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We developed a novel method for efficiently estimating time-varying selection coefficients from genome-wide ancient DNA

data. In simulations, our method accurately recovers selective trajectories and is robust to misspecification of population

size. We applied it to a large data set of ancient and present-day human genomes from Britain and identified seven loci

with genome-wide significant evidence of selection in the past 4500 yr. Almost all of them can be related to increased

vitamin D or calcium levels, suggesting strong selective pressure on these or related phenotypes. However, the strength

of selection on individual loci varied substantially over time, suggesting that cultural or environmental factors moderated

the genetic response. Of 28 complex anthropometric and metabolic traits, skin pigmentation was the only one with signifi-

cant evidence of polygenic selection, further underscoring the importance of phenotypes related to vitamin D. Our ap-

proach illustrates the power of ancient DNA to characterize selection in human populations and illuminates the recent

evolutionary history of Britain.

[Supplemental material is available for this article.]

Ancient DNA (aDNA) provides direct insight into human evolu-
tionary history. So far, this information has mainly been used to
study demographic history—the migrations, splits, and admix-
tures that humans experienced in the recent past (Skoglund and
Mathieson 2018). But, in principle, aDNA can also tell us about
phenotypic evolution and, in particular, about the contribution
of natural selection to phenotypic and genomic variation.
Compared with demographic inference, this is more challenging,
because studies of natural selection typically require larger sample
sizes than studies of population history, which can integrate infor-
mation from across the genome.

Although some recent studies have used aDNA to study selec-
tion and phenotypic evolution, they havemostly focused on a rel-
atively small number of loci (e.g.,Wilde et al. 2014;Mathieson and
Mathieson 2018; Kerner et al. 2021). Studies that performed ge-
nome-wide scans for selection using aDNA (Mathieson et al.
2015; Skoglund et al. 2017; Margaryan et al. 2020) have compared
allele frequencies across populations but have not made use of the
precise temporal information available from direct dating of an-
cient samples. For example, the approach of Mathieson et al.
(2015) was able to detect selection that happened some time in
the past 8000 yr, somewhere in Western Eurasia, but could not
be more specific.

With the recent publication of large aDNA data sets (e.g.,
Olalde et al. 2019; Margaryan et al. 2020; Patterson et al. 2022),
sample sizes for some regions are now in the hundreds of individ-
uals, large enough to study selection with good spatial and tempo-
ral resolution. However, there is a lack of suitable methods to
analyze these data. There aremany publishedmethods for estimat-
ing selection coefficients from time series data (e.g., Bollback et al.
2008; Malaspinas et al. 2012; Mathieson and McVean 2013; Feder
et al. 2014; Lacerda and Seoighe 2014; Steinrücken et al. 2014;

Terhorst et al. 2015; Tataru et al. 2017), but all of them unrealisti-
cally assume that selective pressures are constant over time, and
most are too slow to run onmillions of markers at once. We there-
fore developed a novel statistical approach that is able to estimate
arbitrary time-varying selection coefficients while being fast
enough to run genome-wide.

The population of Britain, from 4500 yr before present (BP;
i.e., the start of the Bronze Age) to the present day is ideal to
show this approach for several reasons. First, it is relatively homo-
geneous in terms of both genetics and environment. Second, it is
the population with the largest aDNA sample size. Third, there is a
large amount of data about the genetic basis of complex traits in
this population owing to analysis of the UK Biobank. Finally,
one of the few studies that attempted to detect selection over
this time period (based on data from present-day individuals)
was performed in this population (Field et al. 2016), giving us a
point of comparison for our aDNA-based approach.

Methods

We begin by formally defining the data, the inference problem,
and the model we used to solve it. Our model is a generalization
of the one used by Mathieson and McVean (2013). We assume a
haploidWright–Fisher (WF) population model whose size t gener-
ations before present was 2Nt. Time runs backward, so that t=0 is
the present, and t=T is the earliest point where we have data. We
are interested in the frequency of a single allele with two types A
and a. In generation t, the a allele has relative fitness 1 + st/2 rela-
tive to A. Our inferential target is the vector s = (s0, . . . , sT ) of se-
lection coefficients over time. The population size history (N0,
…, NT) is also allowed to vary with time, but we assume that it is
known and do not attempt to jointly estimate it with s.
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The data consist of pairs of counts {(at , nt )}
T
t=0. Each pair

(at , nt ) [ Z2
≥0 represents the number at of a alleles observed out

of nt samples collected t generations ago. Missing data or genera-
tions where no sampling occurred are indicated by setting nt=0.
Our model conditions on the sample sizes nt, and we suppress no-
tational dependence on them going forward.

The data-generatingmodel is as follows. At time t, let the (un-
observed) population frequency of the a allele be ft∈ [0, 1]. Given
ft, the data in generation t are binomially distributed with success
probability ft:

at |ft � Binom(nt , ft ). (1)

The latent allele frequency trajectory f = (f0, f1, . . . , fT ) evolves ac-
cording to aWFmodel with genic selection and nomutation (e.g.,
Ewens 2004). Given ft and st, the number of individuals Ft−1∈ [0,
2Nt−1] possessing the a allele in next generation has distribution

Ft−1|ft ,st � Binom(2Nt−1, f ′t ), where f ′t = (1+ st/2)ft
1+ st ft/2

, (2)

and then we set ft−1 = Ft−1/(2Nt−1).
Let a = (a0, . . . , aT ) denote the data. The complete likelihood

is

ps(a, f) = pT (fT )p(aT |fT )
∏T−1

t=0

p(at |ft )ps(ft |ft+1), (3)

where πT( fT) is a prior distribution on the initial allele frequency
(described in more detail below), and the probabilities ps(ft |ft+1)
and p(at|ft) are specified by Equations 1 and 2. (Throughout this
section, we use the notation ps to denote probability distributions
that depend on the selection parameters s.) The likelihood of the
observed data is obtained by marginalizing Equation 3 over f:

ps(a) =
∫
f
ps(a, f). (4)

