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Summary
The genotyping of millions of human samples has made it possible to evaluate variants across the human genome for their possible as-

sociation with risks for numerous diseases and other traits by using genome-wide association studies (GWASs). The associations between

phenotype and genotype found in GWASs make possible the construction of polygenic scores (PGSs), which aim to predict a trait or

disease outcome in an individual on the basis of their genotype (in the disease case, the term polygenic risk score [PRS] is often

used). PGSs have shown promise for studying the biology of complex traits and as a tool for evaluating individual disease risks in clinical

settings. Although the quantity and quality of data to compute PGSs are increasing, challenges remain in the technical aspects of devel-

oping PGSs and in the ethical and social issues that might arise from their use. This ASHG Guidance emphasizes three major themes for

researchers working with or interested in the application of PGSs in their own research: (1) developing diverse research cohorts; (2)

fostering robustness in the development, application, and interpretation of PGSs; and (3) improving the communication of PGS results

and their implications to broad audiences.
Introduction

One of the major growth areas in human genetics over the

past decade has been the development and application of

polygenic scores (PGSs). PGSs aim to provide an indicator

of the genetic propensity of an individual to manifest a

particular disease or trait relative to other individuals in

the cohort on the basis of his or her DNA variants across

the genome. As a statistical instrument derived solely

from a person’s genotypes, a PGS does not depend on

phenotype data of family members. Because most associ-

ated variants are not causal variants, a PGS goes beyond

using high-impact variants for understanding monogenic

diseases and does not depend on the characterization

of causal genetic variants or the disease mechanisms.

Commonly, PGSs are generated by using variants discov-

ered in one or several genome-wide association studies

(GWASs). Although more statistically advanced approaches

have been developed,1 in the simplest form, a PGS is a sum

of trait-associated alleles, one for each independently associ-

ated region, weighted by estimates of their average effect
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size in a ‘‘Discovery GWAS.’’ The conceptual foundation of

PGSs has its roots in approaches developed in quantitative

genetics, especially for applied problems in plant and ani-

mal breeding.2 The development and use of PGSs in hu-

mans presents both new opportunities and challenges. We

discuss these here and offer several recommendations for

future research and use (see Box 1).

ThisASHGGuidancewasdevelopedbyawriting group led

by members of the Professional Practice and Social Implica-

tions Committee to discuss and provide recommendations

on threemajor issues related to the technical, ethical, and so-

cial considerations of PGSs. It was approved by the ASHG

Board of Directors for publication in October, 2022. A series

of related, independent guidances on PGSs in clinical prac-

tice is in development by colleagues in theAmericanCollege

of Medical Genetics and Genomics (ACMG), and we also

refer readers to other recently published commentaries.3,4
Develop diverse research cohorts and analyses

Several limitations of PGSs arise from the lack of diverse

cohort data in PGS development. The accuracy of a PGS
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Box 1. Recommendations for future development and use
of PGSs

1. Develop diverse research cohorts and analyses.

2. Foster robustness in scientific development, vali-

dation, application, and interpretation of PGSs.

3. Accompany research products with communica-

tionsmaterials for broad, non-specialist audiences.
might be compromised when applied to a cohort that dif-

