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Within the human lung, mast cells typically reside adjacent to the conducting airway and assume a
mucosal phenotype (MCT). In rare pathologic conditions, connective tissue phenotype mast cells
(MCTCs) can be found in the lung parenchyma. MCTCs accumulate in the lungs of infants with severe
bronchopulmonary dysplasia, a chronic lung disease associated with preterm birth, which is charac-
terized by pulmonary vascular dysmorphia. The human mast cell line (LUVA) was used to model MCTCs or
MCTs. The ability of MCTCs to affect vascular organization during fetal lung development was tested in
mouse lung explant cultures. The effect of MCTCs on in vitro tube formation and barrier function was
studied using primary fetal human pulmonary microvascular endothelial cells. The mechanistic role of
MCTC proteases was tested using inhibitors. MCTCLUVA but not MCTLUVA was associated with vascular
dysmorphia in lung explants. In vitro, the addition of MCTCLUVA potentiated fetal human pulmonary
microvascular endothelial cell interactions, inhibited tube stability, and disrupted endothelial cell
junctions. Protease inhibitors ameliorated the ability of MCTCLUVA to alter endothelial cell angiogenic
activities in vitro and ex vivo. These data indicate that MCTCs may directly contribute to disrupted
angiogenesis in bronchopulmonary dysplasia. A better understanding of factors that regulate mast cell
subtype and their different effector functions is essential. (Am J Pathol 2020, 190: 1763e1773;
https://doi.org/10.1016/j.ajpath.2020.04.017)
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Bronchopulmonary dysplasia (BPD) is the most common
pulmonary disease because of premature birth, resulting in
10,000 BPD cases annually in the United States alone.1e4 A
BPD diagnosis increases the risk of long-term pulmonary
morbidity, including recurrent wheezing and asthma.3,5e7

Multiple pathologic symptoms are associated with BPD,
including alveolar simplification, disrupted vasculogenesis,
altered inflammation, and oxygen toxicity.1e4,6e10

It is widely believed that mast cells (MCs) arise from the
common myeloid progenitor via the basophil/MC progeni-
tor as MC progenitors.11e13 MC progenitors are released
from the bone marrow and enter target tissues, where they
mature under the instructive signals of their local microen-
vironment.11,14 Consequently, MCs from various tissues
differ phenotypically from each other. Distinct populations
are named [mucosal MCs (MCTs) and connective tissue
MCs (MCTCs)] based on the location in which they were
first identified. It was later discovered that the two MC
subtypes express different proteases.14e19 MCTCs express
stigative Pathology. Published by Elsevier Inc
two tryptases (TPSAB1 and TPSB2), carboxypeptidase A3
(CPA3), and chymase 1 (CMA1), whereas MCTs express
only tryptases.16e18,20 In healthy human lungs, MCTs are
found in the trachea and large airways.11,14,21,22

A significant enrichment of MC-specific genes in BPD has
been previously identified.10 Immunohistochemical staining
of lung tissues confirmed a 50-fold increase in the accumu-
lation of CMA-expressing MCTCs in lungs with BPD.10

MCTCs are rare in human lungs but are found in asthma
with high Th2 cell counts and in chronic obstructive pul-
monary disease.23e27 The accumulation of MCTCs in a ge-
netic model with BPD-like pathologic features has also been
reported.10 Another report found that MC accumulation in a
model of BPD was associated with neonatal supraphysiologic
oxygen exposure and that MC-deficient mice are partially
. All rights reserved.
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protected from pathologic findings.22 This study did not
provide insight into the phenotype of the MCs involved.

Although several studies describe disorganization of the
pulmonary microvasculature in BPD, limited studies have
explored the cause of this impairment.3,9,28,29 Pulmonary
vasculature development starts at embryonic day (ED) 9.5 in
mice or gestational week 4 in humans.3,30,31 The preexisting
loose network of endothelium begins to arrange around the
distal airspaces during the canalicular stage through the process
of angiogenesis and vasculogenesis.9,31 Capillaries are then
embedded in the primary septa during the saccular phase and
continue to expand andmature.9,31 Premature infants born at 24
to27weeksof gestation are in the late canalicular stage (ED16.5
to 17.5 in mice), which is also the period of high BPD risk.2e4,9

