDKN2A loss
MYC amplification
APC I1307K
ARID1A P2139fs*62
TP53 F113C

Unknown Unknown Ponatinib 6 2.3 2.3 PD

2 78 M Bladder cancer (FM, tissue)
FGFR1 amplification
NF1 Q1218*
TP53 R267G
ERBB2 I767M
MLL2 P3668fs*5, splice site
177-1G>T
ZNF703 amplification

Unknown Unknown Pazopanib 3 1.2 1.2 PD

3 72 M Urothelial cancer (FM, tissue)
FRS2 amplification
AKT2 amplification
BRIP1 truncation
PIK3CA H450_V461>GS
RAF1 amplification
MDM2 amplification
MYC amplification
RNF43 S262*
ARID2 S889*
(GH, blood)
FGFR2 V516L, G131R

Unknown Unknown Lenvatinib,
olaparib

2 5.8 10.2 SD <6 months

4 33 F Biliary cancer (FM, tissue)
FGFR2-BICC1 fusion

Unknown Unknown Infigratinib 2 21.6D 21.6D PR

5 47 F Biliary cancer (FM, tissue)
FGFR2-BICC2 fusion
POLE R446Q
(GH, blood)
PIK3CA amplification

Unknown 2.4 Lenvatinib,
everolimus

2 3.7 3.7 SD <6 months

6 81 M Biliary cancer (FM, tissue)
FRS2 amplification
MDM2 amplification
CDKN2A p16INK4a R80*,
p14ARF P94L
CEBPA G103_G104del

Unknown Unknown Lenvatinib,
palbociclib

1 11.8 12.0 PR

7 30 F Osteosarcoma (FM, tissue)
FGF23 amplification
FGF6 amplification
FRS2 amplification
CDK4 amplification
CCND2 amplification
MDM2 amplification

Unknown 3 Lenvatinib,
palbociclib

4 51.7D 51.7D PR (per PERCIST)
Note: At 32 months,
the patient had a
new lesion that was
resected; she has
continued on therapy,
doing well at 51.7D
months
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Table 2. Continued

ID Age,
years

Sex Diagnosis Molecular characteristics
(laboratory vendor,
source)

PD-L1 CPSa TMB (muts/Mb) Treatment
regimen

Number of prior
line of therapies

PFS
(month)

OS
(month)

Best response

8 60 M Gastroesophageal
cancer

(FM, tissue)
FGF19 amplification
FGF3 amplification
FGF4 amplification
CCND1 amplification
CDK6 amplification
MET amplification
ARID1A R1276*
TERC amplification
TP53 P278L

10 8 Lenvatinib,
palbociclib,
nivolumab

2 0.9 2.5þ PD

9 21 F Glioneuronal tumor (FM, tissue)
FGFR1 K656E

Unknown 2 Lenvatinib 2 15.1 30.6D SD ‡6 months

10 73 F Endometrial
cancer

(FM, tissue)
FGFR2 N549K
PIK3CA G1049R
PTEN K125N
ARID1A Q2115fs*33
CHD4 R975H
CTCF S282fs*21
MLL3 S2123*
TP53 Y163C

2 1 Lenvatinib,
everolimus

1 3.2 22.1 PD

11 54 M Gastroesophageal
cancer

(FM, tissue)
FGF19 amplification
FGF3 amplification
FGF4 amplification
CCND1 amplification
CDK6 amplification
CDKN2A/B loss
PIK3CA amplification
SOX2 amplification
PIK3CG amplification
PRKCI amplification
TERC amplification
TP53 G245D

1 7 Lenvatinib,
palbociclib,
nivolumab

1 2.7 2.7 PD

12 82 M Gastroesophageal
cancer

(FM, tissue)
FGFR2 amplification
TP53 A159V

Unknown 4 Lenvatinib 1 4.7 6.5 SD <6 months

13 63 F Ovarian cancer (FM, tissue)
FGFR4 amplification
FLT4 amplification
PDGFRB amplification
CDK6 amplification
TP53 K132R
(GH, blood)
TP53 K132, K120M
PIK3CA E545K
MET amplification
PDGFRA amplification
KIT amplification