fers in key demographic characteristics from the discovery

cohort(s) used to develop the PGS.5–7 This is known as the

PGS portability problem (sometimes also called the gener-

alizability problem or transferability problem). Several

factors contribute to the portability problem—although

the relative importance of each is still an open topic of

research. First, linkage disequilibrium (LD) varies across

human populations, and because PGSs are based on

marker loci that are in LD with the as-yet-unknown causal

loci, inaccuracies will be introduced if one assumes the

GWAS marker loci have the same LD with causal loci in

different populations.8 Fine-mapping approaches that

aim to identify causal loci can help ameliorate this prob-

lem.9 Second, different causal alleles will be at different

frequencies (or even absent) in different populations. At

a global scale, a variant common in one region is more

likely to be found in several others, whereas rare variants

are more likely to be localized.10,11 Third, even causal var-

iants that are shared might have differing average effect

sizes in different populations (e.g., see Shi et al.12). One

potential cause is differing genetic backgrounds between

discovery and application cohorts, which might give rise

to different average effect sizes as a result of gene-gene in-

teractions (i.e., epistasis, e.g., see Patel et al.13). Another

potential cause is a different distribution of non-genetic

individual risk factors between the discovery and imple-

mentation cohorts, when such factors moderate the effect

of a genotype. Such factors are varied and phenotype

dependent; examples include age, sex, diet, pollutant

exposure, access to healthcare, and gut microbiome

composition. In quantitative and statistical genetics, these

factors are often collectively referred to as ‘‘environment,’’

and they induce what are known as ‘‘genotype-by-envi-

ronment interactions’’ or ‘‘context-dependent effects.’’

In the context of PGSs, exposures to different environ-

mental backgrounds, perhaps because of sex, age, or socio-

economic status, have been shown to impact the accuracy

of some PGSs,6 and some traits appear to show context-

dependent heritability,14 which implies variable predic-

tive ability of PGSs.

As a result of the portability problem, there might be

diminished applicability of PGSs for individuals under-rep-

resented in genetic studies, potentially misrepresenting

disease risk and exacerbating health inequities.5,15–17

Lower accuracy and higher bias of PGSs might arise for in-
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dividuals whose genetic and environmental backgrounds

are not well represented in the GWASs that underlie a

particular PGS. This variation in the usefulness of a PGS

for particular individuals might lead to varied opportu-

nities to realize potentially beneficial management strate-

gies. For instance, as a result of better representation in

GWASs to date, individuals of European ancestry can

expect a higher predictive accuracy from PGSs for pheno-

types such as cardiovascular disease, breast and prostate

cancer, and diabetes, resulting in better clinical surveil-

lance and management as well as targeted therapy recom-

mendations.5,16,18–21 Furthermore, under-represented and

marginalized groups often experience environmental

health disparities, such as pollutant exposures, nutrition

deficits, or lack of access to clean water or basic healthcare.

These environmental backgrounds can potentially exacer-

bate portability challenges due to genotype-environment

interactions,22 in turn accentuating equity concerns in

the applicability of PGSs.4

Given these problems, we recommend that future devel-

opment of PGSs incorporate increased cohort diversity

along multiple dimensions (e.g., ancestry, age, sex, health-

care access, and other environmental variables relevant to

focal phenotypes). Specifically, funding agencies and re-

searchers should aim to build more diverse cohorts and

make the best use of such resources via collaborative data

sharing.3 Over the past few years several such efforts,

including the All of Us, H3Africa, and the Trans-Omics for

Precision Medicine (TOPMed) programs (see Web Resources),

have been launched with the goal of increasing the diver-

sity and representation of previously understudied groups

in human genomics research and better understanding the

contribution of genetic and environmental factors on dis-

ease risks.

We also recommend more research efforts directed

toward developing and implementing computational

methods that address issues associated with the inclusion

of diverse and heterogeneous datasets. Pan-ancestry or

meta-ancestry GWASs are helping to identify trait-associ-

ated variants that are more likely to replicate broadly; these

variants can then be used for PGS construction.23 As

mentioned above, fine-mapping approaches can help miti-

gate one aspect of the portability problem.24 Further, given

the potential for gene-environment interactions, more

effort on understanding and incorporating these interac-

tions is needed.25 Assessing and reporting the accuracy of

a PGS across different subsets within a test sample is one

means to understanding whether problems of generaliz-

ability in a PGS might exist.5,6

When one increases diversity in research cohorts, there

is the potential for unintended group harm. Efforts should

be made to avoid the application of genetics study results

that might stigmatize or discriminate against vulnerable

populations. Guidance on this topic is presented in a

recent Perspective article by ASHG26 and in another

ASHG Guidance for researchers on effective community

engagement.27
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Foster robustness in scientific development, validation,

application, and interpretation of PGSs

Numerous technical challenges arise when developing and

applying PGSs for research, and researchers are encouraged

to consider them each carefully in their work.