By exploiting the Markov structure of Equation 3, the integral
(4) can be efficiently evaluated using the forward algorithm. Each
step of the forward algorithm costs O(Nt−1Nt ) owing to the need
to evaluate the transition probability (2) for all possible values of
ft−1 and ft. When the effective population size is large (greater
than 103, say), this quadratic scaling causes computation to become
slow, and it is advantageous to model the latent allele trajectory ft
using a continuous approximation. Several have been proposed, in-
cluding using the WF diffusion (Bollback et al. 2008; Malaspinas
et al. 2012; Lacerda and Seoighe 2014; Steinrücken et al. 2014;
Ferrer-Admetlla et al. 2016), Gaussian approximations to the WF
model (Mathieson and McVean 2013; Feder et al. 2014; Lacerda
and Seoighe 2014; Terhorst et al. 2015), and approximations based
on the beta distribution (Tataru et al. 2015, 2017; Gompert 2016;
see also Malaspinas 2016 and references therein). A recent review
(Paris et al. 2019) found the beta-with-spikes (hereafter, BWS) approx-
imation of Tataru et al. (2017) to perform consistently better than
other approaches, so we use it as our starting point.

In thismodel, the latent frequency ft∈ [0, 1] of the selected al-
lele is modeled as a mixture distribution with three components.
There are two atoms at ft=0 and ft=1 to allow for the possibility
of allele loss or fixation, and the third component is a beta density
characterizing the intermediate frequencies, ft∈ (0, 1). The form of
thismodel ismotivated by the fact that, in the originalWFprocess,
the probability of loss or fixation is positive, whereas it is zero if ft
possesses an absolutely continuous density.

Although the BWS model is state of the art, room for improve-
ment remains. Paris et al. (2019) found that, although generally ac-
curate, the BWS approximation degrades when selection is strong
and the effective population size is small. Crucially, we cannot nec-
essarily rule such a regime out when analyzing aDNA data. Another

potential shortcoming, not reported by Paris et al. (2019) but en-
countered when we implemented the BWS model, concerns the
method used to approximate the transition probability

p(ft+Dt = y|ft = x, Nt , st ). (5)

We found that errors in the moment recursions used to com-
pute these probabilities (Equations 6 onward of Paris et al. 2019)
tended to accumulate, leading to numerical instability and situa-
tions in which the variance of the resulting beta approximation,
or the spike probabilities, were sometimes computed to be nega-
tive (Python code illustrating this phenomenon is included as
Supplemental Code S1). This led us to consider refinements of
the BWS model.

Beta mixture model

Breakdown of themoment-based approximation can be explained
by insufficient degrees of freedom. The two-parameter beta
distribution is not flexible enough to accurately approximate the
density (5) in all cases. A potential solution is to enrich the approx-
imating class of distributions, bymodeling the continuous compo-
nent of Equation 5 as amixture of beta distributions. This solution
is intuitive and also has theoretical justification: By a famous result
of Bernstein (e.g., Feller 2008), it holds for any continuous func-
tion g:[0, 1] � R that

g(x) = lim
M�1

∑M
m=0

g(m/M)bm,M (x), uniformly, (6)

where bm,M is proportional to the Beta(m+1, M−m+1) density.
Hence, by takingM on the right-hand side of Equation 6 to be large
but finite, we can accurately approximate any absolutely continu-
ous density on the unit interval.We refer to this model as the beta-
mixture-with-spikes (BMWS). A schematic of our model, which ac-
companies the discussion in the next few subsections, is shown
in Figure 1.

Under BMWS, the (posterior) density of ft is modeled as a mix-
ture ofM beta densities, plus two atoms at ft=0 and ft=1.We abuse
notation slightly and write this as

ft � pt0d0 + pt1d1 + (1− pt0 − pt1)
∑M
m=0

ctmBeta(atm, btm), (7)

where δx denotes a pointmass at x, andM is a user-specified param-
eter that trades approximation accuracy for speed. To model
allele frequency trajectories, we need to characterize the distribu-
tion of ft−1 when ft has the distribution (7). We follow earlier
work in using a moment-based approximation; however, the
form of approximation is new. Previously (e.g., Lacerda and
Seoighe 2014; Terhorst et al. 2015; Tataru et al. 2017; Paris et al.
2019), the mean and variance of ft−1 were obtained by Taylor
expansion about the infinite-population (zero variance) allele
frequency trajectory, and then a moment-matched Gaussian
or beta distribution was used to approximate the distribution of
ft−1. Here we proceed differently, by directly modeling the action
of theWF transition kernel on a beta-distributed random variable.

Assume first that ft � Beta(a, b), and let f ′t and ft−1 be as in
Equation 2. Using a computer algebra system, we determined that

Eft−1 ≈ a(2a+ b(s+ 2)+ 2)
2(a+ b)(a+ b+ 1)

, (8)

var E(ft−1| f ′t ) ≈
ab(a(1− s)+ a+ bs+ b+ 2)

(a+ b)2(a+ b+ 1)(a+ b+ 2)
, (9)

E var(ft−1| f ′t ) ≈
ab(a(2− s)+ b(s+ 2)+ 4)

4Nt−1(a+ b)(a+ b+ 1)(a+ b+ 2)
. (10)
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(A Mathematica notebook verifying these computations is includ-
ed as Supplemental Code S2.) These approximations are obtained
by Taylor expansion of f ′t about s=0, followed by substituting in
moments of the beta distribution. It would be easy to extend
them to higher powers of s, but we did not find it necessary
because |s| = 0.1 is already at the extreme end of what we expect
to find in natural data. Note that for |s| < 1 (at least), the above
equations imply var ft−1 . 0, so this approximation is robust to
the pathology described above.