Unknown 6 Lenvatinib,
palbociclib

12 8.9 17.6D PR
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Table 2. Continued

ID Age,
years

Sex Diagnosis Molecular characteristics
(laboratory vendor,
source)

PD-L1 CPSa TMB (muts/Mb) Treatment
regimen

Number of prior
line of therapies

PFS
(month)

OS
(month)

Best response

14 72 F Gastrointestinal
stromal tumor

(FM, tissue)
KIT K558_E562del, N822K,
V654A
ARID1A truncation
NOTCH2 P6fs*27
(GH, blood)
FGFR1 amplification
MYC amplification
ERBB2 amplification

Unknown 7 Lenvatinib,
pembrolizumab

4 13.1D 13.1D SD ‡6 months

15 61 F Adenoid cystic
carcinoma

(FM, tissue)
FGF19 amplification
FGF3 amplification
FGF4 amplification
CCND1 amplification
FANCA F1263del
(GH, blood)
FGFR1 amplification

Unknown Unknown Lenvatinib,
palbocicib

4 2.8 2.8þ PD

16 47 F Undifferentiated sarcoma (FM, tissue)
FGFR3 amplification
AKT2 amplification
BRCA2 R1190W
CCNE1 amplification
CDK4 amplification
MDM2 amplification
AR amplification

Unknown Unknown Pazopanib,
everolimus

1 4.4 15.2 SD <6 months

CPS, combined positive score; FM, Foundation Medicine; GH, Guardant Health; muts/Mb, mutations per megabase; PD progressive disease; PD-L1, programmed death ligand-1; PR, partial response; SD, stable disease; TMB, tumor mutational
burden.
Cases with SD >6 months/PR were highlighted in bold.
a PD-L1 was assessed with the 22C3 antibody.
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Figure 3. Overall survival among patients with FGF/FGFR pathway alterations stratified by co-occurring alterations in TP53 pathway (TP53, MDM2), cell cycle
pathway (CDKN2A, CDKN2B, CCND1, CCND2, CDK4, CDK6), receptor tyrosine kinases and MAPK pathway (EGFR, ERBB2, ERBB3, ERBB4, MET, PDGFRA, KIT, IGF1R,
RET, ROS1, ALK, FLT3, NTRK1, NTRK2, NTRK3, NF1, KRAS, HRAS, NRAS, ARAF, BRAF, RAF1, MAP2K1, MAP2K2, MAPK1), and PI3K pathway (PIK3CA, AKT2, PTEN,
PIK3CG (N [ 1074, data from cBio cancer genomics portal). Data derived from cBioPortal cancer genomics, MSK-IMPACT Clinical Sequencing Cohort. (A) Overall
survival comparing the impact of FGF/FGFR and TP53 pathway alterations. When compared to FGF/FGFR pathway-altered/TP53 pathway-unaltered cases (N ¼ 321),
FGF/FGFR pathway-altered/TP53 pathway-altered cases (N ¼ 753) had significantly worse overall survival (HR of 0.61, 95% CI 0.48-0.79, P < 0.001). (B) Overall survival
comparing the impact of FGF/FGFR and cell cycle pathway alterations. When compared to FGF/FGFR pathway-altered/cell cycle pathway-unaltered cases (N ¼ 450),
FGF/FGFR pathway-altered/cell cycle pathway-altered cases (N ¼ 624) had significantly worse overall survival (HR of 0.74, 95% CI 0.59-0.92, P ¼ 0.007). (C) Overall
survival comparing the impact of FGF/FGFR and receptor tyrosine kinases and MAPK pathway alterations. When compared to FGF/FGFR pathway-altered/receptor
tyrosine kinases and MAPK pathway-unaltered cases (N ¼ 380), FGF/FGFR pathway-altered/receptor tyrosine kinases and MAPK pathway-altered cases (N ¼ 694)
did not demonstrate a significant difference in overall survival (HR of 0.88, 95% CI 0.71-1.10, P ¼ 0.27). (D) Overall survival comparing the impact of FGF/FGFR and
PI3K pathway alterations. When compared to FGF/FGFR pathway-altered/PI3K pathway-unaltered cases (N ¼ 486), FGF/FGFR pathway-altered/PI3K pathway-altered
cases (N ¼ 588) did not demonstrate a significant difference in overall survival (HR of 0.99, 95% CI 0.80-1.23, P ¼ 0.96). See Figure 2A and B for the list of selected
genes associated with the pathway alterations.
CI, confidence interval; HR, hazard ratio; NA, not available.
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DISCUSSION

