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Abstract

Chemical exchange saturation transfer (CEST) MRI has positioned itself as a promising contrast 

mechanism, capable of providing molecular information at sufficient resolution and amplified 

sensitivity. However, it has not yet become a routinely employed clinical technique, due to 

a variety of confounding factors affecting its contrast-weighted image interpretation and the 

inherently long scan time. CEST MR fingerprinting (MRF), is a novel approach for addressing 

these challenges, allowing simultaneous quantitation of several proton exchange parameters using 

rapid acquisition schemes. Recently, a number of deep-learning algorithms were developed to 

further boost the performance and speed of CEST and semi-solid macro-molecule magnetization 

transfer (MT) MRF. This review article describes the fundamental theory behind semisolid 

MT/CEST-MRF and its main applications. It then details supervised and unsupervised learning 

approaches for MRF image reconstruction and describes artificial intelligent (AI)-based pipelines 

for protocol optimization. Finally, practical considerations are discussed, and future perspectives 

are given, accompanied by basic demonstration code and data.
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1. Introduction

Semisolid magnetization transfer (MT) and chemical exchange saturation transfer (CEST) 

MRI have proven to be powerful tools for detecting changes in semisolid macromolecular 
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components (e.g., myelin sheets or membranes and lipids) and solute molecules (e.g., 

mobile proteins, peptides, and metabolites) in numerous disease pathologies.1-7 However, 

most currently used imaging protocols are not able to provide quantitative measurement 

of tissue parameters and acquire semisolid MT and CEST weighted images only. In 

addition, the observed CEST contrast is a complex overlay of contributions from different 

proton pools, including amide, amine, semisolid MT, and/or relayed nuclear Overhauser 

enhancement (rNOE), which can sometimes bias the biological interpretation of the 

observed signal changes. For instance, amide proton transfer (APT) imaging, a variant 

of CEST MRI, has shown promise in brain cancer detection, diagnosis, and treatment-

response assessment.8-11 These studies have established that increased cytosolic protein 

content in gliomas can cause an APT hyperintensity, as revealed by proteomics and in-vivo 

MR spectroscopy.12,13 However, some recent preclinical,14,15 and clinical studies of brain 

tumors,16,17 which observed a hyperintense tumor APT signal, demonstrated a decreased 

tumor amide CEST contrast after separating out the contributions to the APT signal from 

the semisolid MT and rNOE proton pools. This decreased tumor amide CEST signal may 

be due to the significant tumor edema or due to differences in the RF saturation parameter 

or analysis method used. Thus, the complex nature of the CEST contrast can challenge the 

interpretation of the underlying disease pathology in some cases.18

Similarly, the MT ratio (MTR) metric conventionally used in semisolid MT imaging 

is influenced by relaxation effects, thus limiting the detection of the specific tissue 

composition.4,19 Even worse, the weighted signals or image contrasts are highly 

dependent on the image acquisition parameters (e.g., TR, RF saturation powers, durations, 

frequency offsets, and saturation labeling strategies, etc.) and data analysis methods.20 

These differences presumably contribute in part to the inconsistencies observed across 

studies. Consequently, the development of quantitative semisolid MT and CEST imaging 

methodologies could provide correct proton-exchange-parameter estimates, independent of 

the above-mentioned confounds, experimental settings, and data analysis approaches, and 

improve the repeatability and reproducibility of the measurements across different imaging 

platforms.

Currently, the semisolid MT and CEST communities have a great interest in quantifying 

exchangeable proton concentrations and exchange rates as surrogate biomarkers of protein/

metabolite/lipid composition and intracellular pH, respectively. One of the most promising 

exchange quantification methods, fits the CEST signals using the steady-state analytical 

solution of the Bloch McConnell (BM) equations.21 However, it requires long scan and 

computation times. Over the past decade, although many quantification methodologies 

have been developed to address the challenges discussed above, a tremendous leap in 

acquisition and reconstruction times was only recently made by integrating semisolid MT 

and CEST with MR fingerprinting (MRF). Furthermore, recent advances in deep-learning 

provide a new paradigm for solving ill-posed inverse problems in MRF reconstruction. 

Herein, we provide readers with an overview of semisolid MT and CEST-MRF acquisition, 

reconstruction, optimization, and inter-pretation strategies. The scope and organization of 

this review are described in Supporting Information Figure S1.
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2. CEST MRI Background

2.1 CEST-Weighted Imaging

CEST-weighted signals are usually obtained from the Z-spectrum using an MTR asymmetry 

analysis at certain frequency offsets, where the MTRasym is given by:3

MTRasym = S( − Δω) − S( + Δω)
S0

= Z( − Δω) − Z( + Δω) (1)

where S(±Δω) is the signal measured with saturation at offset ±Δω, and S0 is a reference 

signal acquired without saturation. In the case of APT imaging, the MTRasym is evaluated 

at the amide chemical shift of 3.5 ppm from the water resonance. However, due to the 

contribution to the MTRasym from the nuclear Overhauser enhancement (NOE) effect of 

aliphatic protons of mobile cellular macromolecules with a chemical shift of around −3.5 

ppm, including the inherent semisolid MT asymmetry, the APT signals are reduced and do 

not provide a clean quantification of the amide proton signal.

In addition, the fast-exchanging amine protons of glutamate, at a chemical shift of around 

3 ppm, and guanidinium protons in proteins and creatine, resonating at around 2 ppm, 

can make contributions to the APT signal, particularly for high RF saturation power 

levels. Various methods were developed for separating the desired APT effects from the 

background semisolid MT and NOE signals. These include the three-offset approach, which 

estimates the MT and direct water saturation contribution using a linear approximation,22 

and its later refinement using relaxation-based direct saturation correction (DISC).23 In a 

different work, a two-pool BM equation-based fitting with super-Lorentzian line shape, 

called extrapolated semisolid MT reference (EMR)24,25 has been proposed, which subtracts 

the fitted semisolid MT signal from the acquired Z-spectrum. Furthermore, a multi-pool 

Lorentzian fitting analysis of the Z-spectrum can also be used to better separate the different 

spectral components.26,27 Nevertheless, dilution effects from direct water and semisolid MT 

saturations still remain on the measured APT signal due to the non-linear contributions 

from the different proton pool components (water, semisolid MT, APT, and other CEST 

components) of the Z-spectrum, which changes with the RF saturation parameters. In 

addition, these approaches cannot completely disentangle the coupled parameters of 

exchange rate and concentration. All of the above challenges have motivated a considerable 

effort to develop truly quantitative CEST imaging techniques, as described below.

2.2 Non-MRF Quantitative CEST Imaging

In light of the detailed review papers for CEST quantification,28-32 this section aims 

to briefly describe the general concept underlying previous quantitative approaches and 

highlight the motivation to develop CEST-MRF methodology.

One of the first in-vivo measurements of chemical exchange rate was performed using the 

water exchange spectroscopy (WEX) method for the quantification of the amide proton 

exchange rate from endogenous mobile proteins.33 An exchange rate of ~30 Hz was 

estimated from the mixing-time evolution of the amide signal in the WEX spectrum using 

a simple two-pool exchange model (free bulk water and amide proton pools). Relatively 
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long mixing times for the water labeling preparation were used in the study, limiting the 

detection of fast-exchanging amide protons. The amide proton concentration of ~72 mM was 

calculated by solving the two-pool-based amide proton transfer ratio (APTR) equation with 

the exchange rate estimated from the WEX spectrum. Moreover, the use of a high saturation 

power in the WEX experiment would increase spillover effect of direct water saturation 

and semisolid MT. Therefore, the amide exchange rate and concentration reported from the 

WEX experiment may not necessarily be accurate for all amide protons.

