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Recent advancements in long-read sequencing have enabled the telomere-to-telomere (complete) assembly of a human ge-

nome and are now contributing to the haplotype-resolved complete assemblies of multiple human genomes. Because the

accuracy of read mapping tools deteriorates in highly repetitive regions, there is a need to develop accurate, error-exposing
(detecting potential assembly errors), and diploid-aware (distinguishing different haplotypes) tools for read mapping in com-

plete assemblies. We describe the first accurate, error-exposing, and partially diploid-aware VerityMap tool for long-read

mapping to complete assemblies.

[Supplemental material is available for this article.]

The initial draft sequence of the human genome contained thou-
sands of gaps and scaffolds (International Human Genome
SequencingConsortium2001; Venter et al. 2001). Even nowadays,
the up-to-date human reference genome (GRCh38.p13) still con-
tains 349 gaps and 472 scaffolds (Miga et al. 2014). These gaps con-
tain regions that include large and biomedically important
multimegabase arrays of tandem satellite repeats that orchestrate
chromosome segregation during cell division (Miga 2019, 2020).
For two decades, centromeric and pericentromeric satellite arrays
evaded all assembly efforts, resulting in a limited understanding
of their sequence organization. Recently, the Telomere-to-
Telomere (T2T) Consortium generated the first nearly complete as-
sembly of an effectively haploid human cell line, CHM13, that, in
particular, includes assemblies of all satellite repeats (Jain et al.
2018; Miga et al. 2020; Logsdon et al. 2021; Nurk et al. 2022).

Long-read technologies, such as the ones developed by Pacific
Biosciences (PacBio) and Oxford Nanopore Technologies (ONT),
have changed the landscape of computational methods for ge-
nome assembly and opened a possibility to generate haplotype-re-
solved complete assemblies (Chin et al. 2016; Li 2016; Lin et al.
2016; Koren et al. 2017; Wick et al. 2017; Kolmogorov
et al. 2019, 2020; Nurk et al. 2020; Ruan and Li 2020; Cheng
et al. 2021). Some of these assemblers use ultralong error-prone
reads in order to assemble the most repetitive genomic regions,
such as satellite arrays (Bzikadze and Pevzner 2020; Miga et al.
2020; Shafin et al. 2020). The emergence of long high-fidelity
(HiFi) PacBio reads has, once again, revolutionized the field of ge-
nome assembly (Wenger et al. 2019; Logsdon et al. 2021) and re-
sulted in some of the most contiguous assemblies to date (Nurk
et al. 2020, 2022; Cheng et al. 2021).

The emergence of “complete genomics” (Nurk et al. 2020,
2022; Cheng et al. 2021) and “complete metagenomics”
(Bickhart et al. 2022) is shifting the focus of readmapping fromde-
tecting mutations to detecting errors in the newly generated as-
semblies (see Supplemental Note 1, “Similarities and differences

between detecting mutations and detecting misassemblies”;
Supplemental Fig. 1). Although most previous read mapping ef-
forts were aimed at detecting mutations by aligning reads against
the reference genome instead of assembling them (because ge-
nome assemblers typically fail to assemble highly repetitive re-
gions), HiFi assemblers accurately assemble even the most
complex genomic regions, and although a limited number of mis-
assemblies persist, these assemblies provide a path to potentially
eliminate the need for mapping reads against a reference. They
also result in extremely low rates of single-nucleotide errors in
nonrepetitive regions (Nurk et al. 2020, 2022; Cheng et al.
2021), largely eliminating the need for the follow-up read map-
ping to these regions: instead of mapping reads using external
tools, existing HiFi assemblers automatically provide highly accu-
rate alignments of reads to the assemblies they generate. However,
HiFi assemblers still make assembly errors in highly repetitive re-
gions and thus necessitate the development of newmapping tools
for detecting these errors by identifying discordant reads.

The need for evaluation of the complete genome assemblies
and the absence of ground truth data sets has resulted in the
development of specialized pipelines for assembly validation
(Mc Cartney et al. 2022). Even though the QUAST tools represent
the state-of-the-art framework for quality assessment of genome
assemblies (Gurevich et al. 2013; Bushmanova et al. 2016;
Mikheenko et al. 2016, 2018), these tools mostly rely on the avail-
ability of a reference genome and are thus inapplicable for evaluat-
ing complete assemblies that include megabases of novel
sequence. In particular, QUAST uses BUSCO (Simão et al. 2015)
to evaluate the gene content of assemblies and assess completeness
of an assembly without a reference genome. However, BUSCO
only analyzes conserved single-copy genes and is inapplicable
for gene-poor regions such as centromeres. Moreover, QUAST
identifies assembly errors only in comparison with a reference ge-
nome. Alternative reference-freemethods can be divided into align-
ment-free methods that compare k-mer spectra between reads and
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an assembly (Mapleson et al. 2017; Rhie et al. 2020) and alignment-
based methods that use the read mapping tools (Li and Durbin
2009; Langmead and Salzberg 2012; Li 2016, 2018; Jain et al.
2020) to generate read alignments, use them for assessing the qual-
ity of an assembly, and correct the assembly based on the identi-
fied discordant reads. However, although alignment-free
methods can estimate assembly quality and completeness, they
do not output information about the positions of assembly errors.

Mikheenko et al. (2020) showed that the performance of ex-
isting read mapping tools deteriorates in complex regions, espe-
cially in the presence of assembly errors, and developed the
TandemMapper tool for mapping long reads to extra-long tandem
repeats (ETRs) in the constructed assemblies. Even though
TandemMapper accurately maps reads to centromeric regions
and enables evaluations of their assemblies (Bzikadze and
Pevzner 2020; Miga et al. 2020; Logsdon et al. 2021), it falls short
of mapping reads in even more challenging megabase-long geno-
mic regions like HSAT2,3. Moreover, TandemMapper, designed
specifically for ETRs, becomes prohibitively slow for evaluating
complete genome assemblies.

Generating a complete assembly for a single haploid human
genome represents a landmark achievement (Nurk et al. 2022).
However, because a single genome does not represent the genomic
diversity of the human population, the Human Pangenome
Reference (HPR) Consortium is now generating high-quality dip-
loid assemblies for hundreds of humans. This ambitious goal raises
the bar for scalable diploid-aware quality assessment tools that can
evaluate entire diploid assemblies rather than certain selected (al-
beit complex) loci and identify errors in these assemblies. To the
best of our knowledge, no error-exposing tool for reference-free
benchmarking of complete haplotype-resolved assemblies or
even individual loci is currently available. Although
Winnowmap2 (Jain et al. 2020, 2022) maps reads to complex re-
petitive regions of the error-free assemblies, it is neither error-expos-
ing nor diploid-aware because its performance deteriorates in the
case of error-prone assemblies and heterozygous sites (Table 2;
Mikheenko et al. 2020).

We present VerityMap, a fast, accurate, and error-exposing
aligner for mapping long reads to the complete assemblies (for an
informal comparison of various long-read aligners, see Table 1).
VerityMap also represents the first step toward diploid-aware align-
ment by mapping reads to haplotype-resolved assemblies of indi-

vidual loci (see Supplemental Note 2, “The challenge of diploid-
aware readmapping”). It was used for detecting and correctingmis-
assemblies in the intermediate assemblies of the first complete hu-
man genome assembled by the T2T Consortium (Miga et al. 2020;
McCartneyet al. 2022;Nurket al. 2022). The Supplemental section
“Alpha-satellite and human satellite 1,2,3 validation” in the work
by Nurk et al. (2022) illustrates how VerityMap contributed to ver-
ifying thecompletehumangenomeassemblygeneratedby theT2T
Consortium.