Using Equations 8 through 10, we can find α′, β′ such that ft−1
has approximately a Beta(α′, β′) distribution:

a′ = uEft−1, (11)

b′ = u(1− Eft−1), (12)

u ;
Eft−1(1− Eft−1)

varft−1
− 1. (13)

The other components of the BMWSmodel are the “spikes” at ft
=0 and ft=1. They are handled similarly to the original BWS model:
At each mating event ft→ ft−1, some amount of probability mass is
leaked from the beta (mixture) component to atomic components,
corresponding to the events Ft−1 = 0 and Ft−1 = 2Nt−1 in Equation 2
(see the next section for a precise statement).

More generally, suppose the continuous component of ft is a
mixture, as in Equation 7. We make the following approximation
in order to cheaply compute the conditional density of ft−1. Let Ct

have the categorical distribution P(Ct = m)/ ctm, c [ {0, . . . , M},
and interpret Equation 7 hierarchically as

ft |Ct = m � Beta(atm, btm). (14)

We assume that the continuous component of ft−1 is again a
mixture of beta densities, with parameters a′

tm, b
′
tm obtained by ap-

plying Equations 11 through 13 with E(ft−1|Ct = m) (specified by
Equation 14) in place of Eft−1. That is, we separately compute the
effect of Equation 2 on each mixture component in Equation 7
and average the results together using the mixing weights ct . This
“linear” approximation requires only O(M) computations and is
much more efficient and easier to implement compared to model-
ing the effect of applying Equation 2 to the overall mixture shown
in Equation 7. Although a closer approximation could be obtained
by optimizing over themixture weights ct , it would introduce addi-
tional computational expense and did not seemnecessary in the ex-
amples we considered.

The astute reader will have noticed that, in contrast to
some earlier works, we did not properly condition on nonfixa-
tion when constructing this approximation. That is, instead of,
for example, Eft−1 in Equation 8, we should instead have
considered

E(ft−1|0 , Ft−1 , 2Nt−1).

However, the resulting expressions are very complex because
they involve taking expectation over terms of the form (f ′t )

k for k as
high as 2Nt−1. We opted for the simpler and more numerically sta-
ble Equations 8 through 10 and confirmed in simulations that the
model is still accurate across a range of parameter settings.

Figure 1. The BMWSmodel. At each time step t, the latent allele frequency ft is modeled as a mixture of beta distributions, plus spikes at zero and one. In
this diagram, there areM=3mixture components (blue lines).Mixtureweights are indicated as red bars, including the spikeweights p0 and p1 at ft=0 and ft
=1, respectively. After Wright–Fisher (WF) mating, the shape of each beta mixture component, as well as the mixture weights, is updated according to
Equation 15. After observing the data at, the mixture weights are again updated according to Bayes’ rule (Equation 16). The process then iterates.

Natural selection in Britain

Genome Research 2059
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276862.122/-/DC1


Likelihood

The likelihood (4) is calculated using a variant of the usual forward
algorithm for hidden Markov models. We explain this computa-
tion in greater detail here because the approach is nonstandard.

The forward algorithm recursively updates the so-called filter-
ing density p( ft|at,…, aT), which takes the form shown in Equation
7 under ourmodel. Given the filtering density and the observation
at−1, we need to extend the filtering density one step toward the
present to obtain p( ft−1|at−1,…, aT). This is accomplished in stages:

1. We use Equations 8 through 12 to compute a′
tm and b′

tm, as
well as

p′t0 = pt0 + E[ p(Ft−1 = 0|ft , at , . . . , aT )]
and similarly for p′t1. This yields the predictive density

ps(ft−1|at , . . . , aT ) = p′t0d0 + p′t1d1 +
∑M
m=0

c′tmBeta(a
′
tm, b

′
tm), (15)

where we define c′tm = (1− p′t0 − p′t1)ctm.

2. We compute the probability

ps(at−1|at , . . . , aT ) =
∫
ft−1

p(at−1|ft−1)ps(ft−1|at , . . . , aT ),

noting that the integral can be evaluated analytically using
Equations 1 and 15 and conjugacy.

3. We update the mixture weights in Equation 15 to incorporate
the information added by observation at−1. Viewing at−1 as a
draw from the Bayesian hierarchical model defined by
Equations 1 and 15, the posterior mixture weights on the beta
mixture components are

ct−1,m|at−1, . . . , aT / c′t,m
nt−1

at−1

( )
B(at−1 + a′

tm, nt−1 − at−1 + b′
tm)

B(a′
tm, b

′
tm)

,

(16)

where the right-hand side is the BetaBinomial(nt−1, a′
tm, b

′
tm′ ) p.m.f.

The posterior weight on the atom at ft−1 =1 is pt−1,1 / 1{at−1=nt−1},
and similarly for pt−1,0. The constant of proportionality in these
equations is ps(at−1|at , . . . , aT ), calculated in step 2.

4. The filtering distribution ps(ft−1|at−1, . . . , aT ) takes the same
form as Equation 7, with mixture weights as defined in the pre-
ceding step, at−1,m = at−1 + a′

t,m and bt−1,m = nt−1 − at−1 + b′
t,m.

Recalling Equation 4, the log-likelihood of the data is then

log ps(a) =
∑T
t=0

log ps(at |at+1, . . . , aT ). (17)

The running time of this algorithm is O(TM), as opposed to
the standard forward algorithm, which scales quadratically in M
if it were to denote the number of hidden states in an HMM.
This enables us to set M fairly large, ensuring that our model can
flexibly approximate differently shaped filtering distributions.