Quantification of exchange rate using varying saturation power (QUESP) or saturation time 

(QUEST) methods were proposed to estimate the exchange rate using a simplified analytical 

solution of the two-pool BM equations.34 The methods estimate and correct spillover 

water saturation by applying a saturation pulse on the opposite side of water from the 

exchangeable protons to calculate the proton transfer ratio (PTR). However, the result may 

be corrupted by upfield NOE as well as semisolid MT signals for in-vivo applications. In 

addition, the analytical solution used in QUESP/QUEST assumes complete saturation under 

a strong B1 saturation power which can significantly increase direct water saturation and 

semisolid MT signal contributions, and thus, is less accurate for measuring fast exchange 

rates. Recently, refined QUESP/QUEST analytical equations were introduced for inefficient 

saturation conditions.35 In addition, an empirical solution, which also considers the direct 

water saturation (spillover) effect was derived.36,37 However, this approach is sensitive to 

water relaxation, and requires voxel-wise mapping of the T1 and T2 relaxation times.29 

Finally, the acquisition of multiple Z-spectra with various saturation pulse powers and 

durations requires very long acquisition times, although an acceleration is feasible using 

a multi-echo length and offset varied saturation (MeLOVARS),38 a progressive saturation 

for quantifying exchange rates using saturation times (PRO-UEST),39 and a post-processing 

solution for quasi–steady-state (QUASS) saturation time and relaxation delays.40

The apparent exchange-dependent relaxation (AREX) method41 was demonstrated for 

measuring an inverse exchange rate (from a free bulk water proton pool to a labile proton 

pool) using an inverse Z-spectrum metric with known water T1 relaxation time. Using this 

metric, an in-vivo quantification of solute concentrations can be further estimated, following 

the use of a phantom calibration study and by acquiring multiple Z-spectra,42 or assuming a 

fixed volume fraction of the solute pool.41 However, the simple analytical solution used for 

AREX method could be a poor approximation of the full BM-equation solution at strong RF 

saturation and low spectral resolution (clinical field strength) conditions.31,43

Additional prominent CEST quantification methods include omega-plots,44,45 full BM 

equation fitting,21 ratiometric analysis,46,47 and frequency labeled exchange (FLEX).48,49 

However, these approaches are either challenging to be applied in-vivo,50 require a long 

processing time,51 involve exogeneous media injection,52or are mostly appropriate for 

saturating fast exchanging protons.49

3. Semisolid MT/CEST Magnetic Resonance Fingerprinting

The differential Bloch equation is complex, and its inverse can have multiple solutions 

for an observed MR signal. In a multiple-pool exchange model, finding a unique solution 
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to the inverse problem of the Bloch equation coupled by exchange terms is even more 

challenging. Recently, a novel, quantitative MR-fingerprinting (MRF)53 paradigm was 

introduced with a completely different approach to image acquisition and reconstruction. 

Instead of exploiting steady-state signals for the characterization of individual parameters 

of interest, as in conventional quantitative MRI, MRF uses a pseudorandomized acquisition 

that causes MR signals from different tissue properties to have unique signal trajectories 

(so-called fingerprints). For reconstruction, a pattern-matching algorithm is used to find 

different tissue-type parameters against a pre-calculated dictionary (or database) from Bloch 

simulations with a wide range of tissue parameter combinations. The best-match is then used 

for practically solving the inverse problem of the Bloch equations.

Originally introduced for water T1 and T2 relaxation, B0 shift, and proton density 

quantification, MRF has gradually expanded for the quantification of additional tissue 

parameters,54 such as blood flow velocity,55 perfusion,56 and B1
+.57 Importantly, the 

MRF framework can be adapted to estimate multiple proton-exchange components such 

as semisolid MT and CEST parameters. A significant effort is currently ongoing to 

develop a robust, quantitative semisolid MT and CEST MRF imaging framework using 

pseudorandomized RF saturation and acquisition schedules, and database matching process 

for reconstruction. Figure 1 shows the primary components of the semisolid MT/CEST-

MRF: image acquisition, dictionary generation, reconstruction, and visualization.

3.1 Dictionary Matching for Semisolid MT/CEST-MRF Reconstruction

A preliminary CEST “fingerprinting-like” experiment was performed by Geades et al.,58 

where a numerically simulated look up table was used to extract the NOE, amide, and 

semisolid MT quantitative proton volume fractions from Z-spectra acquired with three 

different saturation powers. However, the simulations were performed for a very restrictive 

parameter space, with only eight different proton concentration values considered for each 

pool, a fixed proton exchange rate, and a total acquisition time of 24 min.

The first CEST-MRF experiments with rapid fingerprinting acquisition schedules and 

densely simulated dictionaries were demonstrated by Cohen et al.59 and Zhou et al.60 using 

CEST phantoms and/or in-vivo rat brain. For the study of Cohen et al.,59 a pseudorandom 

acquisition schedule of 30 saturation-pulse powers was used while other scan parameters 

such as the RF saturation time, frequency offset, and TR, were kept fixed. For reconstruction 

of the concentration and exchange rate maps of the exchangeable proton, the experimental 

signal trajectories were matched to a simulated dictionary using a correlation-based metric 

(dot product). The estimated exchange parameters for the L-Arg phantom (Figure 2) were 

shown to be in good agreement with results from the QUESP method. Although reasonable 

in-vivo semisolid MT and amide parameter maps were obtained from a wild-type in-vivo rat, 

this approach is limited by the use of a single acquisition schedule with a fixed frequency 

offset (3.5 ppm), which is sub-optimal for assessing the semisolid MT exchange parameters 

and separating it out from the amide-related signal contribution.15 In addition, the B0 field 

inhomogeneity was not considered.

The study of Zhou, et al.60 reported a CEST-MRF sequence for the quantification of 

creatine amine proton exchange rates in a 3-pool creatine/agarose phantom, which explored 
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methods for removing the semisolid component from the amine CEST signal at 2 ppm 

and correcting for B0 inhomogeneity. Prior to the dictionary matching, the semisolid MT 

effects were estimated by measuring saturated signals at the opposite frequency offset (−2 

ppm), upfield from the water resonance, and removed using a pre-calculated dictionary 

(Figure 3). However, the estimation of semisolid MT signals from the opposite frequency 

offset might be biased, particularly for in-vivo tissue, due to asymmetric semisolid MT and 

NOE contributions. To allow for retrospective correction of B0 field inhomogeneities, the 

CEST-MRF image acquisition was also repeated at multiple frequency offsets. However, this 

prolonged the total scan time to approximately 10 minutes.