All state-of-the-art long-read aligners are based on finding
some shared k-mers between a read and an assembly, followed
by sparse dynamic programming in a graph in which each vertex
represents a pair of the starting positions of a shared k-mer.
Ideally, the parameter k (k-mer size) should be selected to be as
large as possible (e.g., slightly below the read length) for accurate
mapping of error-free reads. In practice, it is selected to be rather
small to ensure that an error-prone read has some shared k-mer
with an assembly. This condition dictates selecting a rather
small k in the case of long error-prone reads (minimap2
v2.24 uses default k=15 for mapping ONT reads, and k= 19 for
mapping PacBio CLR reads; https://lh3.github.io/minimap2/
minimap2.html) and makes it difficult to map reads in highly re-
petitive regions. Accurate HiFi reads allow one to increase k by
an order of magnitude, thus facilitating read mapping in complex
regions.

Although an increased k-mer size looks like a ratherminor pa-
rameter change in read mapping tools, it actually represents a new
challenge. We show that developing a fast, accurate, error-expos-
ing, and diploid-aware long read mapping tool requires new algo-
rithmic ideas, not unlike constructing the de Bruijn graph of large
genomes for large k-mer sizes (Bankevich et al. 2022). To achieve
this goal, VerityMap first identifies all rare k-mers in the assembly,
carefully selects a small subset of rare k-mers (solid k-mers), finds lo-
cations of solid k-mers in each read, constructs a compatibility graph
with the vertex-set formed by allmatches between the selected sol-
id k-mers shared by a read and the assembly, finds an optimal path
in this graph using sparse dynamic programming, and uses this
path for read mapping. Because HiFi reads are accurate,
VerityMap uses large k-mer sizes (e.g., k=300) for constructing
the compatibility graph to achieve accurate read mapping. It
thus faces the algorithmic challenge of identifying rare k-mers in
a large genome for a large k.

Table 1. Benchmarking VerityMap, TandemMapper, Winnowmap2, and minimap2 with reads simulated from Chromosomes 1 and 9

Read mapping
tool

Accurate in error-free
assemblies

Error-exposing (accurate in error-prone
assemblies)

Diploid-
aware

CPU time
(minutes)

Memory
footprint

(GB)

Chr 1 Cen9 Chr 1 Cen9

VerityMap + + +/− 275 500 6 4
TandemMapper +/− +/− – 7012 — 212 —

Winnowmap2 + – – 257 1720 8 32
minimap2 + – – 28 33 7 8.5

Aligning 137,507 simulated reads to Chromosome 1 (248 Mb length) and 40,272 simulated reads to the centromere of Chromosome 9 (42 Mb
length) of the CHM13 assembly. Simulated reads are generated as described in Supplemental Note 4, “Extended benchmarking of long-read
mapping tools.” VerityMap, Winnowmap2, and minimap2 incorrectly mapped only seven, 20, and 22 reads to Chromosome 1, respectively.
Because TandemMapper was designed for accurate read mapping to HOR arrays (rather than large regions without an HOR-like structure), it incor-
rectly mapped many reads in other regions, so we rate it “+/−” in terms of accuracy for error-free assemblies. VerityMap allows accurate mapping
to haplotype-resolved assemblies of individual loci (Fig. 3) and thus provides the initial step toward diploid-aware mappers for complete haplotype-
resolved assemblies (we rate it “+/−”). The best value for each column is indicated in bold. Precise definitions of terms “accurate,” “error-exposing,”
and “diploid-aware” are given in Supplemental Note 8, “Summary of benchmarking results.”
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Although efficient indexing (finding locations) of all k-mers
in the genome (and thus identifying rare k-mers) represents a back-
bone of many bioinformatics algorithms (Marçais and Kingsford
2011), it remains an open problem in the case of large genomes
and large k-mer sizes. Indeed, a naive indexing algorithm with
the running time O(|Genome|∗k) becomes prohibitively slow in
the case of accurate HiFi reads because mapping these reads is
based on large k-mer sizes (e.g., k=300). Jellyfish (Marçais and
Kingsford 2011), KMC3 (Kokot et al. 2017), and more scalable
GPU–based k-mer counting approaches (Nisa et al. 2021) generate
a database of counts that allows a constant-time count query for
any k-mer. However, even though one can rapidly generate a
counting database, existing implementations for indexing all
rare k-mers still require O(|Genome|∗k) time. On the other hand,
the Meryl k-mer counting algorithm (Rhie et al. 2020) only works
with k≤64, which is substantially lower than what is needed for
accurate mapping of HiFi reads (e.g., k=300). Inspired by
Jellyfish, VerityMap overcomes limitations of existing approaches
for rapid indexing of rare k-mers in the case of large genomes and
large k-mer sizes by usingmultiple Bloom filters (Bloom 1970) and
the count-min sketches (Cormode and Muthukrishnan 2005).

VerityMap also addresses the challenge of identifying errors
in genome assemblies in a reference-free mode. Even though the
CHM13 cell line is effectively haploid, it features genomic instabil-
ities between twohaplotypes typically represented by insertions in
one of the homologous chromosomes that are referred to as Het
sites (Nurk et al. 2022). The ratio of two haplotypes in a Het site
is not necessarily 1:1, suggesting that one of the haplotypes might
be more prevalent. Automatic detection of Het sites in a haploid
assembly and distinguishing them from misassemblies are impor-
tant prerequisites for validating diploid assemblies. In addition to
its read-mapping module, VerityMap includes a misassembly
detection module for identifying misassemblies, Het sites, col-
lapsed haplotypes, and haplotype-switch errors. The T2T
Consortium applied thismodule to verify and correct intermediate
assemblies of the CHM13 cell line (Nurk et al. 2022).

Results

Limitations of existing read mapping approaches

Because all existing assemblers generate some misassembled con-
tigs, accurate mapping of reads that span the misassembly break-
points is a critically important assembly validation step.
Although minimap2 (Li 2018, 2021) and Winnowmap2 (Jain
et al. 2020, 2022) accurately map reads to an error-free assembly
(even in repetitive regions), their accuracy deteriorates in the
case of error-prone assemblies or haplotype-resolved assemblies
(because reads from highly similar regions often map to incorrect
instances of these regions, albeit with several mismatches).
Moreover, the dynamic programming algorithm for sequence
alignment (with standard scoring) often fails to correctly align
reads in highly repetitive regions, motivating the need for a new
scoring (Supplemental Note 3, “Frequency-aware sequence align-
ment scoring”; Supplemental Figs. 2, 3).

Currently, TandemMapper is the only error-exposing aligner
that accurately maps long reads to ETR assemblies that potentially
contain misassemblies (Mikheenko et al. 2020). However, even
though TandemMapper was used to validate the first centromere
assemblies (Bzikadze and Pevzner 2020; Miga et al. 2020;
Logsdon et al. 2021), it has limitations that prevent its applications
tomore complex regions of the genome; for example, it is designed

for analyzing various higher-order repeats (HORs) such as human
centromeres and is not applicable to repeats without HORs or for
analyzing nonrepetitive parts of the genome.

Rare and solid k-mers

To speed-up the standard (time-consuming) dynamic program-
ming algorithm for aligning long reads, many mappers (Li 2018;
Jain et al. 2020; Mikheenko et al. 2020), as well as fast algorithms
for detecting overlapping reads in genome assemblers (Chin et al.
2016; Li 2016; Lin et al. 2016; Koren et al. 2017; Wick et al. 2017;
Kolmogorov et al. 2019, 2020; Nurk et al. 2020; Ruan and Li 2020;
Cheng et al. 2021) construct a compatibility graph on a carefully
selected small subset of k-mers in each read. The key differences
between these tools are reflected in algorithms for selecting these
k-mers and weighting the edges of the compatibility graph (rather
than constructing the compatibility graph). VerityMap uses a new
approach for selecting k-mers and weighting edges in the compat-
ibility graph that addresses limitations of the previously developed
long-read mappers and enables error-exposing and partially dip-
loid-aware read mapping. VerityMap further finds a longest path
in this graph using sparse dynamic programming and uses this
path for read mapping.