Prior distribution

The filtering recursion is initialized by setting p( fT) = πT( fT),
where πT is a prior on the ancestral allele frequency. When devel-
oping our method, we observed that the choice of prior affected
the accuracy of inferences in the ancient past when analyzing
aDNA data. This is because when the data are sparsely observed
and allele counts are low, there is not enough data to overwhelm
the prior in the early stages of the Markov chain. An uninforma-
tive choice of πT can falsely suggest that the selected allele expe-

rienced a large change in frequency, potentially generating a
spurious signal of selection. To mitigate this effect, we adopted
a coordinate-ascent approach in which we alternatively maxi-
mized the log-likelihood (17) with respect to (1) the selective tra-
jectory s and (2) the prior πT.

For the prior distribution, we assumed that pT � Beta(aT , bT )
and optimized over αT, βT. Although this choice of prior is not nec-
essarily in the family of Beta(i+1, n− i+1) mixture densities that
comprise the interpolation scheme (6), we can accurately approx-
imate it (or any other choice of prior) by setting M large, setting
cTm / fpT (m/M), where fpT is the prior’s density function, and in-
voking the aforementioned Bernstein approximation theorem.

Inference

Given the probability model and approximations described in the
preceding section, inference is now straightforward. Parameter es-
timation is performed as described in the previous section, with
one additional modification. Depending on the quality and densi-
ty of the data, many entries of smay only be weakly resolved, and
we also found it advantageous to add a regularization term. The ob-
jective function for all the analyses reported below was

max
s

log ps(a)− l
∑T−1

t=0

(st+1 − st )
2, (18)

where λ>0 is a tuning parameter. The regularizer penalizes varia-
tion in s, with larger values of λ shrinking all entries toward a single
common value, s0 = · · · = sT. The number of mixture components
for the BMWS model was fixed to M=100, and we performed three
rounds of coordinate ascent. For all the examples in this paper,
we assumed that the size history (N0, …, NT) is known, but coesti-
mation of selection and size history is also possible using our
method and could be an avenue for future research. Finally, our
method is implemented using a JIT-compiled, differentiable pro-
gramming language (https://github.com/google/jax) to allow for
efficient, gradient-based fitting.

We use a parametric bootstrap to estimate the uncertainty in
our inference. Specifically, after fitting themodel, we sample allele
frequency trajectories f from the posterior distribution (Equation
7). We then sample observations conditional on the trajectory
and the original sample sizes and times, and refit the model to
those observations. We repeat this 1000 times and use the central
95% of results (based on the mean value of s) as an estimate of the
95% credible interval for s, taking into account the uncertainty in
the allele frequency trajectory and the sampling of observations.

Simulations

We evaluated the performance of the estimator under three differ-
ent types of selection, each lasting for T=100 generations:

• Constant selection with s=0.01 and initial frequency of 0.1;
• Selection that decreases sinusoidally from s=+0.02 to s=−0.02
and initial frequency of 0.1; and

• Selection that alternates between +0.02 and −0.02 every 20 gen-
erations and initial frequency of 0.5.

In each case, we simulated allele frequency trajectories in a
WF population with N=104 and then sampled 100 haploid indi-
viduals every 10 generations. We also simulated the same selective
models under two scenarios of variable effective population size:

• Exponential growth from N=104 to N=105; and
• N=104 with a bottleneck of N=103 lasting 10 generations.

For these scenarios,we ran the estimator bothwith the correct
effective population size and incorrectly, assuming a constant N=
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104 to evaluate its robustness to misspecification of N. We varied
the smoothing parameter λ from log10(λ) = 1 to 6 and report the
root mean squared (RMS) bias, variance, and total error of the esti-
mator. Finally, we evaluated the error of the estimator as the sam-
ple size and frequency vary.

These simulations explore the effects of relatively strong se-
lection with human-like demographic parameters (N=104, 100
generations of observations, bottlenecks, and exponential growth;
selection coefficients ofO(0.01)). However, other speciesmayhave
very different sets of parameters.We therefore recommend that for
any particular application, users should run simulations based on
their prior parameter values in order to understand the behavior of
the estimator in their specific case and to determine the appropri-
ate smoothing parameter. We provide functions to easily imple-
ment simulations under arbitrary selective and population size
scenarios. To illustrate this approach, we also ran the simulations
described above using the sampling distribution of the British
aDNA data used in the rest of paper.

aDNA data

We collected data from ancient British individuals dated to the
past 4500 yr from the Allen Ancient DNA Resource (AADR version
44.3, https://reich.hms.harvard.edu/allen-ancient-dna-resource-
aadr-downloadable-genotypes-present-day-and-ancient-dna-data)
and from original sources (Martiniano et al. 2016; Schiffels et al.
2016; Olalde et al. 2018; Brace et al. 2019; Margaryan et al. 2020;
Patterson et al. 2022). Most samples had been sequenced at sites
targeted using the 1240k in-solution capture reagent, and the
small number of shotgun samples had been genotyped at the
1240k SNPs so we therefore restricted our analysis to this set of
SNPs. All data were pseudohaploid. After removing 22 PCA outli-
ers, we were left with 529 ancient individuals and 98 present-day
individuals from the GBR population of the 1000 Genomes
Project (The 1000 Genomes Project Consortium 2015), processed
into pseudohaploid data as part of the AADR (Fig. 2A).