Conventional dictionary matching based MRF reconstruction methods, however, have 

certain challenges and limitations. First, the dictionary generation time, which is built on 

the numerical solution of the BM equations, is exceedingly long and may take hours, or 

even days, depending on the available hardware and complexity of the CEST imaging 

scenario.15 Second, the reconstructed parameters are discrete, and their resolution is limited 

by the size of the dictionary. Third, large dictionaries with millions of entries are needed for 

complicated multi-pool CEST scenarios requiring expansive computational storage. Finally, 

the quantitative image reconstruction may take many hours, making it infeasible for use in 

clinical settings, where rapid clinical decisions, must sometimes be made.

The first attempt to overcome the limitations of dictionary matching methods was 

demonstrated by Heo, et al.61 where the acquired MRF trajectories were fit to a 

multiple-pool exchange model using a nonlinear least-square procedure. The dictionary-free 

reconstruction method was demonstrated on CEST phantoms and healthy volunteer human 

brains at 3T (Figure 4). Although the model-based fitting approach has almost unlimited 

tissue parameter range and precision for estimating semisolid MT and CEST parameters, it 

may be affected by the parameter initialization conditions and prone to local minima errors. 

Moreover, it still suffers from a long reconstruction time.61 This important consideration has 

therefore motivated the exploration of alternative, deep-learning-based MRF reconstruction 

methods for fast tissue parameter quantification.

3.2 Deep Learning for Semisolid MT/CEST-MRF Reconstruction

The recent improvements in deep learning capabilities have created unique opportunities for 

medical imaging. While the most familiar examples include accurate pathology detection,62 

segmentation,63 and classification,64 at the post-processing stage, an evident benefit lies in 

utilizing deep learning for improving image reconstruction. In addition to being able to 

approximate and represent complex non-linear relations,65 a significant advantage of using 

deep learning compared to earlier machine learning approaches is its ability to automatically 

learn and optimize the classification features, thereby reducing the need for domain 

expertise and manual feature selection/design.66,67 However, the main practical limitation 

for using deep learning in medical imaging is the need to acquire large quantities of training 

data for high performance. While big databases are available for natural scene images,68 

only a few, much smaller MRI data repositories were made publicly available (e.g., 

ref.69). Luckily, the MRF reconstruction approach is based on artificially synthesized data, 

allowing the generation of data sets of any desired size. This characteristic has rendered 
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the combination of deep learning and MRF an attractive means for rapid reconstruction of 

MR images, as demonstrated for water T1 and T2. By voxel-wise feeding a fully connected 

neural network (NN) with MRF trajectories (acquired using a pseudorandom sequence 

with varied flip angles and repetition times), Cohen et al.67 were able to reconstruct water 

relaxation times in less than 100 ms. Can deep learning be similarly applied in the molecular 

imaging and semisolid MT/CEST realm?

As mentioned in section 2.1, CEST-related signals are commonly measured from the Z-

spectrum. It is therefore not surprising that the first reported combination of NN and CEST 

data for quantitative exchange parameter mapping has used this intuitive signal as the input 

source for an artificial neural network (dubbed ANNCEST).70 By training four ANNCESTs 

(Figure 5a) with the BM equation generated Z-spectra, the phosphocreatine (pCr) exchange 

parameters of the human skeletal muscle (Figure 6b) and the B0/B1 field inhomogeneities 

were successfully quantified in-vivo. Although this approach was not originally reported as 

an MRF experiment,70 the use of a simulated dictionary for the neural-network training, 

together with an input signal that encodes for CEST changes, allow this approach to be 

considered as a CEST-MRF variant.

While the semisolid MT pool can be treated as a spatially homogeneous proton pool in 

the leg muscle (as performed in the ANNCEST approach), its properties vary markedly 

across the brain.71 Given that changes in semisolid MT exchange parameter values are 

useful for the diagnosis of several diseases (the most well-known example is multiple 

sclerosis),72 there is a clear motivation for developing rapid semisolid MT quantification 

methods. Accordingly, Kim et al.73 developed a deep learning approach for simultaneously 

quantifying semisolid MT proton exchange rate, volume fraction, and transverse relaxation, 

as well as the water longitudinal relaxation, demonstrated in the brain of healthy volunteers 

at 3T. A dynamic MRF schedule that varied the saturation pulse power, duration, frequency 

offset, and relaxation recovery-time was used to train deep neural networks (Figure 5b). 

Furthermore, using the tissue parameters estimated from MRF and the acquired water 

T2 relaxation, accurate semisolid MT signal intensities were able to be estimated at 

certain CEST frequency offsets (e.g., 3.5 ppm and −3.5 ppm for APT and NOE imaging, 

respectively), allowing for a clean separation of the semisolid MT and CEST signals.

There is a clear value in the ability to accurately de-bias CEST-weighted brain images 

from the semisolid MT and water contribution. Nevertheless, a fully quantitative and rapid 

estimation of the amide proton volume fraction and exchange rate, would provide an ideal 

means for assessing the underlying molecular phenomena and pathology, as discussed in 

section 2. However, for this application, there are at least three prominent compound pools 

involved (amide, semisolid MT, and water), whose parameters are all varying simultaneously 

with disease progression. This complex and highly multi-dimensional parameter-space 

imposes a considerable challenge. Accordingly, trying to employ a single NN with a 

single parameter encoding acquisition schedule in tumor bearing mice has resulted in 

very noisy and poorly discriminating parameter maps.74 The first deep learning based 

CEST-MRF method that fully quantified these parameters in the brain disease environment 

was recently reported by Perlman et al.15 The key element responsible for this progress 

was a sequential deep-learning pipeline (Figure 5c), aimed to obtain both semisolid MT and 
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amide quantitative information, while reducing the complexity of each quantification step, 

by relying on the results of the former. The method was explored in the context of neuro-

oncology applications and was used for monitoring the treatment response of glioblastoma 

multiforme (GBM) bearing mice to oncolytic virotherapy (Figure 7). The translation of this 

method to a 3T clinical scanner has demonstrated good agreement with previous literature 

reports in a healthy human volunteer (Table 1).

All the NN strategies discussed so far, can be associated with the machine learning branch 

of supervised learning, where labeled ground-truth information is paired to each input signal 

during the system’s training. In the context of MRF, these data pairs are obtained via an 

extensive numerical dictionary generation step, which may take hours, depending on the 

complexity and number of pools involved in the simulated scenario and the availability 

of computational resources (number of CPUs/GPUs, RAM, etc.). In addition, the accuracy 

of the quantification is highly dependent on the model used for dictionary simulation, 

which is not guaranteed to accurately reflect the experimentally measured data. To address 

these challenges, Kang et al.75 have recently proposed an unsupervised learning approach 

for quantifying the semisolid MT exchange parameters (Figure 8). Instead of presenting 

the NN with pairs of simulated MRF trajectories and the corresponding ground truth 

tissue parameters, the convolutional neural network (CNN) architecture was trained to 

minimize the different between ‘real’ experimentally acquired MRF trajectories (input) and 

synthesized MRF trajectories (output) by solving the BM equations. By defining the loss 

as the L2 distance between the ‘real’ MRF trajectories and the simulated counterparts, the 

CNN iteratively optimizes its quantification ability. The convolutional neural network in the 

unsupervised fashion outperformed supervised NN at lower SNRs, in terms of robustness to 

noise, which could be beneficial to estimate low-concentration CEST parameters. However, 

the unsupervised learning has limited generalization ability because the deep-learning 

framework was trained with a limited range of tissue parameter in healthy volunteers. 