First, the accuracy of the effect size estimates used in a

PGS depend on the sample size of the reference GWAS,

the genotyping (or imputation) accuracy, the precision of

the trait measurement, and GWAS modeling decisions,

such as those regarding batch-correction and adjustment

for covariates.1,28–31 During estimation of effect sizes in

the reference GWAS, a correlation between a variant geno-

type and unobserved environmental factors (‘‘environ-

mental confounding’’) or between a variant genotype

and genetic background (‘‘genetic confounding’’) can

lead to inaccurate effect-size estimates.32–34 In addition,

traits that serve as a basis for assortative mating (such as

height and other physical traits, educational attainment

and other behavioral traits, and traits correlated with those

traits) are especially prone to biases in effect-size estimates

because assortative mating induces a correlation between

causal variants for different traits, as well as between vari-

ants and unobserved shared environments between par-

ents.35,36 Importantly, commonly accepted methods of

addressing these confounders, such as including principal

components (PCs) based on common variants as covari-

ates, are not always effective at preventing all confounding

effects (for example, effects of recent, rare variants and

more localized environmental effects,37,38 differences in

local LD among groups,39 and confounding of direct and

indirect genetic effects).40

Second, most PGS calculations assume a lack of interac-

tion and correlation between genetic and non-genetic fac-

tors. Such genotype-by-environment interactions and cor-

relations create two major limitations for the use of PGSs:

(1) a difference in environmental backgrounds between

the GWAS cohort and target individuals can have unpre-

dictable effects on PGS accuracy and biases6; and (2) the

interaction and correlation between a PGS and environ-

mental variables can induce a ‘‘collider bias’’ that under-

mines the use of the PGS as a covariate in modeling a

trait.41 For complex social and environmentally mediated

traits, interactions of genotype and environment (as well

as indirect genetic effects) might be particularly important,

and thus we recommend special care in interpreting PGSs

for such traits42,43).

Third, in many cases there are multiple reference GWASs

available for the same trait, and new ones are emerging.44 In

such cases, one might choose to build a PGS on the basis of

the single ‘‘best’’ GWAS or attempt ameta-analysis approach

to building the PGS.45,46 Meta-analysis brings its own set of

technical challenges, such as variation across studies in

cohort definitions, trait definitions, trait measurement pro-

cedures, genotyping strategies, and corrections for con-

founding factors made in earlier steps of each GWAS. Often

the same set of environmental covariates is not available, or

the covariates are notmeasured in the sameway in the refer-
The American Jour
ence studies and in the individual for whom the PGS is be-

ing calculated, making the resulting PGS vulnerable to the

unknown contributions of these factors even within indi-

viduals of similar genetic ancestry.6

Fourth, specific challenges arise in using PGSs to study

how specific traits have differentiated across groups. Such

studies are often undertaken to address evolutionary

questions, such as whether traits have changed as a result

of directional selection, genetic drift, or stabilizing selec-

tion in changing environments.47,48 However, largely as

a result of several of the technical challenges already

described, to date, robust interpretations of such results

are limited,33,47,49,50 and the methodological and interpre-

tation challenges of these approaches are still being

understood.48,51

Although the issues described above are diverse, we

recommend a concerted effort by researchers developing

and applying PGSs to consider these issues in their ana-

lyses. In particular, careful attention to emerging best

practices and standards is highly recommended,46,52,53

and while reviewing research manuscripts and grants, sci-

entists should be cognizant of the challenges described

above and encourage authors to address limitations of

these approaches. Because many of these issues will most

likely require additional methodological development,

we strongly recommend further research in this area.