Herein we report prognostic and predictive observations
related to the presence of FGF/FGFR genomic alterations in
a group of pan-cancer patients. Our results indicate that
FGF/FGFR axis alterations portend a poor prognosis, as re-
flected by the observation that patients whose malig-
nancies harbor FGF/FGFR genomic alterations have
significantly shorter survival than those with malignancies
that are wild type for FGF/FGFR. These results are consistent
with prior observations of worse prognosis in patients
whose tumors harbor FGFR amplification.31,32
10 https://doi.org/10.1016/j.esmoop.2022.100647
Importantly, 94% of 1074 cancers harbored genomic co-
alterations in addition to the FGF/FGFR genomic abnormal-
ities. The most common co-altered pathways/genes were in
the TP53 axis (TP53 or MDM2 genes) (70% of cancers); cell
cycle (58%); PI3K pathway (55%); and receptor tyrosine ki-
nases and MAPK pathway (65%). Additional genomic alter-
ations were observed in 78% of patients (Figure 2A). The
presence of FGF/FGFR axis genomic alterations along with
TP53/MDM2 or cell cycle pathway alterations correlated
with worse OS compared to individuals with FGF/FGFR-
altered cancers without those co-alterations. Co-alterations
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Figure 3. Continued.
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in receptor tyrosine kinases or MAPK or PI3K pathway did
not show prognostic significance.

Sixteen patients with diverse malignancies presented at
the UCSD face-to-face MTB20 had FGF/FGFR pathway
genomic alterations and were treated with cognate FGFR
inhibitors, either alone or together with agents that tar-
geted pathogenic co-alterations. Targeting FGFR signaling
alone or together with co-alterations achieved a clinical
benefit rate (SD � 6 months/PR/CR) of 38% (6/16) and a
median PFS of 14 months among those six patients. Most of
the tumors [88% (14/16)] had genomic co-alterations along
with the FGF/FGFR pathway abnormalities. These co-
alterations could conceivably be associated with primary
resistance to FGFR inhibition. Indeed, it has been recog-
nized that targeting FGF/FGFR pathway alterations is
complicated.13 Some challenges include differences in
antitumor activity among different cancer diagnoses, and
variable responses depending on the type of FGFR alter-
ations [fusions and mutations have been reported to ach-
ieve higher clinical benefit from FGFR-tyrosine kinase
inhibitors (TKIs) when compared to amplification].8,33

Moreover, multiple different mechanisms for primary and
Volume 7 - Issue 6 - 2022
acquired resistance to FGFR-targeted therapies have been
revealed.34-36

We hypothesized that resistance to FGFR inhibitors in FGF/
FGFR-altered cancers could be due, in some cases, to genomic
complexity with co-alterations that differ from patient to
patient. In our cohort, in line with our hypothesis, 14 of our
16 patients had �1 potentially important molecular co-
alterations in their cancer. A similar phenomenon was
observed in theMSK-IMPACT Clinical Sequencing Cohort.The
median number of deleterious co-alterations, excluding FGF/
FGFR alterations, in the UCSD cohort was 5 (range, 0-10).