In particular, pathological cases that include a distinctly different combination of tissue 

(and exchange) parameters are not expected to be accurately mapped, unless sufficiently 

represented in the CNN parameter optimization. While the dictionary generation, required 

for training the NN in the supervised approach is time-consuming, it could, in principle, take 

place only once and include a huge number of parameter combinations, potentially sufficient 

for many different pathologies (e.g. brain cancer, stroke, etc.).

3.3 Optimization of MRF Acquisition Schedules

The ability to discriminate different exchange parameters is sensitive to the acquisition 

schedule used (Figure 9). Thus, it is crucial to tailor and optimize the properties of the 

imaging protocol for the biological imaging scenario of interest.

A basic means for understanding the influence of the acquisition parameters on the 

discrimination ability of CEST-MRF and for comparing different schedules is to employ a 

similarity-based loss metric, such as the dictionary Frobenius norm dot-product loss.59,76,77 

Intuitively, such metrics compare the correlation between different pairs of simulated signal 

trajectories, associated with a given MRF dictionary, assuming that minimal correlation 

is a predictor for improved parameter discrimination ability. Using this metric, it was 
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demonstrated that different molecular scenarios, such as endogenous amide imaging, 

and exogenous fast exchanging CEST agents imaging require a distinctly different MRF 

schedule (Figure 10).77 While similarity metrics, such as the dot-product and Euclidean-

distance can also serve as predictors of the encoding capability of CEST-MRF acquisition 

schedules, it was recently shown that an improved pH quantification prediction could be 

obtained by using the Cramer-Rao bound.78

Another approach for acquisition protocol optimization is Monte Carlo simulations of 

noise propagation.79 Here, a dictionary with a particular imaging protocol is repeatedly 

generated with random noise perturbations. As the noisy trajectories are matched to the 

original ‘clean’ dictionary, the proton exchange rate and volume fraction quantification 

error can be calculated. Based on this strategy, a numerical evaluation predicted that a 

CEST-MRF schedule could be shortened by more than 60%, with only a minor decrease in 

reconstruction accuracy. The finding was then successfully confirmed using an experimental 

phantom study.77

The main limitations of the numerical optimization strategies mentioned above, is the 

need to calculate a particular loss (or quantification error) for each acquisition-schedule 

candidate. Given the very large parameter space involved in CEST-MRF, where at least 

5 scan parameters (saturation pulse power, duration, frequency offset, readout flip angle, 

and repetition time) could be varied, and a huge dictionary of biophysical parameter 

combinations must be synthesized for each schedule, it is virtually impossible to explore 

all (or most) of the acquisition parameter space.

In an attempt to bypass the time-consuming dictionary generation requirement, and improve 

the chances of finding a global solution, a preliminary work by Cohen et al.80 has developed 

a schedule optimization network, aimed to learn the direct functional mapping between 

the acquisition schedule and the corresponding reconstruction error. In the first step, a 

mapping between the raw dictionary signals, associated with an MRF protocol to the 

corresponding quantitative parameters is performed, using a supervised-learning approach, 

similar to that described in section 3.2. The process is repeated for a few thousand random 

schedules, creating pairs of scan parameter combinations and their associated reconstruction 

errors. These pairs are then used as the input and output data for training a second neural 

network. This schedule optimization network (SCONE) could predict the performance of 

unseen acquisition schedules in less than a second, allowing a drastic expansion of the 

evaluated acquisition parameter space. In addition, SCONE can be used in combination 

with computational optimization solvers. Although the combined T1/T2/CEST/semisolid MT 

reconstruction using the SCONE-optimized schedule was able to improve the tumor contrast 

in a mouse GBM model,81 there were some deviations in the quantitative parameter values 

compared to the literature, warranting additional optimization and validation.

Recently, a more unified framework termed AutoCEST was developed, allowing an 

end-to-end automated discovery of semisolid MT/CEST MRF acquisition protocols and 

quantitative deep reconstruction (Figure 11).82 Its key component was treating each 

acquisition schedule parameter similarly to a neural network node weight, thereby allowing 

its efficient optimization. To enable such optimization, the CEST saturation block was 
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represented as a computational graph (Figure 11b), based on the analytical solution of 

the two83 or three84 proton pool BM equations. Next, the readout and relaxation blocks 

were similarly represented using the Bloch equations with a discrete-time state-space 

model in the rotating frame (Figure 11c), allowing for the calculation of the expected 

MR signal for a randomly initialized set of acquisition parameters. These signals are then 

directly fed into a quantitative reconstruction network (Figure 11d), trained to output the 

desired semisolid MT/CEST exchange parameters. To obtain efficient and simultaneous 

optimization of the acquisition and reconstruction parameters involved in deep CEST-MRF, 

all computational graphs were serially connected. This enables a ‘single-click’ optimization 

using automatic differentiation and stochastic gradient descent. AutoCEST was used for 

discovering optimized amide and semisolid MT acquisition schedules and yielded amide and 

semisolid MT exchange parameters in good agreement with previous reports (Table 1).

The potential and strength of using a supervised deep-learning strategy, combined with 

a loss function that directly evaluates tissue quantification error for MRF schedule 

optimization, was recently further substantiated by Kang et al.85 A framework for learning-

based optimization of the acquisition schedule (LOAS) was developed to optimize RF 

saturation-encoded MRF acquisition with a minimal number of scan parameters for tissue 

parameter quantification (Figure 12). The BM-based numerical phantom and in-vivo studies 

showed that the LOAS outperforms existing indirect optimization methods, such as the 

Cramer-Rao lower bound (CRLB)86 and interior-point (IP),76 in terms of quantification 

accuracy and acquisition efficiency.

3.4 Practical Considerations in Semisolid MT/CEST-MRF Studies

There are several practical issues to consider in the development of the semisolid MT/CEST-

MRF methodologies. The performance of the MRF methods must be rigorously evaluated 

in terms of their accuracy, repeatability, and reproducibility across subject, vendors, and 

imaging sites, and assessed with the certainty of the estimated tissue parameters.

3.4.1 Accuracy—For the MRF reconstruction (or tissue parameter quantification), deep-

learning neural networks can be trained with a huge dataset that covers all possible 

combinations of tissue properties. Then, the reconstruction accuracy of the deep-learning 

neural networks can be evaluated on a never-before-seen test dataset. Furthermore, the 

semisolid MT/CEST-MRF method can be demonstrated using well-controlled phantoms 

with known proton concentration and pH. For instance, the amide proton exchange rate 

has a one-to-one correspondence to pH because the exchange rate of −NH groups is 

base-catalyzed and decreases with decreasing pH.3 Thus, an estimated proton exchange 

rate can be indirectly evaluated by observing signal changes at different pH and deriving 

empirical calibration formulas to relate exchange rate to pH. Several important NMR 

and MRI methods have been developed to directly estimate proton exchange rates 

by measuring the temperature-dependent linewidth, fitting of Z-spectrum with the BM 

equations,21 QUESP,34 WEX,33 or Omega-plot.44,45 The estimation of semisolid MT and 

CEST parameters reported in the literature is shown in Table 1. Although the methods are 

promising as a reference standard, the measurement of the absolute in-vivo exchange rate 

remains challenging and there is no widely accepted “gold standard” method regarding the 
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measurement. To enable effective validation, previous studies performed synthetic MRI 

analysis (Figure 13) to evaluate the reconstruction accuracy. Various contrast-weighted 

images were synthesized with the tissue parameters estimated by deep-learning semisolid 

MT-MRF by solving the BM equations with new RF saturation parameters and relaxation 

delay time (Td). Good agreement between the synthetic and actually acquired images was 

found, which may guarantee stable solutions (tissue parameters) of the inverse problem of 

semisolid MT-MRF. In the absence of a ground truth, synthetic MRI could be useful for 

validation of in-vivo tissue parameters and applied to CEST-MRF or other quantification 

methods. In addition, histology and immunohistochemistry images can be used to confirm 

any assumptions made based on proton exchange parameters (e.g. apoptosis, tumor/healthy 

tissue, total protein content, etc.). Notably, such measurements should be carefully analyzed, 

as they do not directly reflect the exchangeable proton volume fraction and exchange rate.