A k-mer from an assembly is rare if it appears at most
MaxRareOccurrences times in this assembly (otherwise a k-mer is
called frequent). A rare k-mer is solid if it appears in a single contig,
and its reverse-complementary k-mer does not appear in any con-
tig. Note that this definition of a solid k-mer differs from the one
used by TandemMapper (Mikheenko et al. 2020). Although the
highly repetitive regions in the newly assembled complete ge-
nome constitute the biggest challenge for read mapping, they
form <8% of the human genome (Nurk et al. 2022). Because nearly
all k-mers in other regions are solid, VerityMapdownsamples them
to reduce the running time and memory footprint (Supplemental
Note 5, “Downsampling solid k-mers in nonrepetitive regions”).

VerityMap pipeline

Figure 1 illustrates the VerityMap pipeline. First, VerityMap stores
all k-mers from the assembly in two Bloom filters (Bloom 1970)
and count–min sketch (CMS) data structures (Cormode and
Muthukrishnan 2005) for estimating the count of each k-mer in
the assembly and generating the set of solid k-mers that are later
used for read mapping (see Methods subsection “Bloom filter
and count-min sketch”).

For each read, VerityMap finds all solid k-mers in this read and
builds a compatibility graph with the vertex-set formed by pairs of
all solid k-mers shared between a read and the assembly. Because
the downsampled set of solid k-mers is small, the compatibility
graph is typically small; the longest path in this graph can be rap-
idly found using sparse dynamic programming. The careful defini-
tion of edge-weights in the compatibility graph helps to select the
correct path (that represents the primary read alignment), even in
the presence of assembly errors. Moreover, because the graph
stores information about discrepancies in distances between solid
k-mers occurring in a read and solid k-mers occurring in the assem-
bly, it can be used to detect approximate locations of misassembly
breakpoints without a base-level alignment that might be quite
unreliable in highly repetitive regions. VerityMap first attempts
to align the read to the forward strand and then to the reverse
strand. Defaults for all parameters of VerityMap were selected
based on performance analysis (Supplemental Figs. 5, 6;
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Supplemental Note 6, “VerityMap parameters”). The output of
VerityMap is in the standard SAM format.

Data sets

Recently, the T2T Consortium generated the first complete assem-
bly of a human genome represented by the CHM13 cell line (re-
ferred to as CHM13 assembly [Nurk et al. 2022]; Chr Y in this
assembly is from a male sample HG002). In addition to analyzing
the entire assembly using VerityMap, we focused on a particularly
complex centromeric satellite region in Chromosome 9.
Supplemental Table 2 in Supplemental Note 4, “Extended bench-
marking of long-read mapping tools,” describes benchmarking re-
sults on a multitude of even more challenging data sets. Below we
focus on one of these data sets that was generated by extracting the
centromeric region from Chromosome 9 of the CHM13 assembly
(referred to as Cen9). This region contains a human satellite 3
(HSat3) array that represented some of the most difficult challeng-
es for the assembly effort of the T2T Consortium (Supplemental
Note, “Resolution of Chr 6 and Chr 9,” of Nurk et al. 2022). To an-
alyze how VerityMap handles assembly errors, we introduced an
artificial deletion of length 10 kbp into the Cen9 region at position
20 Mbp (referred to as Cen9del10). We further introduce a series of
assemblies with various artificial misassemblies including a dele-
tion, insertions, duplications, and a relocation in the Cen9 region:
Cen9del5, Cen9ins5, Cen9ins10, Cen9tandem, Cen9dup, Cen9reloc (for
a detailed description of all data sets, see Supplemental Table 1;
Supplemental Note 4, “Extended benchmarking of long-readmap-
ping tools”).

It remains unclear how to benchmarkVerityMaponhaplotype-
resolved diploid assemblies because the Human Pangenome

Reference (HPR) Consortium is still validating these assemblies. We
thus used the assembled centromere of Chromosome X (CenX)
from the HG002 HiFi read-set (from a male) generated by the HPR
Consortium and the assembled CenX from the haploid CHM13
HiFi read-set generated by the T2TConsortium tomimic a diploid as-
sembly of CenX. To analyze how VerityMap handles diploid assem-
blies we took alpha-satellite regions fromChromosomeX of CHM13
andHG002 assemblies (combined,we refer to these chromosomes as
ChrXDiploid, a synthetic diploid chromosome) and merged them
into one file (referred to as CenX-Diploid). Then we cut each assem-
bly at one of the canonical HOR units and concatenated them to
mimic a haplotype-switch error (referred to as CenX-Diploid-Switch).
Afterward, we simulated reads frombothHG002 andCHM13 assem-
blies of ChrX to checkwhether VerityMap can detect the haplotype-
switch error. We refer to alpha satellite arrays in Chromosome X in
CHM13 (HG002) genome as ASat-X (ASat-X-HG002).

To illustrate that VerityMap identifies errors in real assem-
blies, we consider Cen10 in the interim version of CHM13 that
predates the earliest publicly released version v0.9 (referred to as
CHM13-Cen10-interim). CHM13-Cen10-interim contains a struc-
tural error that was detected by VerityMap and was later corrected
by the T2T Consortium (Cen10 in current CHM13 assembly does
not contain this error).

Below we list some benchmarking data sets (for the list of
all benchmarking data sets, see Supplemental Table 1 in
Supplemental Note 4, “Extended benchmarking of long-readmap-
ping tools”). All simulated data sets are generated with pbsim2
(Ono et al. 2021).

• The CHM13-SimHiFi data set contains HiFi reads simulated
from the CHM13 assembly.

Figure 1. VerityMap pipeline. (Left) The input of VerityMap is an assembly (a set of contigs) and a set of reads that contributed to this assembly.
VerityMap iterates through each contig twice in order to identify solid k-mers. At the first iteration, VerityMap stores k-mers that appear in multiple contigs
and all reverse-complementary k-mers within the BanBloomFilter. For each contig, VerityMap constructs a CMS that counts occurrences of k-mers within
this contig. Finally, VerityMap uses OnceBloomFilter (and BanBloomFilter) to distinguish between rare k-mers that appear within a single andmultiple con-
tigs. Both Bloom filters and the CMS corresponding to the current contig are beingmodified simultaneously during the first iteration through the assembly.
At the second iteration, VerityMap queries the constructed data structures to identify the set of solid k-mers. (Right) Aligning a read GTTAGATAGATGGATT
against a misassembled contig GTTGGATTGATAGATAGATG with an 8-nucleotide-long deletion TAGATAGA (solid k-mers are shown in blue). The solid k-
mer GT (TG) precedes (follows) the deletion breakpoint. The nucleotide-based fitting alignment fails to identify this deletion owing to limitations of the
standard scoring approaches in highly repetitive regions. In contrast, VerityMap identifies this deletion using the k-mer-based sparse fitting alignment
and a new scoring approach. To achieve this goal, it constructs a compatibility graph on all pairs of solid k-mers shared between a read and the assembly
and finds a longest path in this graph. The new scoring reflects the discrepancies in distances between solid k-mers in the assembly (distance 2 between GT
and TG in the assembly) and solid k-mers in the read (distance 10 betweenGT and TG in the read), resulting in diff(GT,TG) = 8. VerityMap incorporates these
discrepancies into the edge-weights of the compatibility graph and outputs a longest path in this graph as the primary read alignment.
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• The Cen9Sim data set contains HiFi reads simulated from Cen9,
whereas the Cen9Sim-Het data set contains HiFi reads simulated
from both Cen9 and Cen9del10 (1:1 ratio).

