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Abstract
The lung is the main organ of the respiratory system. Its purpose is to facilitate gas ex-
change (breathing). Mechanically, breathing may be described as the cyclic application of
stresses acting upon the lung surface. These forces are offset by prominent stress-bearing
components of lung tissue. These components result from the mechanical elastic proper-
ties of lung parenchyma. Various studies have been dedicated to understanding the macro-
scopic behaviour of parenchyma. This has been achieved through pressure-volume analysis,
numerical methods, the development of constitutive equations or strain-energy functions,
finite element methods, image processing and elastography. Constitutive equations can de-
scribe the elastic behaviour exhibited by lung parenchyma through the relationship between
the macroscopic stress and strain. The research conducted within lung mechanics around the
elastic and resistive properties of the lung has allowed scientists to develop new methods and
equipment for evaluating and treating pulmonary pathogens. This paper establishes a review
of mathematical studies conducted within lung mechanics, centering on the development
and implementation of solid mechanics to the understanding of the mechanical properties of
the lung. Under the classical theory of elasticity, the lung is said to behave as an isotropic
elastic continuum undergoing small deformations. However, the lung has also been known to
display heterogeneous anisotropic behaviour associated with large deformations. Therefore,
focus is placed on the assumptions and development of the various models, their mechani-
cal influence on lung physiology, and the development of constitutive equations through the
classical and non-classical theory of elasticity. Lastly, we also look at lung blast mechanics.
No explicit emphasis is placed on lung pathology.
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1 Introduction

The mechanical properties of lung tissue contributes significantly to the physiological func-
tions and the overall behaviour of the respiratory system. These properties are closely associ-
ated with elastic and resistive forces [1]. They also play a crucial role in ensuring breathing
occurs comfortably and without any obstructions. However, respiration and lung function
are heavily impeded by disease. There exist numerous pulmonary pathogens which affect
the mechanical functioning of the lung. For example, emphysema is a lung pathogen which
results in shortness of breath. This disease affects lung tissue and causes the lung to lose its
elasticity. This is due to the destruction of elastic tissue [2]. Despite being affected by dis-
ease, the mechanical properties of the lung can act as precise indicators of where and how
a disease affects the lung. Through proper evaluation of lung function and gathering data of
variables, such as lung tissue resistance, one can analyse disease progression and potentially
develop methods or equipment to assist in treating these pathogens [2].

Various studies have been dedicated to understanding the macroscopic behaviour of ei-
ther the alveolar septa or layers of lung parenchyma. This has been achieved through analy-
sis of pressure-volume plots, numerical methods, as well as the development of constitutive
equations or strain-energy functions. In lung mechanics, constitutive equations are capa-
ble of describing the elastic behaviour exhibited by lung parenchyma for example, through
the relationship between the macroscopic stress and the macroscopic strain. These equa-
tions have been modelled under both the classical and non-classical theories of elasticity.
Thus, the aim of this research is to establish a descriptive and systematic review of mathe-
matical studies conducted within the field of lung solid mechanics. This review is centered
on the development and implementation of the theory of elasticity to the understanding of
the mechanical functions and components of the lung. Elastic theory plays a significant
role in these studies. Under the classical theory of elasticity, the lung is said to behave as
an isotropic elastic continuum undergoing small deformations. However, the lung is also
known to display inhomogeneous behaviour associated with large deformations. Therefore,
particular focus is placed on the assumptions and development of the various models, their
subsequent mechanical influence on lung physiology, and the development of constitutive
equations through the classical and non-classical theory of elasticity. Attention is also given
to lung blast mechanics and computational models developed through finite element meth-
ods, image processing and elastography. Lastly, potential areas of future research are briefly
discussed. Note, the list of references used for this study is not indicative of all the work
done in lung mechanics. These papers are selected based on their relevance and overall
contribution towards the mathematical elastic properties of the lung.