With regard to FGFR inhibitor therapy, altogether 6 out of
16 of our patients derived clinical benefit [SD � 6 months
(N ¼ 2)/PR (N ¼ 4)]. The two patients with FGFR alterations
(a fusion and a mutation) and no co-alterations responded
to single-agent FGFR inhibitors. The other four responders
received a combination regimen that targeted FGFR and
one or more of the co-alterations.

The most common combination utilized included palbo-
ciclib (CDK4/6 inhibitor) (given due to cyclin pathway
genomic abnormalities) and the potent multi-tyrosine ki-
nase FGFR inhibitor lenvatinib (given to six patients). Three
https://doi.org/10.1016/j.esmoop.2022.100647 11
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of the six patients (50%) attained a PR (duration 9, 12, and
52þ months). The doses used were palbociclib 75 mg p.o.
for 3 weeks on and 1 week off (approved dose ¼ 125 mg
p.o. 3 weeks on and 1 week off) and lenvatinib 10 mg p.o.
daily (approved dose ¼ 24 mg p.o. daily). In each case,
there were no serious adverse events and efficacy was
observed in half of the patients, despite the fact that doses
were substantially lower than those approved by the FDA
for the individual drugs.

It has been reported that tumors with FGFR fusions
appear to respond to FGFR inhibition.13,37,38 In our cohort,
there were two patients with an FGFR fusion. One patient
attained a durable PR, and the other patient did not
respond; both patients had biliary cancers. There were
several potential reasons for different clinical outcomes.
First, the patient who achieved a PR had no co-alterations,
while the other patient had concomitant molecular alter-
ations, including in the PI3K pathway, a signal transduction
pathway downstream of FGFR pathway.39 Co-occurrence of
FGF/FGFR and PI3K pathway alterations could imply coop-
eration as potential dual oncogenic drivers.40-42 Therefore,
an FGFR inhibitor as a monotherapy would not disrupt
oncogenic signaling driven by PI3K pathway alterations.
Preclinical studies have reported a high synergistic activity
between PI3K and FGFR inhibitors.43-45 However, the early
phase combination trial was challenging because of diffi-
culty with tolerability with the high rates of treatment in-
terruptions and dose modification.46 Another factor may be
that, while lenvatinib is a potent FGFR inhibitor, infigratinib
(which was the drug administered to the patient who
responded) has an even lower IC50 for FGFR
(Supplementary Table S1, available at https://doi.org/10.
1016/j.esmoop.2022.100647). Finally, the fusion FGFR2-
BICC1 in the case of the patient who attained a PR is
known to be a typical oncogenic driver, while FGFR2-BICC2
in the other patient may not be as clear-cut.8

There are several limitations to the current report. Firstly,
the therapeutic arm of the study has a small sample size
and a variety of histologies (though the latter may also
suggest generalizability of results). Secondly, molecular
characteristics of tumors could evolve, particularly with
therapeutic pressure, and serial molecular follow-up was
not available. Future investigations may require molecular
sequential analysis, such as monitoring by circulating tumor
cell-free DNA analysis. Thirdly, some FGF/FGFR pathway
alterations might not be pivotal for cancer cells, and tar-
geting other accompanied signaling pathways might have a
greater effect. Finally, most of the FGFR inhibitors used in
this study were not selective to the FGF/FGFR pathway.
However, despite these limitations, the current research
targeting FGF/FGFR signaling in real-world practice provides
evidence for the importance of impacting the products of
co-occurring alterations, especially in the cyclin pathway.

In conclusion, we demonstrate that FGF/FGFR-altered
tumors have a poor prognosis and frequent co-alterations in
several important pathways. Co-targeting of cyclin and FGF/
FGFR alterations with the CDK4/6 inhibitor palbociclib and
the FGFR inhibitor lenvatinib can be carried out safely, with
12 https://doi.org/10.1016/j.esmoop.2022.100647
responses seen in three of six patients, including ongoing
benefit in a patient with refractory osteosarcoma who
continues to do well at 52þ months. Further prospective
evaluation of this strategy is warranted in patients whose
tumors harbor FGF/FGFR pathway alterations.
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