3.4.2 Repeatability and Reproducibility—As in any other quantitative MR imaging, 

it is important to ensure that tissue parameters estimated from semisolid MT/CEST-MRF 

methods are repeatable and reproducible.87 While a conventional MRF method has 

demonstrated high repeatability and reproducibility of water T1 and T2 relaxation times, 

there is unfortunately sparse literature studying the repeatability and reproducibility of 

semisolid MT/CEST-MRF measurements due to their relative novelty. A standardized 

phantom must be used to determine the repeatability for each scanner and between-scanner 

reproducibility. For human studies, an interesting approach called “the traveling heads”88 

was recently introduced to improve the reproducibility of quantitative MRI.89 The same two 

subjects were imaged on different scanners at multiple sites, comprising multiple repetitions 

at each scanner to assess inter-site and intra-site reproducibility. This approach could 

be adapted to the semisolid MT/CEST-MRF experiments for longitudinal or multicenter 

studies. A recent study90 evaluated the reproducibility of sequential and deep15 amide and 

semisolid MT in the healthy brain across three sites with different scanner platforms, but 

the same vendor. Although quantitative reproducibility metrics (e.g., intra-class correlation 

coefficient and coefficient of variation) were not reported, the study demonstrated the 

feasibility of reproducibility assessment across multiple sites for semisolid MT/CEST-MRF 

as shown in Figure 14.

3.4.3 Uncertainty—In deep-learning semisolid MT/CEST-MRF, uncertainty must be 

considered in the error analysis, which is a quantitative metric of variability in the tissue 

estimates. There are possible sources of uncertainty in the estimation of tissue parameters, 

including variance in the noise level and tissue parameter coverage in the training dataset, 

and size of training dataset. In particular, quantifying semisolid MT exchange rate is very 

challenging due to insignificant MRF signal discrimination between different exchange 

rates.75 Such a poor signal discrimination is even worse in the estimation of CEST exchange 

rate due to the lower concentrations of solute molecules and lower signal intensity levels 

(vulnerable to noise) around the water resonance. Therefore, uncertainty quantification 

could provide surrogate estimates of the errors from deep-learning models and confidence 

measures for tissue estimates. Recently, Glang et al.91 have proposed a deep-learning 

framework for incorporating an uncertainty measure in multiple-pool Lorentzian fitting 

of CEST-MRI. A probabilistic output layer in the neural network was used to represent 
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the “trustworthiness” of each estimated Lorentzian parameter, learned without the use of 

additional certainty targets (or ground truth) but by using a modified Gaussian likelihood 

function. Even though the approach was used to demonstrate the uncertainty in the 

quantification of multiple-pool Lorentzian model parameters (amplitude, linewidth, and peak 

position), it could be incorporated for semisolid MT/CEST-MRF framework to provide an 

estimation of the uncertainty of the tissue exchange parameters.

3.4.4 Open Source for Semisolid MT/CEST-MRF—One of the main drivers for 

widespread implementation of a new MR imaging technique is the availability of open-

source tools.92 Publicly available data and processing codes will facilitate reproducibility 

and allow research groups to quickly build upon the project, and further advance the 

research field. For instance, aligned with that principle, Chen et al.70 have linked the 

ANNCEST code to their manuscript, as well as human leg and phantom data. Perlman et 

al.82 have made the raw and analyzed AutoCEST data publicly available.93 For comparison 

and validation of CEST acquisition and processing techniques across scanners and sites, 

Yao et al.94 have designed a physical phantom, validated its temporal stability, and made 

the computer automated design (CAD) files for creating the physical phantom available 

online. For improving the ability to reproduce acquisition protocol across different sites and 

vendors, Herz et al.90 have developed a CEST definition standard using an open format, 

which allows a complete description and reproduction of the acquisition schedule used 

in previous CEST-based literature including MRF.15,59,61 Lastly, to support the readers in 

implementing the basic steps of semisolid MT/CEST-MRF reconstruction, demonstration 

code and sample data are provided at: https://github.com/operlman/cest-mrf.

4. Conclusions and Future Perspectives

The limited availability of expert-labeled clinical data and the recent developments in 

deep learning methodologies have motivated the use of synthetic data for augmenting 

and improving the training of machine learning models for medical imaging.95 Within 

this approach, MRF lies on the extreme edge of the spectrum, as it builds solely on 

synthetic, physical-model-based generated signals. Therefore, the success of MRF is heavily 

dependent on the ability of the physical model to accurately depict the real-world measured 

signals. Although both the classical Bloch equations96, used for “conventional” water T1/T2 

MRF, and the Bloch McConnell (BM) equations,97 used for semisolid MT/CEST MRF, 

were intensively investigated in the past decades, the latter contains a considerably larger 

number of parameters, as each of the proton pools involved contains its own transverse 

and longitudinal relaxation times, concentration, and exchange rates with the other pools. 

Therefore, as semisolid MT-MRF, and especially CEST-MRF contain a large number of 

‘moving parts’, they are more prone to inaccuracies caused by model imperfections. An 

exception to the general MRF concept, is the use of unsupervised learning (section 3.2.2), 

which does not involve synthesized dictionaries at all. Instead, the training is performed 

using ‘real’ experimentally acquired images. However, a model is still an integral part of 

this approach and considered as the ground truth reference.75 We postulate that in the future, 

a hybrid deep-learning method, trained using both experimental and synthesized data could 

harvest the benefits of both worlds.
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The performance of semisolid MT/CEST MRF is also expected to further improve due to 

“third-party” developments, stemming from each of the 3 parents of this technique: water 

T1/T2 MRF; deep learning algorithms; and classical CEST theory. Particularly, water T1/T2 

MRF is an increasingly investigated field,54,98 where new acquisition schemes and novel 

reconstruction approaches are continuously suggested and evaluated.99-101 However, the 

unique attributes of the CEST-MRF contrast mechanism will mandate careful adaptations to 

any conventional MRF inspired approach and will require additional and separate research 

efforts.