This paper is structured as follows. Section 2 will present a brief overview around
pressure-volume analysis. In Section 3, an in-depth review of surface tension and alveo-
lar stability studies will be investigated and discussed. Section 4 will explore the literature
pertaining to the development of constitutive equations and strain-energy functions for lung
parenchyma. Additionally, this section will also provide a review of the modern day me-
chanical elastic studies on lung tissue, mostly involving computational models and image
processing techniques. Section 5 gives insight into a few studies on lung blast mechanics.
Lastly, Section 6 provides a brief conclusion on possible areas of future research in lung
mechanics.

2 Pressure-Volume Analysis

The current scientific knowledge and understanding behind lung mechanics has stemmed
from analysis of the pressure and volume behaviour exhibited by the lungs [3]. Pressure-
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volume analysis is largely performed by plotting the volume of the lung against the corre-
sponding elastic component of the applied pressure over a large volume range [4]. Observa-
tions of pressure-volume behaviour is a fundamental tool in determining the compliance of
the lung. The compliance of the lung at any particular lung volume is calculated by taking
the gradient of a pressure-volume curve, i.e., taking the ratio between the change in pressure
and the change in volume. Mead and Martin [4] describe a pressure-volume curve as being a
straight line over a large portion of the volume, although at higher volumes the compliance
is observed to decrease, i.e., the curve flattens. This sudden flattening of the pressure-volume
curve is indicative of a characteristic of elastic bodies or materials. That is, in the case of
the lung, a larger pressure is needed for a particular volume change. For example, a rubber
band can only be stretched to a certain point before wanting to return to its original state [4].
The above points are only applicable to the lung. Now consider the lung which is actually
enclosed within the chest wall and that the chest wall has its own elastic properties [4].
Suppose a balloon is placed within another balloon with equal compliance values. Further,
suppose complete collapse of the balloons occurs with no pressure applied across them.
Then the total pressure acting across the combined system at any given volume is equal to
the sum of the pressures needed to deform each balloon individually. The lung-chest wall
system correspond to the above example. However, there is a further complication to take
into account. That is, any hollow elastic body may attribute a finite volume when there is
no applied pressure acting on the elastic body. This finite volume is known as the resting
volume, and is a property of the chest wall [4].

Initially, the relationship between the pressure and volume of the lung was observed to be
linear in studies conducted by Hutchinson [5] and Cloetta [6]. This linear pressure-volume
relationship was associated with the lungs having perfect linear elasticity [7]. However, these
experiments contained several inconsistencies. The observed linear elastic behaviour of the
lung was not a direct result of the linearity between the pressure and the volume. The linear
behaviour observed by Hutchinson [5] and Cloetta [6] depended on two key aspects, (i) dur-
ing their experiments the lungs were inflated from a partially inflated state and were kept
inflated at all times, and (ii) they did not account for the effects of deflation [7]. Deflation
is an important part of lung functionality, and it contributes significantly to the performance
of the respiratory system. Mechanically, it is a consequence of the elastic recoil and surface
tension of lung tissue. Accounting for these issues and factors in further studies led to the
conclusion that the lungs exhibit a nonlinear pressure-volume response [8]. However, ob-
taining a linear pressure-volume response is still possible by taking into account inflation or
deflation, separately.

Svantesson et al. [9] evaluated and further derived a method for the determination of
the quantitative characterisation of the elastic pressure-volume relationship. This study was
performed with respect to mechanically ventilated human subjects. The experiment was
undertaken during a single altered insufflation (the act of blowing or introducing gas into
a system), whereby the corresponding resistance within the respiratory system (RRS ) could
be determined [9]. Svantesson et al. [9] determined a complete sigmoidal elastic pressure-
volume curve, described by application of a three-segment model. The model assumption
made is that at low volumes, compliance is small and linearly increases with respect to
volume. Subsequently, the model then assumes a constant high volume. Thus, at higher
volumes, it linearly decreases with volume [9]. These assumptions correlate to an elastic
pressure-volume curve with a accurate linear segment of high compliance (Clin) between
two nonlinear asymmetrical segments. The elastic pressure-volume curve asymptotically
approaches the minimum and maximum volumes (Vmin & Vmax ) at it’s respective lower and
upper points. The linear segment is delineated by the lower and upper points of inflection
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(LIP & UIP ) [9]. The elastic pressure is defined as a function of volume. It is expressed
by the following three-segment model [9]:

Vmin < V ≤ VLIP : Pel = PLIP − (VLIP − Vmin)

Clin

· ln

(
Vmin − VLIP

Vmin − V

)
,

VLIP ≤ V ≤ VUIP : Pel = PLIP + (V − VLIP )

Clin

, (2.1)

VUIP ≤ V < Vmax : Pel = PUIP + (Vmax − VUIP )

Clin

· ln

(
Vmax − VUIP

Vmax − V

)
,

where Pel is the elastic pressure, VLIP & PLIP are the values of volume and pressure at the
lower points of inflection, respectively. Similarly, VUIP & PUIP are the values of volume
and pressure at the upper point of inflection, respectively. Note: Vmin, VLIP , PLIP , Clin,
VUIP , Vmax are all estimated using numerical methods [9], however, the technique used
is not specified in this paper. The authors determined, for the constant flow model, that
parameter estimation is achieved by minimising the sum of squared differences between the
elastic pressure from measured data. Thereafter, elastic pressure is calculated from (2.1).
For the sinusoidally modified flow model, the aforementioned parameters and respiratory
system resistance are derived by comparing measured data of the tracheal pressure (Ptr ) to
calculated values of tracheal pressure using the following equation [9]:

Ptr = Pel + V̇ · RRS. (2.2)

From their results, Svantesson et al. [9] conclude that the sinusoidally flow model corre-
sponds better to patients with obstructive lung disease, because it provides values of inspi-
ratory resistance measured concurrently with the elastic pressure-volume curve.

The Drawback of Pressure-Volume Analysis Research in lung mechanics has concerned it-
self with understanding the elastic and flow-resistive properties of the lung and respiratory
system. This includes examining the effects of forces acting on the surface of the lung and
how they affect the flow of air and blood throughout the respiratory system. However, this
can only be understood through knowledge of the mechanical elastic properties of the lung,
i.e., the elastic response of the lung due to its associated stresses and strains. This presents
a fundamental flaw with pressure-volume analysis, being that it is incapable of providing a
direct indication of the stress-strain properties of lung tissue [3]. However, the importance of
pressure-volume analysis in assisting with theoretical and experimental studies should not
go without credit. These studies range from investigations into surface tension and alveolar
stability, as well as analysing the overall elastic response of lung tissue. Pressure-volume
data may not be able to provide information on the stress-strain relationships of the lung,
however it may be useful in specifying the tension-area relationship of lung tissue [10], lung
hysteresis [11], indicating the overall compliance and resistive nature of the lung [9], and de-
veloping models to accurately demonstrate pressure changes corresponding to physiological
values [12].

3 Surface Tension and Alveolar Stability

The classical study of Neergaard [13] is widely considered to be one of the first attempts
of research on elastic lung properties. Previous efforts to understand the overall elastic be-
haviour of the lung failed to consider surface tension as an important force acting upon its
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surface [5, 6]. Neergaard [13] investigated the importance of surface tension at the air-liquid
interface, along with its contribution to the retraction pressure of the lung. Neergaard [13]
first considered the formation of a bubble (representing the alveoli) at the top-end of a cap-
illary tube as a model for the surface geometry of the lung, i.e., expanding alveolar surface.
The bubble was considered to have one surface. An assumption was made suggesting sur-
face tension to be constant. Further, the bubble was modelled as a spherical segment and
exerted a pressure corresponding to the relationship

�P = 2γ

r
, (3.1)

where �P is the change in pressure across the surface, γ denotes surface tension, r repre-
sents the principal radii of curvature at a point on the surface. Equation (3.1) is derived from
the Young-Laplace equation