Our method assumes that samples are drawn from a closed,
randomlymatingpopulation inwhich every individual experiences
the same selective pressures. Although no natural population satis-
fies these conditions, we chose to restrict to Britain dated in the pe-
riod 4500 BP to present because it is the largest aDNA sample from a
time and region that comes close to satisfying the assumptions of

themodel for the following reasons. First, Britain is a relatively small
region (compared with previous Europe-wide studies), meaning
that selective pressures are more likely to be shared. Second, we
know from previous aDNA studies that the last major change in an-
cestry in Britain occurred around 4500 BP (Olalde et al. 2018).
Although recent work has shown more recent Bronze Age migra-
tions into Britain (Patterson et al. 2022), these involved populations
that were genetically similar and inhabited geographically adjacent
regions. Third, we confirmed using principal component analysis
(PCA) that all the ancient samples in our analysis clustered with
the present-day British individuals from the 1000 Genomes
Project and,more broadly, with other Northwestern European indi-
viduals in the context of present-day West Eurasia (Fig. 2B).

aDNA analysis

Starting with 1,150,639 autosomal SNPs, we removed 428,624
with a minor allele frequency (MAF) < 0.1 in the full data set on
the grounds that any SNP with a significant frequency shift in
this time period would have intermediate MAF. We also removed
101,967 SNPs with >90% missingness and 210,725 SNPs with
MAF=0 in the ancient data to leave 409,232 SNPs genome-wide.
We inferred selection coefficients ŝt at generation t for every SNP
in the filtered data using a smoothing parameter of λ= 104.5 and
an effective population size of N=104. For each SNP, we summa-

rize this estimate by the mean selection coefficient �s = 1
T

∑T
t=1

ŝt

and the RMS selection coefficient ‖s‖ = T−1 ∑T
t=1 ŝ

2
t

( )1/2
. We

then computed the mean value of ‖s‖ in 20-SNP sliding windows,
sliding in 10-SNP increments, so each SNP contributes to two win-
dows. We denote these window statistics as ‖s‖20. Finally, we fit a
gamma distribution using themethod ofmoments to the values of
‖s‖20 and used this fitted distribution to compute P-values for each
window. We therefore calibrate the test statistics to the genome-
wide background, analogous to the use of genomic control to ac-
count for genetic drift in association studies. We confirmed that
this procedure leads to well-calibrated P-values when there is no
temporal change in allele frequencies by repeating the analysis
with the dates of each sample randomized.

We compared our results with two previous genome-wide se-
lection scans. The first—an aDNA-based scan (Mathieson et al.

2015)—is an allele frequency scan to
detect selection in approximately the
past 8000 yr in Western Eurasia. The sec-
ond, the SDS test (Field et al. 2016), is a
scan based on haplotype lengths in the
present-day United Kingdom population
and is most sensitive to selection in the
past few 1000 yr. First, we restricted the
previous scans to the same set of SNPs
used in the present scan. Next, for each
window in the present scan, we comput-
ed the mean test statistics (chi-squared
statistic for the aDNA scan and squared
Z-score for the SDS) in each window
and compared them with the test statis-
tics generated by our method.

Polygenic selection test

We obtained summary statistics from
genome-wide association studies
(GWAS) for 28 quantitative traits (Taal
et al. 2012; Wood et al. 2014; Horikoshi

A B

Figure 2. Ancient British data. (A) Histogram of dates of ancient individuals. Inset map shows loca-
tions of sites. (B) Principal components of ancient and present-day samples projected onto axes defined
by 777 West Eurasian individuals (for details of these individuals, see Lazaridis et al. 2014).
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et al. 2016; Chen et al. 2021; http://www.nealelab.is/uk-biobank).
We took the intersection of GWAS SNPs with the 1240k SNPs, re-
stricted to P-values < 10−4, and pruned to an independent set of
SNPs by iteratively taking the SNPwith the smallest P-value and re-
moving all other SNPs within 250 kb. For each trait, we calculated
the correlation between effect size and estimated selection coeffi-
cient for each independent SNP.

Results

Our estimator successfully recovers complex selection trajectories
from simulated data (Fig. 3), with total sample sizes and times
equal to the ancient sample, although individual selection coef-
ficient estimates can have considerable uncertainty—on the or-
der of ±0.01− 0.02 with these parameter values. This suggests
that with the data available we should be able to reliably detect
selection coefficients around 0.02, similar to the SDS and aDNA
allele frequency approaches that we compare to our method
(Mathieson et al. 2015; Field et al. 2016). The absolute error of
the estimate does not depend on the selection coefficient, mean-
ing that, at least in this parameter range, we cannot reliably dis-
tinguish smaller selection coefficients from zero. As expected,
the optimal smoothing parameter depends on the true selective
trajectory: the smoother the trajectory, the higher the optimal λ
(Supplemental Fig. S1). We therefore recommend choosing λ
based on simulations, with parameters that are informed by the
specific application.

The estimator performs similarly in the presence of popula-
tion size bottlenecks or exponential growth, although it tends to
slightly oversmooth changes in s in these cases (Supplemental
Fig. S2). It is relatively robust to misspecification of effective pop-
ulation size: If we input constant N to the estimator, results are
not noticeably different than if we specify the correct population
size history (Supplemental Fig. S3). Increasing the size and fre-
quency of sampling reduces error (Supplemental Fig. S4), al-

though, in general, sample size is more important than sampling
frequency; all else being equal, it is better to have infrequent sam-
ples of large sizes than frequent small samples.