The exponential growth in deep learning applications and methods, and the vast international 

resources allocated for AI research are expected to keep expanding the capabilities of deep 

learning-based parameter estimation. In the context of the future translation of CEST-MRF 

for routine clinical care, the topic of explainable AI, which is aimed at uncovering what 

happens “under the hood” in a deep learning system is of particular importance.102-104

Last but not least, new investigations into the exact biophysical properties of various CEST 

compounds are routinely conducted,105-107 and are expected to improve the accuracy of the 

semisolid MT/CEST MRF models. Such studies might also assist in clearing the fog of 

uncertainty concerning the semisolid MT/CEST quantitative ground truth. As demonstrated 

in Table 1, although some similarities exist between the exchange parameters obtained by 

various groups, there is a substantial variance for some of the exchange parameters (most 

strikingly seen for the amide proton exchange rate), for both MRF-based and non-MRF 

quantitative evaluations. This variability is likely rooted in the different model variants 

used by different methods (e.g., the use of the analytical or the numerical solution of the 

BM equations), the assumptions made regarding the biophysical environment (e.g., the 

number of simulated proton pools and the values of the fixed parameters), the sensitivity 

and discrimination ability of the particular acquisition schedule used (as discussed in section 

3.3), and the resolution/size of the dictionary/data used for image reconstruction and NN 

training. A related summary of the key concepts and pros and cons of each semisolid MT/

CEST MRF method described throughout this review is available in Table 2.

An additional open subject in quantitative semisolid MT/CEST is the required performance. 

Is it sufficient to obtain a 10 mM mean squared error in estimating the compound 

concentration? A 20 Hz resolution for proton exchange rate estimation? A 10% mean 

absolute error for any parameter? Arguably, the minimal performance should allow the 

reasonable detection of disease and its classification into various stages/treatment response.

The clinical imaging field is slowly but steadily transitioning to rely on quantitative instead 

of qualitative measures.108 The effort in converting CEST and semisolid MT to become 

fully quantitative methods for obtaining molecular information could constitute an important 

component in this transition to quantitative MRI. Given that deep semisolid MT/CEST-

MRF provides a drastically shorter scan time, a simultaneous estimation of quantitative 

biophysical parameters, and a simplified and objective means of analysis, we anticipate that 

it could play a substantial role in the efforts to make semisolid MT and CEST-MRI an 

integral part of the clinical imaging routine.
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Abbreviations:

ANNCEST artificial neural network-based chemical exchange saturation transfer

APT amide proton transfer

APTR amide proton transfer ratio

AREX apparent exchange-dependent relaxation

BM Bloch-McConnell

BSA bovine serum albumin

CAD computer automated design

CEST chemical exchange saturation transfer

CNN convolutional neural network

CPU central processing unit

CRLB Cramer-Rao lower bound

DISC direct saturation correction

EPI echo planar imaging

GBM glioblastoma multiforme

GPU graphics processing unit

IP interior-point

LOAS learning-based optimization of acquisition schedule

MeLOVARS multi-echo length and offset varied saturation

MRF magnetic resonance fingerprinting

MRI magnetic resonance imaging
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MRS magnetic resonance spectroscopy

MS multiple sclerosis

MTRasym magnetization transfer ratio asymmetry

MT magnetization transfer

NN Neural network

pCr phosphocreatine

PRO-QUEST progressive saturation for quantifying exchange rates using saturation 

times

QUASS quasi-steady--state

QUESP quantifying exchange using saturation power

QUEST quantifying exchange using saturation time

RAM random access memory

rNOE relayed nuclear Overhauser effect

SCONE schedule optimization network

SNR signal to noise ratio

TSE turbo spin echo

WEX water exchange
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Figure 1. General pipeline of a semisolid MT/CEST MRF experiment.
a. Initially, a pseudo-random imaging protocol is designed, where at least one acquisition 

parameter is being varied, to produce a set of N images. Importantly, a pre-saturation block 

needs to be implemented, where at least the saturation pulse power (B1), duration (Tsat), 

or frequency offset (ωrf) should vary, for sufficient encoding of the chemical exchange 

parameters. The protocol typically includes a rapid readout, e.g., using EPI or turbo spin 

echo, with either a fixed or varied flip angle (FA) and recovery time (Trec). b. The 

designed protocol is then loaded into a computerized Bloch-McConnell equations-based 

signal simulator, which produces the signal trajectories expected for a large number of tissue 

parameter combinations. The same CEST-MRF acquisition protocol is fed as an instruction 

file to the MRI scanner, allowing the acquisition of N molecular information encoding 

images, where each pixel series comprises an experimentally acquired trajectory (e[1] – 

e[N]). c. Each trajectory (e[n]) is then compared to all dictionary entries (d[n]), via a pattern 

recognition algorithm (such as the dot-product metric) for the determination of the best 

match. Importantly, this step can be accelerated and improved using a deep neural-network. 

d. Finally, simultaneous pixel-wise quantification of the proton exchange rates (k), and 

volume fractions (f) for a single or several metabolite/protein/lipid pools of interest can be 

made, based on the neural network output, or the best-matched dictionary entry.
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Figure 2. Disentangling proton exchange rate and concentration using CEST-MRF.
(a and d) Proton density images of L-arginine phantoms with varying concentrations 

(top row) and pH (bottom row) along with the associated quantitative chemical exchange 

rate (b and e) and L-arginine concentration (c and f) maps generated from MRF dot-

product matching. The CEST-MRF reconstruction was able to correctly detect and quantify 

the different proton exchange rates and concentrations. Reproduced and modified with 

permission from Cohen et al., Magn Reson Med. 2018;80:2449-2463.59
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Figure 3. Semisolid MT correction for CEST-MRF.
(A) Reference dictionary (solid) and reference signal (dashed) are different in the presence 

of the semisolid MT effect. (B) Signal attenuation due to the semisolid MT effect can 

be estimated by comparing the reference dictionary and reference signal. (C) The label 

dictionary is generated by simulating 2-pool Bloch-McConnell equations with known T1 and 

T2 values. (D) The corrected label dictionary can be generated by adding the semisolid MT 

effect (B) to the dictionary (C). Reproduced with permission from Zhou et al., Magn Reson 
Med. 2018;80(4):1352-1363.60
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Figure 4. Quantitative proton exchange parameter maps of ammonium chloride (NH4Cl) 
phantoms and a healthy human volunteer obtained using dictionary-free CEST-MRF..61

a. CEST phantom validation experiments. MTRasym (2.5 ppm) maps with RF saturation 

powers of 1, 1.5, 2, 2.5, and 3 μT. A phantom with four compartments: (1) pH 4.5, 0.5M 

NH4Cl + 1% agarose + PBS, (2) pH 5.0, 0.5 M NH4Cl + 1% agarose + PBS, (3) pH 4.6, 

1 M NH4Cl +1% agarose + PBS, and (4) pH 7.0, 1% agarose + PBS. RF saturation power 

dependencies of the direct water saturation, semisolid MTC, and CEST signals can be seen 

clearly in the MTRasym (2.5 ppm) maps. b. CEST exchange rate (ksw) and concentration 

(M0s) maps of the phantom from the dictionary-free CEST-MRF. c. Quantitative semisolid 

MT exchange rate (kmw) and concentration (M0m), and amide proton exchange rate 

(ksw) and concentration (M0s) maps of a healthy volunteer human brain. Reproduced and 

modified with permission from Heo et al. Neuroimage. 2019;189:202-213.61
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Figure 5. Supervised machine learning architectures for semisolid MT/CEST MRF.
a. Quantification of phosphocreatine (pCr) exchange parameters using an artificial 