We hypothesized that MCTC accumulation contributes to
the impaired vascularization during early lung development
in BPD. We found that human MCTCs but not MCTs
significantly disrupt vascular organization in mouse fetal
lung explants and human fetal lung microvascular endo-
thelial cells. Mechanistically, MCTCs enhance initiation of
endothelial cell-cell interactions but destabilize mature
endothelial cell tight junctions.
Materials and Methods

Cell Culture

LUVA (Kerafast, Boston, MA), an immortalized human MC
line, derived from an 8-weekeold CD34þ mononuclear cell
culture,32 were maintained in StemPro34 (Gibco, Carlsbad,
CA) supplied with 1% penicillin/streptomycin and 200
mmol/L L-glutamine. LUVAs express all three MC-specific
proteases, including TPSAB1/TPSB2, CMA1, and CPA3,
under these culture conditions.

Fetal human pulmonary microvascular endothelial cells
(feHPMVCs; ScienCell, Carlsbad, CA) were maintained in
endothelial cell growth medium with 1% penicillin/strep-
tomycin and 5% fetal bovine serum. All experiments were
conducted with feHPMVCs within 5 passages.

Human bronchial epidermal (16HBE) cells, a SV40 trans-
formed human bronchial epithelial cell line, were grown using
Dulbecco’s modified Eagle medium supplemented with 10%
fetal bovine serum, 1% penicillin/streptomycin, 1% nones-
sential amino acids, sodium pyruvate, and HEPES buffer.
16HBE cells were cultured at 37�C in a humidified incubator
containing 5% CO2. The cells were allowed to form tight
junctions and then differentiated at air-liquid interface.

All animal-related experiments are approved by the
University Committee on Animal Resources (University of
Rochester Medical Center, Rochester, NY) under protocol
2008-043E.

Induced MCTs

16HBE cells were seeded on the apical surface of a 12-well
transwell (Corning, Corning, NY) and allowed to reach
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confluence. The epithelial cells were allowed to form tight
junctions, then differentiated at air-liquid interface for 2
days. LUVAs were then seeded at 0.25 million cells/mL in
the basal chamber. The phenotype of the co-cultured MCs
were assessed by quantitative RT-PCR (RT-qPCR) analysis
of the expression levels of TPSAB1, TPSB2, CMA1, and
CPA3 (Supplemental Figure S1A). Changes in CMA1 and
phosphorylated CPA3 were then confirmed using Western
blot analysis. Western blot (Supplemental Figure S1B)
confirmed the absence of CMA1 and CPA3 in co-cultured
LUVAs.

Ex Vivo Angiogenesis Experiments

Timed mating of wild-type C57BL/6J mice was performed.
At ED 16, the dam was sacrificed and mouse embryos were
dissected from the uterine horns. The lung lobes of ED 16
mice were carefully dissected, washed twice with Dulbec-
co’s phosphate-buffered saline, and then placed on the
apical surface of fibronectin (F1141, 2 mg; Sigma-Aldrich,
St. Louis, MO) precoated transwells. The individual lung
lobes were allowed to attach for 30 minutes at 37�C and
cultured at 37�C for 48 hours in the absence or presence of
30,000 feHPMVC-primed MCTC/MCT LUVAs in the bot-
tom chamber.

In Vitro Angiogenesis Experiments

The 96-well tissue culture plates were coated with Matrigel
(Corning) on ice and allowed to polymerize at 37�C for 30
minutes. feHPMVCs were then seeded at 2000 cells per
well alone (control) and mixed with 5000 MCTCs or 5000
MCTs. The cells were imaged for 12 hours using an inverted
phase-contrast microscope. The images were processed and
quantified for tube complexity (number of mesh) using
ImageJ software version 1.52a(NIH, Bethesda, MD; http://
imagej.nih.gov/ij).

Transendothelial Electrical Resistance

feHPMVC cultures were seeded at 100,000 cells per well in
fibronectin-coated inserts of a 12-well transwell plate and
allowed to grow to confluence. The cells were allowed to
form tight junctions until the transendothelium electrical
resistance (TEER) was >200 mU. MCTCs or MCTs were
added at 20,000 cells per well to the bottom well, and TEER
was measured after 12 hours with an epithelial volt/ohm
meter voltahmmeter (World Precision Instruments, Sarasota,
FL) equipped with a pair of Chopstick Electrode Sets
(World Precision Instruments).33