In the ancient British data, we identified seven regions with
genome-wide significant evidence of selection (Table 1; Fig. 4A;
Supplemental Table S2). We used a P-value cutoff of 10−7 as a ge-
nome-wide significant cutoff. Although conservative for the
68,061 overlapping windows in our analysis, we used this value
because when we reran the analysis with randomized sample
dates, nowindow had a smaller P-value (Fig. 4B). Three of these re-
gions, whichwe denote HLA1, HLA2, andHLA3, are in the HLA re-
gion on Chromosome 6 (Supplemental Fig. S5), although these
themselves may contain multiple signals. An eighth apparent sig-
nal on Chromosome 4 containing the gene LINC00955 is likely ar-
tifactual. The lead SNP rs4690044 has aMAF of zero in present-day
samples but is around 0.5 in ancient samples. In gnomAD
(Karczewski et al. 2020), rs4690044 has a MAF of 0.48 but no ho-
mozygotes, suggesting an artifactual call caused by a duplication.
An additional locus on Chromosome 12 (P=2.5 ×10−7), which
contains the gene OAS1 and is known to be a target of adaptive
Neanderthal introgression (Sams et al. 2016), was significant at a
Bonferroni-corrected significance threshold (P=7.3 ×10−7).

All seven of these regions were identified by a previous allele
frequency-based selection scan using aDNA to detect selection in
West Eurasia over the past 8000 yr (Fig. 4D; Mathieson et al.
2015). Only LCT and the HLA region show significant evidence
of selection in a haplotype-based scan using present-day sequence
data that aimed to detect selection in Britain in the past few 1000
yr (Fig. 4C; Field et al. 2016) or in a scan based on identifying very
recent coalescence times (about 50 generations) in the UK Biobank
(Nait Saada et al. 2020).

For the non-HLA signals forwhichwehave a strong candidate
for the causal variant based on previous literature, we examined
the precise timing and trajectory of selection estimates from our
model (Fig. 5). The most significant signal was the well-known

Figure 3. Simulation results for the sampling distribution of the ancient British data. Each column shows a different selection coefficient trajectory.
(Top) Estimated selection coefficients. Dashed line indicates simulated selection coefficient; solid blue line, mean selection coefficient from 1000 simula-
tions; and light blue shaded area, region containing point estimates from 950/1000 simulations. (Bottom) Square root of squared bias, variance, and total
squared error as a function of log10(λ). The circled value is the one used for the estimates in the top row.
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LCT locus on Chromosome 2, where the selected allele is associat-
ed with lactase persistence (Enattah et al. 2002; Bersaglieri et al.
2004). We find that selection for the persistence allele was stron-
gest (s≈0.08) from 150 to 100 generations before the present
(roughly 4500–3000 BP) before decreasing to around 0.02 in the
past 50 generations. This large change in strength of selection
might explain the wide range of estimates from models that as-
sume a constant value (Bersaglieri et al. 2004; Peter et al. 2012;
Mathieson andMathieson 2018). AtDHCR7, the haplotype tagged
by the SNP in our analysis, rs7944926, is associated with protec-
tion against vitamin D insufficiency (Wang et al. 2010) and has
been shown to have been under recent selection in both Europe
(Mathieson et al. 2015) and East Asia (Kuan et al. 2013). We infer

that, in Britain, the selection coefficient increased over the past
150 generations, from around zero to 0.06, leading to an increase
in frequency from ∼20% to 60% over the past 3000 yr (Fig. 5).

Derived alleles at SLC45A2 and HERC2 are associated with
light skin, hair, and eye pigmentation (Norton et al. 2007; Eiberg
et al. 2008; Canela-Xandri et al. 2018; Hysi et al. 2018; Simcoe
et al. 2021). Both these alleles have been shown to have been un-
der selection broadly in Europe (Lao et al. 2007; Norton et al. 2007;
Donnelly et al. 2012) and specifically during the Holocene (Wilde
et al. 2014; Mathieson et al. 2015). Time series of aDNA have
shown that both alleles were under selection in the past 5000 yr
in Eastern Europe (Wilde et al. 2014). There, the derived
SLC45A2 allele increased in frequency from 40% to 90% over the

Table 1. Genome-wide significant regions

Locus Chr Start (hg19) End (hg19) Target SNP Allele �s

LCT 2 136,582,694 136,714,178 rs4988235 G 0.064
SLC45A2 5 33,887,419 33,964,938 rs16891982 C 0.043
HLA1 6 28,234,597 28,374,902 (rs6922111) (C) (0.046)
HLA2 6 31,026,009 31,361,897 (rs4947296) (C) (0.034)
HLA3 6 32,083,175 32,581,973 (rs204994) (C) (0.042)
DHCR7 11 71,142,350 71,183,690 rs7944926 A 0.051
HERC2 15 28,334,927 28,526,228 rs12913832 A 0.017

For non-HLA regions, we give the chromosome and position of the center of the lead window, the selected SNP (based on previous literature), the se-
lected allele, and the mean selection coefficient of the lead SNP. For HLA regions, we give the co-ordinates of the three regions that contain significant
signals (Supplemental Fig. S5) and the SNPs with the largest test statistic s‖ ‖. Parentheses indicate that we do not know whether these specific SNPs
were the targets of selection. �s is the average selection coefficient over the observed time period.

A

B C D

Figure 4. Genome-wide scan for selection in Britain. (A) P-values for selection in 20-SNP slidingwindows. Genome-wide significant (P<10−7) windows
are labeled with the closest gene or known target of selection. (B) QQ plot for observations in A (blue) and after randomizing the dates of each sample (red).
(C) Comparison with results of Field et al. (2016). Blue solid line shows the density of mean SDS2 in 20-SNP windows. Labeled red lines indicate windows
that are genome-wide significant in our analysis. (D) Comparison with results of Mathieson et al. (2015). Blue solid line shows the density of mean x23 sta-
tistic in 20-SNP windows. Labeled red lines indicate windows that are genome-wide significant in our analysis. In both C and D, HERC2 is approximately at
the upper fifth percentile of the distribution.
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past 5000 yr, suggesting a selection coefficient of around 0.03, very
similar to our estimate of selection in Britain during the same time
(Fig. 5). For the derived HERC2 allele, we estimate a selection coef-
ficient of 0.02–0.04, similar to that estimated in Eastern Europe, al-
though we find that in Britain, selection was largely restricted to
approximately the past 2000 yr.Wilde et al. (2014) also found a de-
rived allele of TYR to be under strong selection in Eastern Europe,
but we find little evidence that it was under selection in Britain,
except possibly before 3000 BP (window P-value =0.03)
(Supplemental Fig. S6).