• The CenXDiploid-Sim data set contains HiFi reads simulated
from ASat-X and ASat-X-HG002.

• The CHM13-RealHiFi data set contains real HiFi reads for the
CHM13 sample generated by the T2T Consortium (20-kbp li-
brary; accession numbers SRX7897685-8). This data set is ex-
tended by reads originating from the Chr Y of HG002 sample.

• The ChrXDiploid-RealHiFi data set contains HiFi reads
from CHM13-RealHiFi recruited to ChrXDiploid using
Winnowmap2.

VerityMap maps nearly all reads with an extremely low number

of incorrectly mapped reads

Analysis of the CHM13-SimHiFi data set (Supplemental Table 2) il-
lustrates that VerityMap mapped >97% of reads in all chromo-
somes (except for Chr 21, where it mapped 94.25% of reads)
with a low number of incorrectly mapped reads (76 out of 1.7 mil-
lion reads for the entire genome).Mapped reads cover 99.5%of the
entire genome (only 14 million uncovered bases).

VerityMap identifies assembly errors and heterozygous sites even

in highly repetitive genomic regions

Table 1 illustrates that VerityMap, Winnowmap2, and minimap2
accurately map long and accurate reads to error-free assemblies
(for description of all data sets and detailed benchmarking, section

“Data sets” and Supplemental Table 1 in Supplemental Note 4,
“Extended benchmarking of long-read mapping tools”).
However, assembly errors and Het variants often trigger incorrect
alignments, especially in highly repetitive regions. To benchmark
the ability to map reads in a vicinity of the misassembly break-
point, we aligned reads from the Cen9Sim data set to the
Cen9del10 assembly containing an artificial deletion of length 10
kbp (Table 2, top left). Although minimap2 and Winnomap2
map more reads than VerityMap, they have a high rate of incor-
rectly mapped reads, whereas VerityMap yields few incorrectly
mapped reads. Because incorrect read alignments may prevent
the detection of errors and heterozygous sites in downstream anal-
ysis, it is preferable to classify some reads as “unalignable” instead
of generating erroneous alignments. Both minimap2 and
Winnowmap2 failed to detect this deletion: minimap2 did not re-
port any primary alignment in a 1-kb region before the breakpoint
(all reads were incorrectly mapped somewhere else), whereas
Winnowmap2 incorrectly extended alignments through the dele-
tion breakpoint in the Cen9del10 region (Fig. 2). In addition, to re-
produce a scenario of a heterozygous deletion (Table 2, top right),
we aligned reads from the Cen9Sim-Het data set containing HiFi
reads simulated fromboth Cen9 and Cen9del10 to the Cen9del10 as-
sembly. Table 2 (top right) illustrates that both minimap2 and
Winnowmap2 incorrectly mapped reads simulated from Cen9
near the deletion breakpoint. VerityMap either reports reads that
are correctly spanning the deletion breakpoint or clips read align-
ments fromCen9Sim data set at the breakpoint and thus indicates
a putative heterozygous deletion. Table 2, bottom, provides

Table 2. Benchmarking VerityMap, Winnowmap2, and minimap2 on data containing artificial misassembly breakpoints

Cen9Sim (total reads 40,263) Cen9Sim-Het (total reads 80,559)

No. of
correctly/
incorrectly

mapped reads

No. of correctly/
incorrectly extended

through
misassembly
breakpoint

No. of alignments
from haplotype
without deletion

clipped at
breakpoint

No. of
correctly/
incorrectly

mapped reads

No. of correctly/
incorrectly extended

through
misassembly
breakpoint

No. of alignments
from haplotype
without deletion

clipped at
breakpoint

VerityMap 37,498/33 6/0 17 747,945/73 2/0 14
Winnowmap2 39,180/1083 0/9 0 78,368/2176 0/9 0
minimap2 39,140/1123 0/0 0 78,286/2230 0/0 0

Data set (total
reads 40,263)

No. of alignments correctly/incorrectly extended through
breakpoint

No. of alignments clipped at breakpoint

VerityMap Winnowmap2 minimap2 VerityMap Winnowmap2 minimap2

Cen9del5 8/0 0/0 0/0 6 9 6
Cen9tandem 6/0 0/9 0/0 5 0 0
Cen9dup 19/0 4/11 15/4 2 0 0
Cen9ins5 14/0 9/0 14/0 1 1 1
Cen9ins10 12/0 0/0 2/0 7 0 0
Cen9reloc 5+0/0+0 0+0/8 + 0 0+0/0+ 0 10+8 0+2 0+0

The concept of a correctly/incorrectly mapped read is defined in Supplemental Note 9, “Measuring performance of mapping software.” Only primary
alignments were taken into account. The majority of reads incorrectly mapped by minimap2 and Winnomap2 have secondary alignments to the
correct positions: In cases of nearly perfect duplications, minimap2 and Winnomap2 might incorrectly choose primary alignments, whereas VerityMap
classifies a read as “unalignable.” Aligning simulated reads (top left) from the Cen9Sim read-set to the Cen9del10 region with an artificial deletion (top
right) from the Cen9Sim-Het data set to the Cen9del10 sequence. VerityMap reports 2741 (5692) “unalignable” reads in Cen9Sim (Cen9Sim-Het) data
set. (Top left) The total number of reads spanning the deletion breakpoint is nine. VerityMap correctly identifies six reads that span the breakpoint and
reports 17 read alignments that are clipped at the breakpoint site (note that some of these reads did not span the breakpoint during simulation). (Top
right) The deletion breakpoint in this assembly is spanned by 24 simulated reads (15 reads simulated from a haplotype with deletion and nine reads
from a haplotype without deletion). Even though all mappers correctly map all 15 reads from the haplotype with the deletion, only VerityMap correctly
identifies two reads from a haplotype without the deletion spanning the breakpoint. Additionally, it reports 14 alignments for reads from haplotype
without the deletion clipped at the breakpoint site. The best value for each column is indicated in bold. (Bottom) Benchmarking VerityMap,
Winnowmap2, and minimap2 when aligning simulated reads from the Cen9Sim read-set to the Cen9del5, Cen9ins5, Cen9ins10, Cen9tandem, Cen9dup,
Cen9reloc assemblies. The number of correctly (incorrectly) mapped reads ranges from 37467 to 37477 (31 to 47) for VerityMap, 39167 to 39218
(1047 to 1096) for Winnowmap2, 39139 to 39191 (1072 to 1124) for minimap2. The best value for each column group is indicated in bold.
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further benchmark of VerityMap, Winnowmap2, and minimap2
of aligning simulated reads from the Cen9Sim read-set to the
Cen9del5, Cen9ins5, Cen9ins10, Cen9tandem, Cen9dup, and
Cen9reloc assemblies (for a detailed description of these data sets
and for benchmarking on more data sets, see Supplemental
Tables 1–4; Supplemental Note 4, “Extended benchmarking of
long-read mapping tools”). In all cases, VerityMap has the mini-
mal number of incorrectly mapped reads and either reports reads
that are correctly spanning the breakpoint or clips read alignments
at the breakpoint.

Supplemental Note 7, “Validation of fragmented haploid
and diploid assemblies,” shows how VerityMap can be applied to
fragmented rather than complete assemblies. Supplemental Note
4, “Extended benchmarking of long-read mapping tools”
(Supplemental Fig. 4), applies VerityMap to the assembly of the
CHM13 cell line generated by LJA (Bankevich et al. 2022) and iden-
tifies putative misassemblies and heterozygous sites.