Paracellular Endothelial Permeability Assay

feHPMVC cultures were seeded at 100,000 cells per well on
fibronectin-coated inserts of a 12-well transwell plate and
allowed to establish tight junctions, as above. MCTCs or
ajp.amjpathol.org - The American Journal of Pathology
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MCTs were added at 20,000 cells per well to the bottom
well, respectively. Then 100 mL of 300-mg/mL fluorescein
isothiocyanateedextran (10,000 mol. wt.; Invitrogen,
Carlsbad, CA) was added to the media in the apical cham-
ber. The maximum possible permeability was established by
adding fluorescein isothiocyanateedextran to fibronectin-
coated transwells without cells. After 6 hours, 100 mL of
media was harvested from the basal chamber, and fluores-
cence intensities were quantified on a VICTOR2 1420
Multilabel Counter using Wallac software (PerkinElmer
Life Sciences, Waltham, MA). The fluorescent intensities
from all samples were normalized to the fluorescent in-
tensity of the maximum possible permeability.

Inhibitor Treatment

For inhibitor treatment, 200 mg/mL of soybean-derived
serine protease inhibitor (VWR AMRESCO, K213-1G;
Avantar, Radnor, PA) or 30 mmol/L chymostatin (MP
Biomedicals, Irvine, CA) was applied to LUVAs for 1 hour.
Before adding to endothelial cells, the LUVA cells were
washed with Dulbecco’s phosphate-buffered saline and
added to the in vitro angiogenesis experiments.

RT-qPCR

Quantitative RT-PCR (RT-qPCR) was performed using pre-
developed noncommercial assays (PrimerBank, http://pga.
mgh.harvard.edu/primerbank, last accessed June 9, 2016).
Briefly, RNA samples were isolated using the Absolutely
RNA Microprep kit (Agilent, Santa Clara, CA). Reverse
transcription reaction was performed using the Script cDNA
Synthesis Kit (BioRad, Hercules, CA), and cDNA samples
were run in duplicate using Power SYBR Green Master
Mix (Applied Biosystems, Foster City, CA). The results
were analyzed using the DDCT method.

Western Blot Analysis

To confirm MC phenotype, LUVAs were snap frozen in
liquid nitrogen and lysed with radioimmunoprecipitation
assay buffer (Thermo Fisher Scientific, Waltham, MA) with
a protease inhibitor cocktail (Thermo Fisher Scientific) on
ice and then boiled at 100�C for 10 minutes. To detect MC
proteases in the conditioned media, the media was snap
frozen with liquid nitrogen and then boiled for 10 minutes.
Samples were then resolved on SDS-PAGE and transferred
onto polyvinylidene difluoride membranes (BioRad).
Membranes were blocked by incubating in 5% (w/v) mo-
lecular grade blocker (BioRad) in Tris-buffered saline with
Tween-20 for 1 hour at room temperature. MC-specific
proteases were detected by overnight incubation in anti-
bodies (1:1000 dilution) against tryptase-b2 (Thermo Fisher
Scientific), CMA1 (MA5-11717; Thermo Fisher Scientific),
and CPA3 (16236-1-AP; Proteintech). Finally, membranes
were incubated for 1 hour with a mouse anti-rabbit IgG
The American Journal of Pathology - ajp.amjpathol.org
horseradish peroxidase (Santa Cruz Biotechnology, Dallas,
TX) or goat anti-mouse IgG horseradish peroxidase (Santa
Cruz Biotechnology) antibody and developed using Super-
signal West Pico PLUS kit (Thermo Fisher Scientific).

Lectin Staining

Ex vivo cultured E16.5 C57BL/6J mouse lungs were fixed in
4% paraformaldehyde (Thermo Fisher Scientific). The fixed
lobes were then cleared using a protocol adapted from
CUBIC Cancer3 and stained with tetramethylrhodamine-
conjugated isolectin-IB4 (L5264; Sigma-Aldrich) and
DAPI (D3571; Invitrogen). The samples were then mounted
and visualized using a multiphoton microscope (FVMPE-
RS; Olympus, Tokyo, Japan).

feHPMVCs monolayers on transwells were fixed using ice-
cold 10%neutral buffered formalin (Thermo Fisher Scientific).
The fixed feHPMVCs were then stained with DyLight
594elabeled Ulex Europaeus Agglutinin I (DL-1067, 1:1000
dilution; Vector Laboratories, Burlingame, CA).