�P = γ

(
1

r1
+ 1

r2

)
, (3.2)

where r1, r2 signify the principal radii of curvature at a point on a surface. Neergaard [13]
identified two models for bubble formation that he associated with the physiological be-
haviour of the lungs. The first model describes spherical alveoli which assume a hemispher-
ical shape at maximum lung inflation and never exceeds this limit. In other words, during
inhalation lung volume increases whilst pressure and the radius of curvature decreases. The
radius of curvature is inversely proportional to lung volume [14]. The second model is an
extension of the first model whereby the spherical alveoli are now allowed to exceed the
height of hemisphere at maximum lung inflation. Therefore, after maximum inflation has
been reached, volume continues to increase but instead of the radius of curvature decreas-
ing, it actually begins to increase. There is a directly proportional relationship between the
radius of curvature and lung volume after maximum lung inflation [4, 14]. Neergaard [13]
attributed this phenomenon to a lung affected by disease. That is, the second model closely
resembles overstretching of a lung or one which is highly compliant. For example, emphy-
sema is a disease which causes a sudden increase in compliance. The first model was chosen
by Neergaard [13] as it corresponded with the linear pressure-volume relationship observed
in his experiments. However, it was later confirmed that the second model described the ac-
tual physiological behaviour of the lung more accurately than the first model [14–17]. Upon
inhalation, lung volume increases as pressure and the radius of curvature decreases, whilst
the recoil pressures of the lung increase. Upon exhalation, lung volume decreases as pressure
inside the lung and the radius of curvature increases. The most important finding to come
from this paper relates to the existence of a surface-active material on the surface of the
lung, responsible for influencing the behaviour of surface tension on the lung. However, he
could not provide direct evidence to support his statement. Despite having a major influence
on surface tension studies in lung mechanics, there were several inaccuracies with his find-
ings. Neergaard [13] considered his estimated surface tension values (35–51 dyne/cm) to be
too low. However, later studies [15–18], found that his estimates were too high. Moreover,
Neergaard [13] only examined pressure-volume curves corresponding to lung deflation. He
did not analyse or present data on lung inflation. As a result, he was not able to observe the
hysteresis that would occur upon inflation and deflation.

Radford [18] reproduced and extended upon Neergaard’s [13] experiments by providing
a careful analysis on lung surface area and surface tension. Mathematically, Radford [18]
was able to describe an estimate of the elasticity influence to the total free energy. He then
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determined the surface area from experimental estimates of the Hemholtz free energy of
surface, Fs , as well as knowing the relationship between surface tension, γ , and surface
area, As , for the lungs:

dFs

dAs

= γ. (3.3)

Note that in his deductions, surface tension was taken as a specific constant (50 dynes).
Equation (3.3) was derived by considering the equilibrium in a two-phase system whereby
the surface area is related thermodynamically to the Helmholtz free energy of the surface
for a plane interface [18]. Moreover, temperature is assumed to be constant and the total
composition of the associated bulk phases are independent of area [18]. Radford [18] ap-
proximated surface area values (5–10 m2) that were less than the surface area estimates
gathered from histological data (50–100 m2), highlighting a contrast with the results ob-
tained by [13]. However, Radford’s [18] estimates were thought to have been in error for
two reasons. Firstly, he attributed the data based on pressure-volume curves obtained from
saline-filled lungs to be applicable for air-filled lungs. Radford [18] suggested that this may
have been due to differences in elastic strain at the alveoli emerging due to the air-liquid in-
terface. This was not the case and was later evident in the study on surface tension hysteresis
by Mead et al. [19]. Secondly, he assumed that part of the total surface energy could be dis-
sipated through friction as the alveoli and airways began to close. The source of the first
error would lead to overestimating the surface energy, whilst the source of the second error
would result in underestimating it. Radford [18] cleared up these inaccuracies by stating that
the sources of error would nullify and have little impact on the final estimates. Brown et al.
[20] provided patient lung surface area estimates that did not correlate with Radford’s [18]
findings. These estimates were significantly higher than the results presented in [18].