At the HLA, we find three regions with genome-wide signifi-
cant evidence of selection, which we denote HLA1-3
(Supplemental Fig. S5). All three correspond to regions identified
by Mathieson et al. (2015) and also have strong evidence of selec-
tion in the Field et al. (2016) scan (Fig. 4C). Because of high gene
density and complex patterns of linkage disequilibrium in the re-

gion, we did not attempt to identify causal genes or variants.
However, we note that the lead SNP at HLA1 is strongly associated
with a decreased risk of celiac disease in the UK Biobank (Canela-
Xandri et al. 2018). The lead HLA2 SNP is associated with an in-
creased risk of ankylosing spondylitis (Canela-Xandri et al.
2018), but the region contains the gene HLA-C, a variant of which
is the strongest known risk factor for psoriasis (Yin et al. 2015).
Finally, the lead SNP at HLA3 is strongly associated with a de-
creased risk of celiac disease and psoriasis (Canela-Xandri et al.
2018). These associations suggest that risk of these diseases has
been affected by selection, even if they themselves are not the di-
rect targets.

Finally, we searched for evidence of polygenic selection by
testing for a correlation betweenGWAS effect size and selection co-
efficient for 28 anthropometric and morphological traits (Fig. 6A;
Supplemental Table S1; Supplemental Fig. S7). We find significant

Figure 5. Trajectories of genome-wide significant non-HLA loci. Solid lines show the inferred selection coefficient and trajectory of the lead SNP given
in Table 1. Shaded areas show 95% credible intervals based on resampling of the allele frequency trajectories and observations. (Top) Estimated selection
coefficients. (Bottom) Estimated allele frequency trajectories.

A B

Figure 6. Evidence of polygenic selection. (A) Each point represents a single GWAS. The x-axis gives the (Pearson) correlation between effect size esti-
mates, β, and selection coefficient estimates,�s, for independent SNPswith GWAS P-value < 10−4 andminor allele frequency (MAF) > 5%. The y-axis gives the
log10 (P-value) for null hypothesis of no correlation. Abbreviations, exact values, and sources are given in Supplemental Table S1. (B) Effect sizes and se-
lection coefficient estimates for independent skin color–associated SNPs in the UK Biobank with GWAS P-value < 10−4 and MAF >5%. If the three labeled
large-effect SNPs are removed, the correlation is weaker but still significant (ρ=−0.20, P=1.5 ×10−5).
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evidence of polygenic selection for reduced skin pigmentation (P=
3.6 ×10−16) (Fig. 6B) but none of the other 27 traits (P> 0.04).
Although not statistically significant, the largest absolute correla-
tion apart from skin pigmentation is for increased calcium. We
do not detect evidence of selection on any of the phenotypes iden-
tified by Field et al. (2016) as under selection in Britain in the past
2000 yr, including height, infant head circumference, and fasting
insulin.

Discussion

Our fast and flexible estimator allowed us to perform a direct ge-
nome-wide scan for selection based on allele frequency trajecto-
ries. On our standard compute cluster, average run-time for each
SNP was 41 sec, requiring 220 Mb of RAM, so analyzing all
1.15 million loci took around 13,000 CPU h in total. All of the sig-
nificant loci we identified have been identified by a previous allele
frequency-based scan using aDNA (Mathieson et al. 2015).
However, that approach scanned for selection broadly in
Holocene Europe andwas unable to localize selection further in ei-
ther space or time. Here, we are able to localize selection to Britain
in the past 4500 yr and, even further, to identify changes in the
strength of selection over that time period (Fig. 5). We are also
able to identify selected loci that were not identified in studies of
much larger samples of present-day individuals (Field et al. 2016;
Nait Saada et al. 2020).

On the other hand, when we search for polygenic selection,
the only trait for which we find significant evidence is skin pig-
mentation, which is known to have been under selection in
Europe more broadly into this time period (Wilde et al. 2014;
Mathieson et al. 2015; Field et al. 2016; Ju and Mathieson 2021).
Although many previous studies (Turchin et al. 2012; Berg and
Coop 2014; Mathieson et al. 2015; Robinson et al. 2015; Field
et al. 2016) reported evidence for recent selection on height, this
has been shown to be largely driven by residual stratification in
the GIANT Consortium GWAS (Berg et al. 2019; Sohail et al.
2019). Evidence of recent polygenic selection for other traits
(e.g., Field et al. 2016) may suffer from the same issue, although
findings based on the UK Biobank GWAS results may be more re-
liable. It is also possible that our negative findings reflect a lack
of power. Even though our approach is relatively well-powered
to detect strong selection compared with other selection scans, it
may be less able to detect the weak selection that contributes to
polygenic adaptation even in aggregate. A more complete investi-
gation of the way in which the time series analysis in this study
could be used to detect polygenic selection is a question for future
work.

Although there may have been multiple environmental driv-
ers of selection, taken together, our results strongly suggest that a
major selective pressure at this time was for increased calcium
largely moderated through increased vitamin D levels. Vitamin
D is required for the absorption of calcium, and deficiency leads
to bone deformities with potentially major effects on fitness.
Because a major source of vitamin D is synthesis in the skin in
the presence of UV radiation, the cloudy skies of Britain are likely
to have limited this synthesis. The Mesolithic inhabitants of
Britain may have avoided this problem through consumption of
vitamin D–rich marine resources, but later Neolithic and Bronze
Age populations, including those in our study, relied on agricultur-
al products for their subsistence (Richards et al. 2003), leading to a
need for genetic adaptation.