Immunofluorescent Staining

Ex vivo cultured E16.5 C57BL/6J mouse lungs were fixed in
4% paraformaldehyde (Thermo Fisher Scientific). The fixed
lobes were then cleared using a protocol adapted from
CUBIC Cancer34 and stained with Von Willebrand factor
primary antibodies (GA52761-2, 1:250 dilution; Dako,
Glostrup, Denmark). Primary antibody staining was then
detected by Texas Redeconjugated goateanti-rabbit sec-
ondary antibody (T6391, 1:1000 dilution; Life Technology,
Carlsbad, CA). DAPI was used to stain nuclei. The samples
were then mounted and visualized using a multiphoton
microscope (FVMPE-RS, Olympus).

feHPMVC monolayers on transwells were fixed using ice-
cold 10% neutral buffered formalin (Thermo Fisher Scienti-
fic). The fixed feHPMVCs were then stained with mouse
anti-human CDH5 antibody (555661, 1:250 dilution; BD
Pharmingen, San Diego, CA). Nucleus were stained with
DAPI. The samples were then visualized using a DM5500B
fluorescent microscope (Leica, Wetzlar, Germany).

Three-Dimensional Reconstruction and Quantification

Three-dimensional reconstruction was performed using seg-
mentation function with Amira software version 6.5 (Thermo
Fisher Scientific). The reconstructed surfaces were visualized
with surface view function. The volumes of the reconstructed
structure were listed in the material statistics. The relative
vessel volume was determined by normalizing the volume of
IsolectinB4 to the volume of DAPI in each field.

Statistical Analysis

Data that involved pairwise comparison (such as quantita-
tive PCR, Western blot, relative vessel volume, growth
1765
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Figure 1 Connective tissue phenotype mast cells (MCTCs) cause
microvascular dysmorphism in the developing lung. A: Representative im-
ages of embryonic mouse lung tissue explant cultured for 48 hours alone
[no mast cells (MCs) (control)] and with MCTCs or mucosal phenotype mast
cells (MCTs). The microvasculature was stained with tetramethylrhodamine-
conjugated isolectin B4 (red), and nuclei were stained with DAPI (blue).
Arrows indicate endothelial cells stained with Isolectin B4. B: Represen-
tative three-dimensional reconstructed microvasculature showing the inset
region. C: Quantification of total volume of vasculature relative to the total
nuclear volume in each condition. n Z 6 (and in triplicates). **P < 0.01
(t-test). Scale bars Z 100 mm.
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phase or decay phase time, TEER, or paracellular vascular
permeability) were tested using a paired t-test. The tube
complexity overtime and of branches in in vitro angiogen-
esis experiment were tested using the c2 test. P < 0.05 was
considered to be statistically significant.

Results

MCTCs Induce Fetal Lung Microvascular Dysmorphism
ex Vivo

Previous studies described the accumulation of MCTCs in
BPD10 and mouse models of BPD-like pathologic find-
ings.22 Disruption and deficiency in lung parenchyma
microvasculature have been well described in BPD.2,3,9

Therefore, this study tested whether there was a direct link
between the presence of MCs and microvascular dysmor-
phia during fetal lung development at a stage when BPD
risk is highest. Fetal lung tissues were isolated from ED 16.5
mice and placed in culture for 48 hours in the absence or
presence of human MCs. Lung microvasculature (Figure 1)
was compared by reconstructing the thee-dimensional
structure of DAPI-stained nuclei and isolectin B4 staining
vessels. A significant reduction was observed in the relative
vessel volume when mouse lung tissues were cultured in the
presence of MCTCs (t-test P Z 0.0069) (Figure 1C). Lungs
co-cultured with MCTCs also had a marked dysmorphism,
featuring reduced connection among endothelial cells
(Figure 1B). Importantly, when mouse lung tissues were
cultured in the presence of MCTs (Figure 1, A and B),
vascular structure was normal (Figure 1B). These results
were confirmed by Von Willebrand factor staining of
vascular endothelial cells (Supplemental Figure S2). This
study tested whether these observations were associated
with the presence of cell death but low levels of apoptotic
cells were found in all conditions (Supplemental Figure S3,
A and B). Interestingly, RT-qPCR analysis found no sig-
nificant loss of pulmonary endothelial cell marker gene
expression (Supplemental Figure S3C). These data suggest
that MCTC-induced vascular dysmophism may be due to
alterations in endothelial cell capacity to form vessels.