VerityMap correctly distinguishes haplotypes in diploid

assemblies and identifies haplotype-switch errors

We aligned reads from the CenXDiploid-Sim data set to
CenXDiploid-Switch assembly containing a haplotype-switch er-
ror. We launched VerityMap in the special DiploidVerityMap
mode that uses a more permissive strategy for selecting solid k-
mers. Figure 3 illustrates that VerityMap does not incorrectly ex-
tend alignments of any reads through the haplotype-switch break-
point (and thus detects this haplotype-switch error), whereas
Winnowmap2 and minimap2 extend them through it.

We also aligned reads from the ChrX-RealHiFi data set (total
number of reads 621,522) to ChrXDiploid assembly. VerityMap
(Winnowmap2, minimap2) mapped 4474 (10,190, 10,255) reads
to the incorrect haplotype and 493,012 (553,953, 552,051) to
the correct haplotype. Here, we filtered all secondary alignments,
as well as all alignments with mapping quality zero. VerityMap
uses a more conservative strategy for mapping reads to the diploid
reference to achieve higher accuracy (that is critically important
for detecting misassemblies) at the cost of mapping fewer reads.
Even though VerityMap presents an advancement in accurate
mapping of reads to diploid assemblies, this problem remains a dif-
ficult challenge.

VerityMap identifies assembly errors and Het sites using

real HiFi data sets

The CHM13-Cen10-interim data set contains an interim version
of Cen10 in CHM13 that predates the earliest publicly released
CHM13 assembly by the T2T Consortium. VerityMap was used
to detect a deletion of length ∼2.4 kbp in this version, an error
that was later corrected by the T2T Consortium and is fixed in
the current version of Cen10 in the CHM13 assembly (Fig. 4).

We also aligned the CHM13-RealHiFi data set to CHM13
assembly to reveal possible assembly errors and Het sites
(Supplemental Table 4). Overall, we found 86 heterozygous sites
with Concordance=0.2–0.8 and one site with Concordance=1. The
manual validation of this site confirmed a likely 2.4-kbp insertion
in the Chr 19 (Fig. 5, right; Nurk et al. 2022). Importantly, this site

Figure 2. Alignments of reads from the Cen9Sim data set to Cen9del10 generated by minimap2, Winnowmap2, and VerityMap shown using the
Integrative Genomics Viewer (IGV) browser (Robinson et al. 2011). minimap2 does not report any primary alignments (shown in gray) spanning the dele-
tion breakpoint, and all secondary alignments (shown in white) indicate systematic mismatchesmapping to an incorrect copy of the repeat. Winnowmap2
reports mappings that are incorrectly spanning the breakpoint. VerityMap either reports an alignment correctly spanning the deletion breakpoint (indi-
cates a 10-kb deletion) or clips read alignment at the breakpoint.
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was not detected by the state-of-the-art methods for detecting
structural variations (SVs) (Mc Cartney et al. 2022).

Discussion

Wepresented the VerityMap tool, the first accurate, error-exposing
and partially diploid-aware tool for long-read mapping to com-
plete assemblies. We used it to validate and improve the recently
published complete human assembly during several rounds of its
evaluations (Mc Cartney et al. 2022; Nurk et al. 2022). Even
though Mc Cartney et al. (2022) used VerityMap for validating
this assembly, they refer to TandemMapper because VerityMap
was still in development and did not have a name at the time
when this paper was submitted.

Below we discuss some limitations of VerityMap that we plan
to address. All state-of-the-art read-mappers use multiple (often
poorly justified) parameters for selecting a small set of k-mers in
each read, weighting edges in the compatibility graph, etc. For ex-
ample,minimap2, theworkhorse of long-readmapping, hasmany
parameters (including some hidden parameters), and it remains
unclear how they were optimized (no description in Li 2018).
Even though we used the default parameters for Winnowmap2
and minimap2, we do not rule out that other parameter values
could improve the performance of these tools. VerityMap also suf-
fers from the “curse ofmultiparameters”: Even thoughwe carefully
selected its parameters using alignments of reads to the human ge-
nome, a systematic approach using diverse organisms for learning
these parameters is needed. In particular, scoring of the edges in
the compatibility graph might overfit to the human genome k-
mer distribution.

The output of VerityMap is in standard SAM/BAM format and
is, in principle, compatible with downstream variant calling tools
for detection of Het variants ormisassembles. However, VerityMap

detects approximate locations of a structural event rather than
its exact coordinates, which may present a challenge for variant
calling tools especially in highly repetitive regions such as
centromeres.

The definition of a solid k-mer requires that it appears in a sin-
gle contig of the assembly. Even though solid k-mers are not uni-
formly distributed over the human genome, our benchmarking
revealed that VerityMap detectedmany true-positive and never-re-
ported false-positive misassemblies. However, this definition
might be too restrictive for a highly inbred organism with long
stretches of homologous chromosomes sharing the same se-
quence. A highly fragmented assembly presents a similar chal-
lenge because rare k-mers within a single chromosome might be
shared between several contigs, rendering them nonsolid. As a re-
sult, few to no solid k-mers will be selected in such regions of the
genome, leading to gaps in read coverage. Allowing a solid k-mer
to be shared by multiple contigs, albeit potentially more error-
prone, might mitigate this issue. Similarly, the requirement that
the reverse-complement of a solid k-mer does not appear in any
contig needs to be relaxed. We selected a conservative strategy
for the initial VerityMap development because our primary goal
was to evaluate the complete haploid assembly. Our next goal is
to overcome these limitations and apply VerityMap for validating
haplotype-resolved assemblies generated by the HPR Consortium.
The described benchmarking suggests that VerityMap has a poten-
tial for effective evaluation of complete haplotype-resolved assem-
blies. Supplemental Note 7, “Validation of fragmented haploid
and diploid assemblies,” introduces amore general k-mer indexing
scheme as well as modifications to the compatibility graph that al-
low validation of more general fragmented haploid or diploid as-
semblies (rather than limited to only complete haploid
assemblies). Supplemental Note 4, “Extended benchmarking of
long-read mapping tools,” presents an example of the application

Figure 3. Visualization of VerityMap, Winnowmap2, and minimap2 alignments of simulated reads from the CenX-Diploid data set to the CenX-Diploid-
Switch sequence using the IGV browser (Robinson et al. 2011). VerityMap, in difference fromWinnowmap2 and minimap2, reveals the haplotype-switch
breakpoint.
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of VerityMap to a fragmented assembly. Accurate estimation of
VerityMap’s statistical power for detecting misassemblies in frag-
mented assemblies remains an open problem.

Even though HiFi reads allow validation of the most regions
of the CHM13 assembly, ONT reads provide important comple-
mentary quality assessment (Bzikadze and Pevzner 2020; Nurk
et al. 2022). Even though this paper focuses on HiFi reads,
VerityMap has an ONT mode for ONT reads. We have chosen to
focus on HiFi reads because ONT reads currently represent a mov-
ing target: Over the past year, the error-profile of ONT reads has
been rapidly improving, with the latest chemistry approaching er-
ror-rate as low as 1% (Sereika et al. 2022). Although HiFi reads are
more accurate (hence they allow selection of longer solid k-mers),
they are shorter than ONT reads. As a result, the length of the lon-
gest paths in the compatibility graph for ONT reads can exceed
those lengths for HiFi reads and thus connect solid k-mers sur-
rounding “solid k-mer deserts”—long stretches of DNA without
any solid k-mers. Together with rapidly improving chemistry,
ONT readsmight become a self-sufficient alternative for quality as-
sessment of genome assembly.