Pattle [21] conducted a microscopic study of air bubbles expunged from lung extracts
inflicted with pulmonary edema. Pulmonary edema is a respiratory lung disorder that arises
due to excess fluid in the lungs. This condition impedes the process of breathing as the fluid
overflow gathers in the numerous air sacs in the lungs. He reported that foam produced by
edema showcased a high resistance upon direct contact with anti-foaming agents. This was
considered to be an impressive feature as it highlighted that the edema foam formed in the
lung introduced a stabilising property. Pattle [21] sampled stable bubbles by squeezing the
lacerated surface of normal lungs under water. Despite being in contact with water, these
bubbles never lost their stability. However, they lost their resistance to anti-foaming agents.
Therefore, Pattle [21] provided estimates of lung surface tension by considering a bubble
in an air-saturated liquid. The bubble had a tendency to recoil depending on the magnitude
of surface tension. That is, the greater the surface tension, the faster the contraction of the
bubble [21]. The following equation defines the lifeline of an isolated gas bubble whereby
contraction of the bubble is slow enough such that a steady state of diffusion can be estab-
lished [21]:

T =
(
Pr3 + 2γ r2

)
(6Dλγ ln 2)

, (3.4)

where T is the lifetime of a bubble of radius r , γ the surface tension of liquid saturated with
gas at P the atmospheric pressure. Further, D denotes the diffusion coefficient of dissolved
gas, λ the ratio of concentration to the density of the gas in the equilibrium with it [21].
Substituting values of D, λ, a bubble with a diameter of 21.5μ and with a lifetime of 90
minutes, Pattle [21] obtained the following estimate for surface tension: γ = 0.026 dyne/cm.
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Pattle’s [21] surface tension estimate was considered to be extreme and divisive since it
implied that surface tension in the lung approached zero. This further added to the confusion
around the correct lung estimates of surface tension and surface area. Pattle [21] explained
that lung tissue extracts had features responsible for significantly lowering surface tension
forces and that stability was a result of an insoluble protein layer lining the alveoli. He
explained, “Means of keeping surface tension low must therefore be a part of the design of
the lung. It is thus evident that the alveoli of the lung are lined with an insoluble protein layer
that can abolish the tension of the alveolar surface” [21]. Thereafter, Pattle [21] developed a
method for studying the lung lining layer called the stability ratio of a bubble or surface. The
stability ratio is defined as the inverse of the ratio of the surface area of a bubble which needs
to be obtained to reduce surface tension to approximately zero [21]. Pattle [21] approximated
the stability ratio of the lung lining to be nearly unity.

Brown [15] and Clements [16] were both motivated to resolve the perplexities presented
by Neergaard [13], Radford [18], and Pattle [21]. They both investigated the surface tension-
area relationship of the lung. Brown [15] reproduced Radford’s [18] study and assumed the
lung to be composed of many identical hemispherical units, alveoli, in order to evaluate sur-
face tension from the pressure-volume data. He derived a surface tension-area relationship
similar to that of bubbles of nasal mucus [21], with a dependence on an assumed area-
volume function,

A = KV
2
3 , (3.5)