MCTCs Directly Disrupt feHPMVC Tube Formation

The effects of MCTCs on vascular structure were confirmed
by testing their ability to directly alter feHPMVC tube for-
mation. feHPMVCs were allowed to form tubes during a
12-hour period in the absence or presence of MCs. Hourly
imaging quantified the initiation and stabilization of tubular
structures (Figure 2). Co-culture of feHPMVCs with MCTCs
was associated with notable differences in tubular structures
(c2 test P < 0.0001) (Figure 2). When co-cultured with
MCTCs, the rate of developing tubular complexity was a
mean of 1.8 hours faster (2.87 versus 5.25 hours, t-test
P < 0.0001) when compared with feHPMVCs cultured on
matrigel alone (Figure 3C). The stability of tubular
1766
structures in MCTC co-cultured samples was also disrupted
compared with feHPMVCs cultured on matrigel alone
(Figure 2). The time at which the cultures reached a 70%
reduction in complexity was reduced by a mean of 4.5 hours
faster (11 versus 6.75 hours, t-test PZ 0.0046). feHPMVCs
co-cultured on matrigel with MCTs had no significant dif-
ferences in tube formation, including in both the initiation
and stabilization phases.
MCTCs Promote Initiation but Disrupt Maintenance of
Endothelial Cell-Cell Interactions

The number of cells at individual cell-cell junctions during
the initiation of feHPMVC tube formation (2 hours) was
carefully quantified. During this initial phase, feHPMVCs
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 Connective tissue phenotype mast cells (MCTCs) disrupt endothelial cell tube formation. A: Representative, color-enhanced images of fetal human
pulmonary microvascular endothelial cells (feHPMVCs) undergoing tube morphogenesis when cultured for 12 hours alone (blue) and with MCTCs (red) or
mucosal phenotype mast cells (MCTs) (green). B: Quantification of tube complexity (Materials and Methods) defined each hour during tube formation. C:
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MCTC co-culture (c2 test).

MCTCs Regulate Cell Angiogenesis
appear to elongate, migrate, and form multicellular nodes.
These nodes are composed of two to five individual endo-
thelial cells, with most nodes containing three cells
(Figure 3A). When feHPMVCs were cultured with MCTCs,
a significant shift in the distribution (c2 test P < 0.0001) of
endothelial cells per node (Figure 3B) was observed. The
shift included an increase in the number of nodes with more
endothelial cells, with a significant increase in the number of
nodes that contained five branches (13% versus 35%,
P Z 0.0012). No differences in the distribution of the
number of cells that formed nodes was observed in
feHPMVCs when co-cultured with MCTs.

Although MCTCs appeared to promote initiation of
endothelial cell-cell junction formation in nodes, they also
were associated with an inability to maintain tube
The American Journal of Pathology - ajp.amjpathol.org
structures. Therefore, this study then tested whether
MCTCs inhibited the stability of endothelial cell-cell in-
teractions. feHPMVC monolayers were grown to conflu-
ence in the upper chamber of a transwell and assayed for
TEER and pericellular permeability in the absence or
presence of MCs placed in the bottom chamber. TEER
was significantly reduced in feHPMVC monolayers that
contained MCTCs (t-test P < 0.0001) (Figure 4B). Simi-
larly, pericellular permeability was significantly increased
in feHPMVC monolayers that contained MCTCs (t-test
P < 0.0006) (Figure 4A). MCTs had no effects on
feHPMVC TEER or permeability. In addition, immuno-
staining for CDH5 revealed a drastic and selective loss of
cell-cell junctions in the presence of MCTCs but not
MCTs (Figure 4C).
1767
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CMA Activity Is Necessary for the Vasculodisruptive
Effects of MCTCs

We hypothesized the MC-specific serine proteases,
including tryptase (tryptase-a/b1 and tryptase-b2) and
CMA1 played an important role in the vasculodisruptive
effects we identified. Therefore, this study analyzed the ef-
fects of two different serine protease inhibitors, soybean
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trypsin inhibitor or chymostatin, on the ability of MCTCs to
affect endothelial cell tube formation in vitro (Figure 5).
Soybean trypsin inhibitor pretreatment of MCTCs
completely blocked the accelerated initiation of feHPMVC
tube formation (Figure 5) and the increased instability of
feHPMVC tube complexity (Figure 5). Chymostatin pre-
treatment of MCTCs completely blocked the accelerated
initiation of feHPMVC tube formation (Figure 5) and
Control
MCTC Co-cultured
MCT Co-cultured