VerityMap has been designed primarily to detect errors in
the assemblies rather than identify SVs in genomes. Even though,
manymisassemblies and SVs can be represented as indels, the dis-
tribution of misassemblies and SVs over the universe of all possi-
ble indels is substantially different. First, a prominent source of
genomic diversity is presented by short SVs and copy number var-
iants (CNVs) in short tandem repeats (STRs). Such differences are
rarely observed as misassemblies because they do not present a
challenge for long-read assemblers. Previous studies showed
that HiFi assemblers are very accurate with respect to single-nu-
cleotide substitutions and short indels (Nurk et al. 2020; Cheng

et al. 2021; Bankevich et al. 2022), and these inaccuracies in as-
semblies typically present polishing artifacts rather than imper-
fections of an assembly algorithm itself. Second, misassemblies
typically involve large (multikilobasepair) long indels (or inver-
sions) that correspond to the incorrect traversal of the assembly
graph (or, worse, its faulty topology). Although it is possible
that an alternative (and incorrect) traversal of the graphmight re-
sult in a haplotype that is present in the population (we are aware
of a single case that involves a large 600-kbp inversion on Chr Y
recently assembled by the T2T Consortium), it remains unclear
whether this is a widespread phenomenon. Finally, some of the
variations in the genome (e.g., in human centromeres) are
much more complex than simple CNVs of the tandem repeat
units, and it seems infeasible that an assembly algorithm might
produce such a complicated misassembly as a result of an incor-
rect graph traversal.

When developing VerityMap, we have concentrated on
simulated examples that resemble misassemblies that we have
observed in practice of developing assembly algorithms: specifi-
cally, (1) the indels that were introduced in the early versions of
centromere assemblies (Miga et al. 2020) that were subsequently
detected by an early version of TandemMapper (Mikheenko et al.
2020) and were later corrected in Bzikadze and Pevzner (2020),
(2) misassemblies that were present in interim versions of
CHM13 assemblies generated by the T2TConsortium, and (3)mis-
assemblies generated by LJA assembler (Bankevich et al. 2022).
Supplemental Note 1, “Similarities and differences between detect-
ing mutations and detecting misassemblies,” shows that
VerityMap can be used as an input to various SV detection tools,
and VerityMap’s own DistanceDiscordant test can complement
these tools.

Figure 4. VerityMap detects a deletion in CHM13-Cen10-interim that is absent from the publicly released CHM13 assembly. The top panel shows the
distance concordance test applied to CHM13-Cen10-interim (left) and Cen10 in CHM13 assembly (right). The bottom panel shows read alignments ∼6
Mbp in two versions of the assembly. (Bottom left) VerityMap reveals a deletion of length ∼2.4 kbp in CHM13-Cen10-interim. The remaining peaks cor-
respond to the Het sites with various multiplicities in the assembly. In particular, one heterozygous deletion of∼1.7 kbp that is supported by∼60% of reads
is only 20 kbp upstream of themisassembly site. (Bottom right) Themisassembly is corrected in the current version of Cen10 assembly, whereas the putative
Het sites remain.
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Methods

Selecting solid k-mers

Similar to TandemMapper (Mikheenko et al. 2020), VerityMap uses
rare k-mers as anchors for the read mapping. Selection of the k-mer
size is dictated by the error rate in long reads. Because long error-
prone reads have a high error rate, long genomic k-mers rarely “sur-
vive”without errors in such reads. For example, the probability that
a 19-mer “survives” in an error-prone ONT read (generated with
basecaller Guppy flip-flop 2.3.1) is only 0.34 (Bzikadze and
Pevzner 2020). However, because long and accurate reads have
much smaller error rates (0.7% for ONT reads generated with flow
cell R10.4 and 0.2% for HiFi reads) (Nurk et al. 2020; https
://nanoporetech.com/accuracy), one can set the large default k-mer
size to accurately map such reads even in highly repetitive regions
such as Cen9 (see Supplemental Note 10, “The choice of k-mer size
and the shortest unique substrings”; Supplemental Fig. 7).
VerityMap sets the default value k=301 and MaxRareOccurrences=
10 (see Supplemental Note 6, “VerityMap parameters”).

HSAT2,3 array in the Cen9 region is an ETR containing long
inverted repeats. Importantly, for 6344 out of ≅22 million rare k-
mers (k=301) in this region, their reverse-complementary k-mer
is frequent in the genome. Because the strandedness information
is not available, using such k-mers for read mapping might reduce
the mapping accuracy. Similarly, using a rare k-mer that is shared
between two contigs (e.g., two homologous or nonhomologous
chromosomes) might also lead to incorrect read mapping.
Because VerityMap aims primarily to reduce the number of incor-
rect alignments, it implements a rather conservative strategy and
uses solid rather than rare k-mers for read mapping to complete
assemblies.

Sparse dynamic programming for read mapping

A standard dynamic programming approach for computing the fit-
ting alignment of a query onto a target finds a longest path in the
grid-like directed acyclic graph (DAG), where vertices correspond
to all pairs of positions (one in the target and one in the query).
Analysis of the CHM13 assembly by the T2T Consortium revealed
that although the fitting alignment of a read usually finds its cor-
rect position in the assembly, it may misplace the reads that orig-
inated from highly repetitive regions (e.g., centromeres and other
ETRs), particularly in regions with assembly errors (see
Supplemental Note 3, “Frequency-aware sequence alignment scor-
ing”; Supplemental Figs. 2, 3). Thus, mapping reads to ETRs re-
quires a new algorithm and a new scoring approach.

Sparse dynamic programming (Gusfield 1997) is a common
way to speed-up sequence alignment by selecting a small subset of
points in a grid that are likely traversed by an optimal path, con-

structing an edge-weighted DAG on these points (rather than on
all points in the entire grid), and finding a longest path in the result-
ing smaller graph.We note that although sparse dynamic program-
ming approximates rather than reconstructs the optimal sequence
alignment, this approximation is usually sufficient for read map-
ping. However, to achieve an accurate approximation, one has to
(1) carefully select a vertex-set of the DAG and (2) carefully define
the edge-weights in the sparse DAG to address the ETR mapping
challenge. For example, a k-mer-based sparse fitting alignment
amounts to finding a longest path in the DAG where vertices corre-
spond to all pairs of k-mer-matching positions from the target and the
query (positions are k-mer-matching if k-mers starting at these posi-
tionsare identical) anddirectededges connect all pairsofvertices (i,j)
and (i′,j′)with i < i′ and j < j′.However, the standard scoringapproach
for the sparse fitting alignment, which scores all edges with unit
weights, fails to address the ETR mapping challenge because it
does not account for greatly varying frequencies of k-mers in some
targets.

Although the sparse fitting alignment is faster than the stan-
dard fitting alignment, it stillmay be computationally infeasible in
longhighly repetitive regions owing to a quadratic running time in
the number of matching positions. Below we describe how
VerityMap addresses the mapping challenge by considering
matches of (undersampled) solid k-mers rather than all k-mers.

Compatible k-mers

As solid k-mers are not necessarily unique in the assembly, we con-
sider each occurrence of each solid k-mer separately. Let aR and bR
(aA and bA) be occurrences of solid k-mers a and b in the readR (con-
tig A) such as aR precedes bR (aA precedes bA). To make aR and bR
uniquely defined for each read, we limit attention to solid k-mers
that appear exactly once in this read. We define d(aR, bR) (d(aA,
bA)) as the distance between aR and bR inR (aA and bA inA).We refer
to the pair of aA and aR (bA and bR) as amatch aM (bM) andwrite aM<
bM if aAprecedes bA and aRprecedes bR.Wedefine distance(aM, bM)=
min{d(aR,bR), d(aA,bA)}, diff(aM, bM)= |d(aR,bR)−d(aA,bA)|, and bias
(aM, bM)= ln(diff(aM, bM)) (Supplemental Note 3, “Frequency-aware
sequence alignment scoring”; Supplemental Figs. 2, 3).