NN composed of a single hidden layer.70 The input layer was fed with Z-spectrum 

measurements (analogous to a CEST-MRF schedule where the varied parameter is the 

saturation pulse frequency offset (ωrf), and the output was either the pCr proton volume 

fraction (fs), exchange rate (ksw), (B0), or transmit field (B1). The NN had 4 variants 

that were fed with the same input but trained to output each of the 4 different sought-

after parameters, using a simulated dictionary. b. Brain semisolid MT exchange parameter 

quantification and background semisolid MT (Zref) contrast image synthesis,73 using a fully 

connected neural network. The input MRF schedule varied the saturation pulse power (B1), 

duration (Tsat), ωrf, and the recovery time (Trec). The output included the semisolid MT 

parameters, and a synthesized MT reference image at 3.5 ppm, calculated by plugging in the 

resulting parameters and the water T2-values obtained from a separate protocol in the two-

pool BM equations solution. c. Sequential and deep CEST and semisolid MT quantification 

in the brain.15 A semisolid MT-oriented MRF acquisition schedule, which varies ωrf and 

B1, yields 30 images that are fed volxelwise into the first NN, together with the quantitative 

water pool and field homogeneity maps (T1, T2, B0). This NN map the semisolid MT pool 

exchange parameters, which are then fed, together with the previously obtained quantitative 

data into the second NN, ultimately yielding the amide proton fs and ksw.
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Figure 6. Phosphocreatine concentration mapping in the exercised human leg muscle.
a. T2-weighted anatomy image. b. Phosphocreatine concentration maps obtained by 

ANNCEST are in good agreement with the dynamics observed using 31P 2D MRS (c). 

Reproduced and modified from Chen et al., Nat Commun 2020;11:1-10.70
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Figure 7. Quantitative imaging of apoptosis following oncolytic virotherapy using sequential and 
deep semisolid MT/CEST MRF.
a. Conventional T2-weighted image of an oncolytic virotherapy treated mouse, 72 hours 

post virus inoculation, is incapable of detecting treatment responsive apoptotic regions. b. 

Semisolid macro-molecules proton volume fraction (fss) map, where a decreased volume-

fraction represents tumor-related edema and a change in the lipid composition of tumor 

tissue relative to normal brain tissue. c. Amide proton exchange-rate (ksw) and d. volume 

fraction (fs) maps. Regions of decreased intracellular pH and mobile protein concentration, 

respectively, are indicative of apoptosis. e-h. Histology and immunohistochemistry 

images validate the MR findings with cleaved caspase-3 positive tumor regions and 

decreased Coomassie blue protein staining, indicative of apoptosis, colocalizing with 

the regions of decreased exchange rate and mobile protein concentration. Reproduced 

with permission from Perlman et al. Nat Biomed Eng. 2021;1-10. https://doi.org/10.1038/

s41551-021-00809-7.15

Perlman et al. Page 28

NMR Biomed. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. Unsupervised machine learning approach for semisolid MT/CEST MRF.
The raw MRF images are given as input to an 8-layer CNN, yielding quantitative semisolid 

MT exchange parameter and water T1 maps. Gray boxes represent feature spaces with 

the depth of the spaces indicated above each box. Colored arrows show the receptive 

field size of the kernel and the activation function. The estimated quantitative maps, the 

MRF schedule parameters, and a separately acquired water T2 map are plugged into the 

BM equations analytical solution, generating an estimation of the original semisolid MT 

MRF raw images. These output images are compared to the experimentally acquired raw 

MRF data (using the L2 loss function), allowing for the optimization of the semisolid MT 

parameter maps. Reproduced and modified with permission from Kang et al. Magn Reson 
Med. 2021;85:2040-2054.75
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Figure 9. Comparing different CEST-MRF acquisition schedules.
A phantom containing three vials of 50 mM L-arginine at pH 4, 4.5, and 5 was imaged 

using a 9.4T scanner. The dot-product matched L-arg concentration (d-f) and amine proton 

exchange rate (g-i) are shown for three different acquisition schedules, including the random 

acquisition schedule used in Coehn et al.59 (left column); a different random acquisition 

schedule of similar length (center column), which also varied the saturation pulse duration, 

the repetition time, and the readout flip angle; and a schedule based on a z-spectrum 

obtained using a fixed saturation power of 2uT, at 7 to −7 ppm with 0.25 increments (right 

column).
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Figure 10. Dependence of the discrimination loss on the acquisition parameters used in CEST-
MRF.
The surface plots with projected loss iso-contours describe the effect of the maximal 

saturation power (B1max) and the saturation time (Tsat) (a-b) or the flip angle (FA) and 

TR (c-d) on the loss, for a 3-pool water/amide/semisolid MT imaging scenario (a, c) 

and a 2-pool scenario with a dilute solute in the medium to fast exchange rate regime 

(b, d). In all images, the z-axis represents the loss (lower values indicate improved 

parameter discrimination ability), which is also color coded from blue to yellow. The 

optimal combination for each examined parameter pair is given in the surface plot. (e-h). 

A similar analysis was performed using the Euclidean distance instead of the dot-product 

reconstruction metric with an Euclidean distance based loss function. Note the different 

optimal parameters obtained. Reproduced and modified with permission from Perlman et al. 

Magn Reson Med. 2020;83:462-478.77
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Figure 11. An end-to-end AI-based framework for automatic optimization of semisolid MT/
CEST MRF acquisition protocols and quantitative deep reconstruction (AutoCEST).
a. Schematic representation of the optimization pipeline. A broadly defined tissue-parameter 

scenario serves as input to the pipeline which consists of sequential simulations of the 

CEST saturation (purple), readout and recovery (green), and deep reconstruction (yellow). 

AutoCEST outputs an optimized acquisition schedule and a reconstruction network 

(orange). b. CEST saturation block as a computational graph. The blue rectangles represent 

the input tissue parameters: initial magnetization (M0), water relaxation rates (R1a, R2a), 

solute transverse relaxation (R2b), exchange-rate (kb), and volume fraction (fb). The orange 

rectangles represent the dynamically updated protocol parameters: saturation time (Tsat), 

saturation power (ω1), and saturation frequency offset (ωrf). The graph calculates the 

magnetization at the end of the saturation block Mz[n+]. c. Bloch equation-based image 

readout as a computational graph. The blue rectangles represent the water-pool parameters, 

while the orange rectangles represent the dynamically updated protocol parameters: flip 

angle (FA) and recovery time (Trec), which is embedded in the appropriate relaxation step. 