In fact, almost all of our signals of selection can be related to
selection for increased vitamin D or directly for increased calcium.
Selection at SLC45A2 and HERC2, as well as selection for lighter
skin pigmentation more generally, naturally leads to increased
penetration of UV into the skin and therefore higher levels of vita-
min D (Murray 1934; Jablonski and Chaplin 2010). Lactase persis-
tence allows the consumption of milk, which contains both
calcium and a small amount of vitamin D. This “calcium absorp-
tion” hypothesis has long been suggested to explain the high fre-
quency of the persistence phenotype in Northern Europe (Flatz
and Rotthauwe 1973; Gerbault et al. 2011). DHCR7 is directly in-
volved in vitamin D metabolism, and the selected allele protects
against insufficiency (Wang et al. 2010). Although the HLA associ-
ations are more difficult to specifically identify, two of the selected
alleles are protective against celiac disease, which itself is a risk fac-
tor for malabsorption of calcium and vitamin D and consequent
osteoporosis (Meyer et al. 2001). Strong selective pressure for in-
creased vitamin D and calcium levels is therefore a plausible and
parsimonious explanation for the patterns of selection that we ob-
serve in this data set.

The main limitation of our approach is the assumption of
population continuity. Although there is evidence of external mi-
gration into Britain during the time period we investigated
(Patterson et al. 2022), there is relatively little change in genetic an-
cestry because the sources of that migration are genetically similar
populations fromother nearby parts of Northern Europe. If this af-
fects our results, it would likelymean that some of the selectionwe
detected actually occurred in those neighboring populations,
somewhat earlier than the dates we find here. However, given
that the selection pressures we detect are likely to be shared with
these similar populations anyway, we do not think this possibility
has a major impact on the interpretation of our results. This limi-
tation is more serious if we want to extend the temporal and geo-
graphic range of our analysis. In particular, both ancient and
present-day individuals from the Iberian and Italian peninsulas
are much more genetically diverse than those from Britain
(Supplemental Fig. S8). Because of this, and the much smaller an-
cient sample sizes, we did not analyze selection in these Southern
European populations, although identifying differences in selec-
tive pressures betweenNorthern and Southern Europe is an impor-
tant direction for future analysis.

Although we have identified the loci under the strongest se-
lection in recent British history, there is evidence in our data of ad-
ditional selected loci. For example, several known loci, including
OAS1 (P=2.5 ×10−7) (Sams et al. 2016) and FADS1 (P=1.5 ×10−5)
(Mathieson et al. 2015), have evidence of selection, although be-
low genome-wide significance. With larger sample sizes, we can
expect that these and other, potentially novel, loci would be iden-
tified. An alternative way to increase sample size would be tomod-
ify our method to analyze genotype likelihoods rather than
pseudohaploid calls. We estimate that this could increase effective
sample size by up to 22%. An even bigger increase could be gained
by using genotype imputation, although with the caveat that im-
putationmay be less reliable in strongly selected regions. There are
also several technical limitations that may affect interpretations of
our results. For example, we identified at least one locus where sys-
tematic differences between ancient and present-day samples cre-
ated a spurious signal of selection. Other systematic differences
related to mapping errors, or aDNA damage, might create similar
effects. It is important therefore to check that results based on
the comparison of ancient and present-day samples are robust by
verifying that they are consistent when present-day samples are
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excluded or, as we have performed here, that they are consistent
with signals derived from present-day data alone. Another limita-
tion is that we rely on sites included in the 1240k capture reagent
and therefore cannot detect selection on rare SNPs or structural
variants that are not tagged by such SNPs. Imputation or large
data sets of shotgun sequence data might extend the range of var-
iation on which selection can be detected.

Our study shows the power of aDNA to robustly detect and
precisely characterize the timing of natural selection in humans.
We appear to have similar power to detect selection as previously
published methods based on present-day and ancient data. On
the other hand, present-day sample sizes will always be much larg-
er, and approaches that can scale to hundreds of thousands or mil-
lions of genomes (Nait Saada et al. 2020) will probably be more
powerful. The major advantage of aDNA is the ability to precisely
estimate the timing of selection, suggesting a potential hybrid ap-
proach using very large present-day data sets to identify nonneu-
tral regions of the genome and then use aDNA time series to
characterize the timing and nature of selection at those loci.
Indeed, several of the loci that we identify have evidence of sub-
stantial change in the strength of selection over the past 4500 yr,
suggesting that modeling this variability may be an important ad-
dition to previous approaches that assume constant selective pres-
sure. One caveat is that in order to do this, we need to be able to
identify the selected variant at a locus, which is not always possible
(e.g., in the case of HLA). Indeed, imperfect tagging of the causal
variant could lead to spurious signals of time-varying selection,
as could dominance coefficients different from 0.5 or spatially
structured selection. In particular, lactase persistence is dominant,
although enzymatic activity is not (Ségurel and Bon 2017).
Therefore, selection on LCT could act in a dominant fashion,
which could give the appearance of decreasing the selective coeffi-
cient over time. If the selective pressure on LCT did decrease over
time, perhaps owing to cultural changes, it may have contributed
to an increase in selective pressures related to other sources (e.g.,
pigmentation andmetabolism). In this way, culture could have de-
termined the genetic response to a constant environmental selec-
tive pressure. The prospect of exploring this and similar
interactions is an exciting future direction for aDNA research.
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Source codes to run the estimator and reproduce the analyses in
this paper are available at GitHub (https://github.com/jthlab/
bmws) and as Supplemental Codes S1–S3.
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