We call matches aM and bM close if distance(aM, bM)<MaxJump
(the default value MaxJump=100,000) to exclude k-mers locating
far apart from each other but preserve consecutive rare k-mers
even if they are separated by a long stretch of frequent k-mers.
Matches aM and bM are overlapping if distance(aM,bM) < k. Close
matches aM and bM are synced if either (1) aM and bM are overlapping
with diff(aM, bM) =0 or (2) they are not overlapping. Finally, we call
aM and bM compatible if (1) aM< bM and (2) aM and bM are synced (see
Supplemental Note 3, “Frequency-aware sequence alignment scor-
ing”; Supplemental Figs. 2, 3). Note that VerityMap modifies the

Figure 5. Distance concordance test applied to simulated and real read-sets. (Left) Mapping reads from the data set Cen9Sim reveals an artificial deletion
at location 20Mbp. Concordance(aA, bA) = 1 and TopDiff(aA, bA) = 10,003 for solid k-mer aA at position 19,999,691 and bA at position 20,000,001, revealing
the approximate location of the deletion of size 10 kbp. (Middle) Mapping reads from the data set Cen9Sim-Het reveals an artificial Het site at position 20
Mbp with Concordance(aA, bA) = 0.33 for the same solid k-mers aA and bA and TopDiff(aA, bA) = 10,005 pointing at insertion in Cen9del10 of size 10 kbp ex-
isting in one of the artificial haplotypes. (Right) Mapping HiFi reads reveals several Het variants and a likely assembly error (with Concordance=1 at 28.5
Mbp) in the centromere of Chromosome 19 (for description of all data sets, see Supplemental Table 1; Supplemental Note 4, “Extended benchmarking
of long-read mapping tools”).
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notionof compatible k-mers introducedbyMikheenko et al. (2020)
to detect assembly errors that evade detection by TandemMapper.

Compatibility graph

Given a read R, an assembly A, and a set S of solid k-mers,
VerityMap constructs a weighted compatibility graph G(R, A, S) on
the vertex-set of all pairs of identical solid k-mers from R and A.
Vertices aM = (aA,aR) and bM= (bA,bR) are connected by an edge if
aM and bM are compatible. Edge-weights in this graph should be
carefully chosen because a match of a unique solid k-mer is more
valuable than a match of a nonunique solid k-mer and because
nonoverlapping matches are more valuable than overlapping
matches. VerityMap thus defines weight(aM, bM)= premium(aM,
bM)−penalty(aM, bM) in such away that (1) premium(aM, bM) is larger
in the case when bM represents a unique k-mer as compared to the
case when it represents a nonunique k-mer; (2) premium(aM, bM) is
larger for nonoverlappingmatches aM and bM as compared to over-
lapping matches; and (3) if aM and bM represent a pair of k-mers
that flank misassembly breakpoints, penalty(aM, bM) should not
be too large, thus allowing VerityMap to detect a misassembly.

To address goal 1, VerityMap assigns the score UniqueScore to
all unique k-mers and the smaller score RareScore to all nonunique
solid k-mers in the assembly (default values UniqueScore= 3 and
RareScore=0.1). The score Score(bM) of a match bM is defined as
the score of the k-mer it represents.

To address goal 2, VerityMap defines the score EdgeScore(aM,
bM) of the edge (aM,bM) in the compatibility graph as one for non-
overlappingmatches and as a smaller distance(aM,bM)/k for overlap-
ping matches. Finally, it defines premium(aM, bM) = Score(bM) ∗

EdgeScore(aM,bM).
To ensure that the longest path in the compatibility graph cor-

rectly aligns a read against the assembly, it is important to penalize
edges with large bias, for example, to define penalty(aM, bM)=bias
(aM, bM). However, to address goal 3 and to design an error-exposing
read-mapper, it is important that the penalties of edges connecting
k-mers that represent misassembly breakpoints are not excessive,
even in the case when these edges have a large bias. VerityMap
thus limits the maximum possible penalty using the Misassembly-
Penalty threshold (default value is five) and defines penalty(aM, bM)
=min[MisassemblyPenalty, bias(aM, bM)]. Supplemental Note 11,
“Finding a longest path in the compatibility graph,” describes how
VerityMap finds a longest path in the compatibility graph.

The challenge of finding positions of all solid k-mers in a large

genome

TandemMapper uses a naive strategy of indexing solid k-mers in a
genome, Genome (finding a list of positions for each solid k-mer),
by traversing Genome twice. During the first traversal, it counts
all k-mers by storing them in a hash-table. During the second tra-
versal, it checks if a k-mer is solid using the constructed hash-table
and records positions of all solid k-mers (total time andmemory is
O(|Genome|∗k)). This strategy becomes prohibitively time-consum-
ing unless mapping reads against relatively short regions (e.g., sev-
eral Mbp) using short k-mers (e.g., with k<30). VerityMap uses a
different strategy that enablesmapping reads against the entire hu-
man genome using long k-mers (e.g., with k>300).

The complexity of patternmatching can be reduced by index-
ing rolling hashes of k-mers rather than the k-mers themselves (Karp
and Rabin 1987). Given a rolling hash function and a hash value
for a k-mer ai…ai + k−1 in a genome …ai…ai + k−1 ai + k…, one can
compute the hash value of the next k-mer ai + 1…ai + k−1 ai + k in
O(1) time, thus, improving the run-time complexity from
O(|Genome|∗k) to O(|Genome|). Note that a hash collision will

lead to an overestimated frequency for k-mers with collided hash-
es. This might lead to misclassification of some solid k-mers as
nonsolid but never leads to recruiting nonsolid k-mers.
Unfortunately, the existing k-mer counting tools do not allow que-
rying a count of a rolling hash instead of a k-mer and thus do not
immediately lead to a fast-indexing algorithm with O(|Genome|)
running time. Moreover, because most of the k-mers in the non-
repetitive parts of the genome are solid, we aim to select only their
small subset for constructing the (small) compatibility graph (see
Supplemental Note 5, “Downsampling solid k-mers in nonrepeti-
tive regions”). Unfortunately, the existing k-mer counting tools
do not produce a downsampled database of k-mer counts, which
leads to an unnecessary computational burden. To overcome the
limitations of existing approaches, VerityMap uses a probabilistic
procedure for indexing solid k-mers inspired by the Jellyfish algo-
rithm (Marçais and Kingsford 2011). Below we briefly describe the
Bloom filter and the CMS data structures that VerityMap uses for
indexing solid k-mers.

Bloom filter and count-min sketch

The Bloom filter (Bloom1970) is a space-efficient probabilistic data
structure that is used to test whether an element is a member of a
set and that may report false positives (with a small false-positive
probability) but never false negatives. Given a genome, Genome
(or its assembly), its Bloom filter is formed by BloomNumber inde-
pendent hash functions, each mapping a k-mer from Genome into
a bit array of size BloomSize. Storing all k-mers in a Bloom filter al-
lows one to quickly query whether an arbitrary k-mer occurs in the
genome. Given hash functions h1,h2,…,hBloomNumber and a k-mer
a, one can quickly check whether all bits h1(a), h2(a),…,
hBloomNumber(a) of the Bloom filter are equal to one, an indication
that the k-mer amay occur in the genome. Thus, a Bloom filter al-
lows one to efficiently query whether an arbitrary k-mer occurs in
the genome (with a small false-positive probability).