Note that this is a partial display due to space limitations. d. Deep reconstruction network 

for decoding the “ADC” MR signals (purple circles), obtained at c into CEST quantitative 

parameters (fb and kb, blue circles). Reproduced from Perlman et al. Magn. Reson. Med. 
2022.82
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Figure 12. A schematic of the learning-based optimization of the acquisition schedule (LOAS).
Semisolid MT-MRF signals are synthesized using initialized scan parameters (RF saturation 

power, B1, frequency offset, Ω, saturation time, Ts, relaxation delay time, Td), noise, and 

tissue parameters (Input) are fed to the fully connected neural network (FCNN). The FCNN 

outputs tissue parameter estimates (Output). The loss function is defined as the mean square 

error between the ground-truths and estimated tissue parameters. The calculated loss was 

back-propagated with an ADAM optimizer to update the scan parameters. APT and NOE 

images were calculated by subtracting the synthesized semisolid MT image at 3.5 ppm from 

the acquired saturated image at ±3.5 ppm. Reproduced and modified with permission from 

Kang et al., NMR Biomed 2021:e4662.85

Perlman et al. Page 33

NMR Biomed. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 13. Synthetic MRI analysis for validation of the semisolid MT-MRF method.
Synthetic contrast-weighted images are generated using all the tissue parameters obtained 

from the deep neural network (DNN), which can then be compared with the experimentally 

acquired images as the standard of reference. Tissue parameters are quantified from an 

acquisition schedule consisting of 40 dynamic MRF images (a corresponding MRF schedule 

is shown in top right) using the DNN, and then a new acquisition schedule (middle right) is 

used for synthesizing 10 dynamic MRF images by inserting the tissue parameters obtained 

from DNN into the forward BM transform. The synthesized images showed a high degree 

of agreement with the experimentally acquired images as shown in the difference image. 

Reproduced and modified with permission from Kim et al., Neuroimage 2020:117165.73
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Figure 14. Reproducibility study of deep CEST-MRF in healthy human volunteers.
Semisolid MT proton volume fraction (fss, first column) and exchange rate (kssw, second 

column), amide proton volume fraction (fs, third column), and exchange rate (ksw, fourth 

column) for measurements at a 3T Prisma in Tübingen (first row), 3T Prisma in Boston 

(second row), and 3T Trio in Erlangen (third row). Reproduced and modified from Herz et 

al. Magn Reson Med. 2021;86:1845– 1858.90
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Table 1.

Literature values of the brain white/gray matter semisolid MT and amide proton volume fractions (fss / fs) and 

exchange rates (kssw / ksw).

Brain tissue fss (%) kssw (Hz) fs (%) ksw (Hz) Method

WM 12.2 ± 1.7 48.6 ± 2.4 0.76 ± 0.09 47.9 ± 11.6 Dictionary-correlation matched CEST MRF59

GM 8.1 ± 1.1 47.1 ± 4.0 0.61 ± 0.13 34.8 ± 11.7 (rat at 4.7T)

WM 11.2 ± 0.7 29 ± 4 0.19 ± 0.02 162 ± 16 Sub-grouping proton exchange models61

GM 6.3 ± 0.7 40 ± 5 0.24 ± 0.02 365 ± 19 (human at 3T)

WM 16.9 ± 1.3 10.3 ± 0.9 — — Deep semisolid MT MRF with synthetic signal validation73

GM 10.6 ± 1.5 12.5 ± 2.0 — — (human at 3T)

WM 15.2 ± 2.0 14.0 ± 2.4 — — Unsupervised semisolid MT MRF75

GM 10.2 ± 1.1 16.3 ± 1.6 — — (human at 3T)

WM 9.4 ± 3.0 14.0 ± 6.9 0.31 ± 0.02 42.3 ± 2.9 Sequential and deep semisolid MT/CEST MRF15

GM 4.2 ± 4.4 35.1 ± 15.4 0.32 ± 0.07 34.6 ± 9.5 (human at 3T)

WM 19.8 ± 0.5 43.9 ± 2.4 0.40 ± 0.27 73.0 ± 51.1 AutoCEST82

GM 12.8 ± 0.8 56.5 ± 3.1 0.29 ± 0.16 61.0 ± 29.3 (mouse at 9.4T)

WM 13.9 ± 2.8 23 ± 4 — — Two pool model fitting of semisolid MT71

GM 5.0 ± 0.5 40 ± 1 — — (bovine at 3T)

WM 8.9 ± 0.3 — 0.21 ± 0.03 — Numerically simulated look up table with three Z-spectra58

GM 4.4 ± 0.4 — 0.20 ± 0.02 — (human at 7T)

WM 6.2 ± 0.4 67.5 ± 7.0 0.22 ± 0.04 281.2 ± 0.6 Four pool model fitting109

GM 3.4 ± 0.4 63.5 ± 4.5 0.25 ± 0.05 281.9 ± 0.9 (human at 7T)

WM 13.48 ± 0.37 — — — Semisolid MT proton fraction
mapping110

GM 5.77 ± 0.34 — — — (human at 3T)

WM — — — — Water exchange spectroscopy (WEX)33

GM — — — 28.6 ± 7.4 (rat at 4.7T)

WM 11.4 ± 1.2 11 ± 2 — — Selective inversion recovery based quantitative semisolid MT111

GM 7.5 ± 0.7 15 ± 6 — — (human at 3T)

WM 17.6 ± 1.3 14.5 ± 1.5 — — Selective inversion recovery based quantitative semisolid MT112

GM 10.3 ± 1.6 24.4 ± 4.4 — — (human at 7T)

WM/GM — — — 350-400 Frequency labeled exchange transfer (FLEX) imaging49 (human at 
3T)
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Table 2.

A summary of semisolid MT/CEST MRF methods

Method Advantages Limitations

Dictionary-correlation matched CEST 
MRF59

Rapid acquisition Prolonged reconstruction for big dictionaries, 
discrete output parameters

CEST-MRF for exchange rate 
quantification60

Removal of MT effects prior to dictionary matching Potential bias from NOE effects in-vivo due to 
the use of the upfield spectrum signal, discrete 
output parameters

Sub-grouping proton exchange 
models61

Least-square fitting is used instead of dot-product 
matching for continous quantification of amide and 
MT parameters, circumvents the need for lengthy 
dictionary generation

Long reconstruction time

Quantitative CEST using artificial NN 
and partial Z-spectrum acquisition 
(ANNCEST)70

Rapid CEST acquisition and reconstruction, B0 and 
B1 mapping

Unsuitable for brain applications where the 
MT parameters vary

Deep semisolid MT MRF with 
synthetic signal validation73

Quantification of MT parameters and water T1, 
allows the removal of MT effects from CEST 
signals

Amide and NOE reconstruction is semi-
quantitative and requires separate water T2 

mapping

Sequential and deep semisolid MT/
CEST MRF15

Quantitation of both MT and amide parameters, 
rapid reconstruction

Two acquisition schedules required as well as 
T1, T2, and B0 mapping

Unsupervised semisolid MT MRF75 No need for dictionary generation, noise robustness limited generalization ability for unseen 
pathologies

Acquisition schedule optimization 
using discrimination ability / SNR 
efficiency based metrics77,78

Faster than Monte Carlo simulations, enables 
predicting the encoding capability of different 
schedules

Time consuming for complicated in-vivo 
scenarios

Learning-based optimization of 
acquisition schedule (LOAS) for 
semisolid MT MRF85

Directly computs quantitative tissue parameter 
errors, outperforms Cramer–Rao lower bound based 
optimization, quantitate MT parameters and water 
T1

Based on the analytical solution of the BM 
equations, which might be less accurate than 
the numerical solution

Semisolid MT/CEST MRF 
acquisition protocols discovery 
and deep parameter quantification 
(AutoCEST)82

An end-to-end fully automatic procedure, yiedling 
short acuisition schedules and trained NNs for 
quantitative semisolid MT and CEST reconstruction

Based on the analytical solution of the BM 
equations, which might be less accurate than 
the numerical solution
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