ured

Figure 4 Connective tissue phenotype mast
cells (MCTCs) destabilize endothelial cell-cell
junctions. A: Quantification of paracellular
permeability of fetal human pulmonary microvas-
cular endothelial cell (feHPMVC) monolayer alone
(control; blue) and with MCTCs (red) or mucosal
phenotype mast cells (MCTs; green). B: Quantifi-
cation of transendothelial electrical resistance
(TEER) in confluent cultures of feHPMVC mono-
layers alone (control) (blue) and with MCTCs (red)
or MCTs (green). C: Representative images of
feHPMVC monolayers in each condition indicated.
Cell-cell contacts are visualized by staining for
CDH5 (green), and endothelial cell surface glyco-
protein (UEA1) and nuclei are visualized by DAPI.
n Z 4 (and in triplicates). ***P < 0.001,
****P < 0.0001 (t-test). Scale bars Z 100 mm.
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MCTCs Regulate Cell Angiogenesis
partially but significantly blocked the increased instability of
feHPMVC tube complexity (Figure 5, D and F). These data
suggest that broad inhibition of MC proteases (by soybean
trypsin inhibitor) or preferential inhibition of CMA (by
chymostatin) significantly blocks the ability of MCTCs to
after in vitro endothelial cell angiogenesis.

This study next examined whether chymostatin treatment
blocked the ability of MCTCs to disrupt vascular structures
in embryonic lung tissue ex vivo. Again, vascular structures
in ED 16.5 mouse lung tissue were visually disrupted when
cultured in the presence MCTCs for 48 hours (Figure 6,
AeC), including a quantitative reduction in tissue vessel
volume (Figure 6D). However, when MCTCs were pre-
treated in chymostatin, their ability to disrupt vascular
structures was significantly attenuated (Figure 6).
Discussion

Prior studies have revealed MCs are heterogeneous, with
molecular phenotypes defined by their tissue environ-
ment.16e20 Commonly acknowledged MC subtypes include
MCTCs and MCTs, which are classified predominantly based
on their protease composition.17e19 Although MCs occupy
the lung and upper airways, they commonly assume a MCT

phenotype. MCTCs are rare in the distal lung and typically
only found in individuals with chronic obstructive pulmonary
The American Journal of Pathology - ajp.amjpathol.org
disease or refractory/severe asthma.11,14,18,21,22,24,26,35,36

Despite the potential for distinct MC phenotypes to have
distinct functions, the pathophysiologic effects of the pres-
ence of MCTCs in the lung are not clear. MCs, particularly
MCTCs, accumulate in the lungs of infants with severe
BPD.10 The goal of this study was to understand the possible
consequences of MCTC accumulation in the BPD lung pa-
renchyma. Because parenchymal vascular abnormalities are a
cardinal feature of BPD, this study tested whether MCTCs
could directly disrupt the formation of the parenchymal
vasculature, which is essential for lung function. This study
found that MCTCs, but not MCTs, lead to abnormal formation
of pulmonary microvascular endothelial structure both
ex vivo and in vitro. Importantly, the activity of MC-specific
proteases are necessary for the vasculodisruptive effects.

MCs can disrupt angiogenesis under pathologic con-
ditions.22,26,37e48 MC accumulation was observed in some
BPD animal models, including hyperoxia challenged mice
and rats.22 A study in pulmonary hypertension, which is
often associated with BPD, suggests that MCTCs promote
lung vascular remodeling.41 Interestingly, a recent BPD
study found that MC-deficient mice are protected from air
space damage by neonatal hyperoxia, which hints at the
antiangiogenic effects of MCs under this condition22 The
current ex vivo study provides direct evidence of the
possible impairment MCTC accumulation can cause in the
late-canalicular and early-saccular phase, during which
1769
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Figure 6 Chymase inhibition protects against
microvascular dysmorphism in the developing lung.
A: Representative images of embryonic mouse lung
tissue explant cultured for 48 hours alone [no mast
cells (MCs) (control)] and with connective tissue
phenotype mast cells (MCTCs) or with MCTCs pre-
treated with chymostatin. The microvasculature
was stained with tetramethylrhodamine-conjugated
isolectin B4 (red), and nuclei were stained with
DAPI (blue). B: Representative three-dimensional
reconstructed microvasculature in A. C: Represen-
tative three-dimensional reconstructed microvas-
culature showing higher magnification of a region
in B. D: Quantification of total volume of vascula-
ture relative to the total nuclear volume in each
condition. n Z 5 (and in triplicates). **P < 0.01,
***P < 0.001 (t-test). Scale bars Z 100 mm.
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preterm infants are at high risk for BPD.2,4,9 Interestingly, a
study in mice found that the presence of MCTCs is important
for the proper development of spinal cord vasculature.49 A
different study in chicken lung also found that MCTCs and
MCTs are recruited during embryonic development.50