Bloom filter allows one to check whether an element belongs
to a multiset but does not evaluate how frequent it is in this multi-
set. The CMS is a space-efficient probabilistic data structure that
provides an upper bound on the count of an element in a multiset
(Cormode and Muthukrishnan 2005). CMS is a modification of a
single-bit Bloom filter array that uses a counter array of size
CMSNumber ∗ CMSSize with cells containing several bits. This
property allows it to count repeatedly inserted elements: When
an element is inserted, the values of allCMSNumberhash functions
are computed and the corresponding cells in the counter arrays are
incremented by one (in case an increment leads to an overflow, the
corresponding cell gets frozen). To provide an upper bound for the
count of a given element, CMS computes the values of all
CMSNumber hash functions and reports theminimum of the corre-
sponding cells in the counter arrays (a frozen cell votes for the in-
finity count). Thus, CMS sometimes overestimates the count of an
element but never underestimates it. VerityMap uses CMS to dis-
tinguish unique, rare, and frequent k-mers and with a controlled
probability misclassifies a rare (unique) k-mer as frequent (rare).

Identification of rare k-mers using CMS

For eachContig in genome,Genome, VerityMap counts all k-mers in
this contig by storing them in the count-min-sketchCMS(Contig) =
CMS(Contig, k, Bits, CMSNumber, CMSSize) formed by CMSNumber
hash functions, each mapping a k-mer into a counter array of size
CMSSize, where each counter takes Bits bits. Thememory footprint
of CMS is CMSNumber∗Bits∗CMSSize bits. The total run-time for in-
serting all k-mers from Contig into this CMS is O(|Contig|∗

CMSNumber∗Bits∗k). Storing rolling hashes instead of k-mers
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further reduces the complexity to O(|Genome|∗CMSNumber∗Bits).
Supplemental Note 6, “VerityMap parameters,” describes how
VerityMap sets the parameters of the CMS and the Bloom filters.

Identification of solid k-mers using the bloom filter

Toverifywhether a rare k-mer is solid, VerityMap checks that (1) its
reverse-complement does not appear in the genome, and (2) it ap-
pears only in a single contig. Storing all k-mers from the genome,
Genome, in a Bloom filter allows VerityMap to efficiently query
whether an arbitrary k-mer is present in Genome. To check condi-
tions 1 and 2 for identifying solid k-mers, VerityMap constructs
two Bloom filters: BanBloomFilter(Genome) and OnceBloomFilter
(Genome) of an optimal size (Bloom 1970) for the expected number
of k-mers (|Genome| is an upper bound) and for the target false-pos-
itive probability BloomFPP (default value BloomFPP=0.00001).

For every rare k-mer a, we ensure that its reverse complement
a∗ does not appear in the Genome by inserting a∗ in the
BanBloomFilter and, in the end, checking that a is not present in
BanBloomFilter. To check if a k-mer a appears in a single contig,
VerityMap scans all contigs and synchronously inserts a k-mer a
from a contig Contig in both OnceBloomFilter(Genome) and CMS
(Contig). This synchronous construction of both OnceBloomFilter
(Genome) and CMS(Contig) allows one to check whether the k-
mer a occurs in a single contig, albeit with a small probability of
error. Indeed, if it is already present in OnceBloomFilter(Genome)
but missing in CMS(Contig), it likely appeared in a previously
scanned contig. In this case, VerityMap filters out the k-mer a by
inserting it into BanBloomFilter(Genome). However, if it is present
in both OnceBloomFilter(Genome) and CMS(Contig), the k-mer a is
retained because it may occur in a single contig.

To reduce the complexity, instead of inserting k-mers in the
Bloom filter, we store their rolling hashes. The total running
time of finding all solid k-mers and determining their genomic po-
sitions is O(|Genome|∗(BloomHashNumber+CMSNumber)). The to-
tal memory footprint is O(|Genome|+(CMSNumber∗CMSSize∗Bits+
BloomHashNumber∗BloomSize)).

Because the Bloom filter is a probabilistic data structure, some
solid k-mers might be falsely removed as breaking either condition
1 or 2. In practice, very few solid k-mers are filtered out (as con-
trolled by the parameter BloomFPP), and that does not lead to dete-
rioration of read mapping. Importantly, no true nonsolid k-mer
might be misclassified as solid. For example, a naive implementa-
tion of an “exact” strategy (that uses deterministic albeit more
memory consuming data structures) extracts 149,548,373 solid
k-mers from Chr X in CHM13 assembly, whereas the “approxi-
mate” strategy described above (based on Bloom filters and
CMSs) extracts 147,105,002 solid k-mers from the same data set
(>98% of truly solid k-mers). For the sake of easy comparison, we
did not downsample solid k-mers in this example as described in
Supplemental Note 5, “Downsampling solid k-mers in nonrepeti-
tive regions.”

Distance concordance test

VerityMap detects approximate locations of misassembly break-
points without requiring a time-consuming nucleotide-level align-
ment. Indeed, if a read, R, spans a misassembly breakpoint, a
longest path in the compatibility graph G(R,A,S) often provides a
hint for finding this breakpoint. For example, a deletion of length
L in an assembly typically triggers an edge (aM, bM) with a large dif-
ference diff(aM, bM)≅L, where aM and bM represent solid k-mers
flanking the deletion breakpoint in such a way that aM (bM) pre-
cedes (follows) the deletion breakpoint as illustrated in Figure 1.

However, a single read may have nonzero values of diff(aM,
bM) even in the case of error-free assembly, especially when d(aR,
bR) is high. However, this difference is usually low for accurate
HiFi reads and error-free assemblies, suggesting that large differ-
ences can be used for detecting misassemblies. To show that it is
indeed the case, we considered 18 million of unique k-mers (k=
301) in Cen9 and selected 100,000 pairs of unique k-mers such
that k-mers in each pair are 10,000 bp apart in the assembly. The
mean distance between the same pairs of k-mers in reads was
10,002 ±3.4 bp. Thus, diff(aM, bM) usually does not exceed 3 ∗ 3.4
=10.2 bp if d(aA,bA) = 10,000 bp. Given our upper limit for a dis-
tance between two consecutive k-mers equal to 100,000 bp, we
set a lower threshold for an indel size MinIndelSize to 100 bp.
Thus, if nearly all longest paths containing k-mers a and b show
a systematic bias in values of diff(aM, bM) and diff(aM, bM) >
MinIndelSize, then an indel of approximate size diff(aM, bM) is likely
contained between aA and bA.We classify each read that shows sys-
tematic bias in values of diff(aM, bM) as a discordant read and report
the fraction of discordant reads connecting each pair of solid k-
mers in the assembly.

Formally, for each read R and for each pair aM and bM of con-
secutive matches in a longest path in compatibility graph, we add
the number diff(aM, bM) to a set Diffs(aA, bA). We test the hypothe-
sis that the mean ofDiffs(aA, bA) is zero and refer to the pair aA and
bA as significant if this hypothesis is rejected (two-sided one-sample
t-test). We use Bonferroni family-wise error rate correction and set
up significance level αDC (the default value αDC=0.05). For each
significant pair aA and bA of consecutive k-mers in a contig A, we
compute the proportion Concordance(aA, bA) of the most frequent
difference TopDiff(aA, bA) inDiffs(aA, bA). Figure 5 (left andmiddle)
shows the Concordance(aA, bA) across the Cen9del10 region when
aligning simulated reads from the data set Cen9Sim (Cen9Sim-
Het) and reveals the artificial deletion (Het site) of length 10 kbp
at position 20 Mbp. Figure 5 (right) shows the Concordance(aA,
bA) across Cen19when aligning real HiFi reads and reveals the like-
ly assembly error and several Het sites (see Results).

Software availability

The codebase of VerityMap version 2.1.2 generated in this study
has been submitted to GitHub (https://github.com/ablab/
VerityMap), to Zenodo (https://zenodo.org/record/6469695#
.Y5O5w33MI5s), and is available as Supplemental Code.
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