Accompany research products with communications

materials for broad, non-specialist audiences

In order to mitigate unintended consequences of research

and downstream application of PGSs, researchers should

make directed efforts to communicate limitations when

sharing and reporting results. This is especially important

because genetic concepts and genetic risk information

can be misunderstood by the public.54–57 One strategy

for addressing this could include an online frequently

asked questions (FAQs) resource to accompany an original

manuscript to guide journalists, lay people, and other re-

searchers regarding the scope of application of the PGS

developed and its limitations (for examples see Clarke

and van El58). Researchers should also engage the commu-

nities being studied and their university or institutional

press office to produce targeted press releases that help to

address common misunderstandings and prevent poten-

tial individual and group harms,59 such as negative psy-

chosocial effects and genetic discrimination,60 that

might arise from such misunderstandings.61 We recom-

mend engaging community stakeholders and colleagues

dedicated to ethical, legal, and social issues during the

development of communication materials to improve the

relevance and readability of these materials for broad audi-

ences, especially in light of recent negative impacts on

communities studied or affected by genetics research that

utilized PGSs.62,63 Adopting principles of user-centered

design64–66 might also promote the development of effec-

tive communication materials tailored to the needs of

members of the relevant audience.67–70
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In certain cases, a research team might wish to indicate

in its publications or other online summaries of their

GWAS results that these are intended for research purposes

only, to discourage inappropriate or premature application

of these metrics by, for example, direct-to-consumer ge-

netic-testing companies.71,72 In addition, within research

papers and derivative works, researchers should adopt

data-visualization and -reporting practices that clearly

convey individual-level error across the whole sample

and within substrata of the data (age, gender, ethnicity/

race/ancestry categories, SES groupings) or indicate when

such stratified analyses are not feasible. If the PGS shows

between-group differences, it must be reported with

caution, especially if the trait has strong social repercus-

sions. There is the potential that variation in the PGS

across populations could be used in a racist, sexist, or

otherwise discriminatory way to explain differences be-

tween populations.4 Other potential risks associated with

inappropriate communication of PGSs include promoting

attitudes of genetic determinism and de-emphasizing the

role of social determinants of health4,59).

Conclusion

The development of methods to derive and improve

PGSs and the application of these methods for numerous

clinical outcomes and phenotypes of interest are

ongoing and very active areas of research. Therefore, strate-

gies and considerations aimed at improving the appro-

priate and equitable implementation of PGSs in research

and clinical care will continue to evolve. However, given

the increasing use of PGSs in both clinical and research ap-

plications, it is important for researchers to examine the

current challenges and limitations of working with PGSs.

This ASHG Guidance proposes three major recommenda-

tions to help address some of these challenges. As future

work moves forward in this area, it is critical for researchers

to pro-actively consider, apply, and build upon these rec-

ommendations in order to avoid misapplication of PGSs.

Overall, a more comprehensive approach addressing

increased diversity in human genetics and genomics

studies, improved methodology in PGS development,

and more clear communication with the public will help

achieve the promise of PGSs in basic and clinical research.
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penda Dansokho, S., Colquhoun, H., Fagerlin, A., Giguere,

A.M.C., Hakim, H., Haslett, L., et al. (2021). User Involvement

in the Design and Development of Patient Decision Aids and

Other Personal Health Tools: A Systematic Review.Med. Decis.

Making 41, 261–274.

67. Bombard, Y., Clausen, M., Mighton, C., Carlsson, L., Casalino,

S., Glogowski, E., Schrader, K., Evans, M., Scheer, A., Baxter,

N., et al. (2018). The Genomics ADvISER: development and

usability testing of a decision aid for the selection of incidental

sequencing results. Eur. J. Hum. Genet. 26, 984–995.

68. Reumkens, K., Tummers, M.H.E., Gietel-Habets, J.J.G., van

Kuijk, S.M.J., Aalfs, C.M., van Asperen, C.J., Ausems,

M.G.E.M., Collée, M., Dommering, C.J., Kets, C.M., et al.

(2019). The development of an online decision aid to support

persons having a genetic predisposition to cancer and their

partners during reproductive decision-making: a usability

and pilot study. Fam. Cancer 18, 137–146.

69. Suckiel, S.A., Odgis, J.A., Gallagher, K.M., Rodriguez, J.E., Wat-

nick, D., Bertier, G., Sebastin, M., Yelton, N., Maria, E., Lopez,
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