However, MCTCs are rarely found in healthy human
lungs, and a mouse embryonic study found that MCs are not
recruited to the healthy lung until after delivery.51 This
evidence indicates that MCTCs can facilitate vascular
development and remodeling but do not contribute to
normal human lung development.

Although MCTCs were clearly associated with a diminution
in lung vascular structures ex vivo (Figures 1 and 6), it was
noted that their presence had a biphasic effect on endothelial
1770
cell tube formation in vitro (Figures 2 and 5). This study
quantified endothelial tube stability by measuring the time at
which the cultures had 70% of maximal tube complexity. This
decision was based on a careful evaluation of the timing and
distribution of tubular structures (data not shown), suggesting
the effect size was most evident at this level.
Disruption of cell-extracellular matrix and cell-cell in-

teractions is reported to be involved in microvascular structure
dysmorphism.52e54 The current study data suggest thatMCTCs
caused a marked loss of CDH5 but spared many other surface
proteins, such as the targets of isolectin B4 (Figure 4C). CDH5
is important for maintaining endothelial adherens junctions,
which help to balance vascular quiescence and angiogenesis.
The loss of surface CDH5 can lead to increased cell migration
ajp.amjpathol.org - The American Journal of Pathology
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and proliferation.53 In fact, preliminary studies suggest that
MCs can significantly enhance feHPMVC proliferation (data
not shown), which is a phenotype consistentwith tight junction
impairment. Another recent study found that the loss of surface
CDH5 on corneal microvascular endothelial cells leads to a
microvasculature simplification, resembling the current
study’s in vitro phenotype.54

Our serine protease inhibitor experiments suggest that MC
proteases, specifically CMA1, play an important role in dis-
rupting angiogenesis (Figures 5 and 6). This finding is
consistent with the previous in vivo study, which found that
inhibition of CMA1 can protect against renal microvascular
damage in the diabetic rat.55 CMA1, tryptase-a/b1 and tryp-
tase-b2 may affect angiogenesis through many different
mechanisms.37,43,45,46 CMA1 can cleave angiotensin I, pro-
ducing angiotensin II and promoting matrix metalloproteinase
9 maturation. MC serine proteases can also cleave membrane-
bound stem cell factor (SCF), stimulating production of more
SCF.27,52 Our preliminary RT-qPCR analysis found a signifi-
cant increase in feHPMVC SCF gene regulation (data not
shown). This finding is partially supported by a study that
found that SCF is a potent endothelial permeability factor that
promotes internalization of CDH5 in mouse corneal model,52

which leads to corneal microvasculature dysmorphism.
There are limitations to the studies presented here.

Although the effects of human MCs on human endothelial
cells are studied here in vitro, LUVA does not recapitulate
all aspects of human primary MCs. Likewise, our ex vivo
mouse lung model lacks many of the complexities of the
postnatal human lung. Moreover, mouse lung and human
MC line (LUVA) co-culture can have potential histo-
incompatibility issues. This study used the transwell system
with a 0.45-mm filter size, which prevents the mouse lung
and human MC line (MCTC LUVA) from direct contact.
This study also included MCT LUVA as the second control,
which helped rule out the possible phenotype due to histo-
incompatibility. However, these studies take advantage of
using the mouse lung from the saccular stage of histologic
development, the time when infants are at the greatest risk
for BPD.3,9,30 Interestingly, DAPI staining of ex vivo lung
tissue suggested changes in the overall structure of the
parenchymal region in the presence of MCTCs. These
changes may be a secondary effect of the vascular dys-
morphia caused by MCTCs or could be an independent and
direct effect. This study did not quantify these changes
because our system almost certainly does not recapitulate
proper distal airspace structure or morphologic features.
Testing the effects of MCTCs directly on alveolar formation
and structure should be directly tested in appropriate model
systems and is one focus of our future studies.
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