where A denotes the surface area, V indicates volume, and K is a constant of proportional-
ity. Equation (3.5) describes the proportionality between surface area and volume to the two-
thirds power [15]. Clements [16] disagreed with this assumption and deemed it unacceptable
should the alveoli of the lung deviate drastically from the mean radius. He further critiqued
Brown’s [15] calculations as they did not account for the tendency of the alveoli to close
off above zero volume as transpulmonary pressure decreased. Instead, Clements [16] used
isolated lung extracts. Surface tension was measured using a Wilhelmy balance during infla-
tion and deflation [16]. Clements [16] determined that surface tension would decrease to low
figures under deflation. His surface tension vs surface area plots also displayed considerable
hysteresis [7]. Despite using different methods, they both reached similar conclusions. They
determined that lung inflation occurs at a high surface tension estimate (≈ 50 dyne/cm),
close to Neergaard’s [13] measurements. Additionally, the lung was concluded to deflate
with low surface tension (≈ 17 dyne/cm), although not as low as the limit of convergence
stated by Pattle [21]. Brown et al. [20] addressed the lack of agreement with regards to the
following: (i) The magnitude of surface tension and its contribution to pressure changes
throughout the lung, (ii) the surface tension coefficient, and, (iii) lung surface area approx-
imations. They calculated similar estimates of surface tension upon inflation and deflation,
respectively. They also estimated the lung surface area of man to be within physiological
estimates of 50–100 dyne/cm. Their surface area approximations were considerably higher
than the measurements reported by Radford [18]. Lastly, Brown et al. [20] provided con-
clusive findings on the behaviour and existence of a surface-active material on the alveolar
surface.

The Discovery of Surfactant Neergaard [13] explained that a surface-active material “would
be useful in the mechanics of breathing, for otherwise the contraction pressures of the lung
might become so great as to interfere with adequate expansion” [13, 14]. Macklin [22] ex-
plained that the air-liquid interface must be covered by a layer of mucus formed from a
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hydrated secretion of granular pneumocytes (alveolar type I and alveolar type II cells) of
the alveoli that act as a barrier for gas exchange to occur and are responsible for the dis-
charge of surfactant. Macklin [22] suggested that a layer of mucus lining the alveoli was
capable of performing vital functions such as maintaining a constant favourable alveolar
surface tension, and facilitating gas exchange. Pattle [21] determined that the mucous layer
identified by Macklin [22] was identical to the lung-lining substance discovered in [21]. Pat-
tle [21], Clements [16], and Brown [15] similarly concluded that prevention of the partial or
complete collapse of the lung, atelectasis, depends on the presence of a surface-active ma-
terial, known as surfactant, with very low surface tension lining the alveoli. This prompted
Avery and Mead [23] to examine the lungs of small premature infants, inclusive of those
inflicted by a respiratory distress syndrome (RDS). They noticed that lungs of premature
infants displayed less surface activity when compared to lungs of infants who died from
non-pulmonary causes. This implies an absence of pulmonary surfactant in the lungs of pre-
mature infants and in infants with hyaline membrane disease [23]. Avery and Mead [23]
concluded that the more premature an infant, the more delayed the development of pul-
monary surfactant. Therefore, there was an immediate enquiry around the composition of
pulmonary surfactant in order to find or develop a replacement for surfactant in defective
lungs [24]. A compound known as dipalmitoyl lecithin was confirmed to exist in lung ex-
tracts [25–27], with Macklin [22] correctly suggesting its source being the alveolar type-II

cells. Similarly, Bondurant [25], Buckingham [26], and Klaus [27] noticed that the develop-
ment of the surfactant system occurred quite late in the gestation period. Therefore, should a
premature birth occur prior to its development, the infant would experience disorders with its
respiratory functioning [23]. This discovery has resulted in the saving of lives of thousands
of premature infants [7].

Hysteresis describes the mechanical phenomenon where the value of a physical property
lags behind changes in the effect causing it. For example, during the breathing cycle, lung
volume changes lag the transpulmonary pressure changes which produce them. The lung
is said to exhibit hysteresis in this state. Graphically, hysteresis is represented by plotting
volume change against pressure change. A single respiratory cycle forms a closed loop,
and the enclosed area, in relation to the total change in lung volume, acts as a measure of
the degree of hysteresis [19]. Mead et al. [19] explained that measurements on the lung’s
mechanical characteristics could only be obtained if transpulmonary pressure was separated
into its elastic and flow-resistive components, respectively. Mathematically, this is described
by

�P = f (V ) + f
(
V ′) , (3.6)

where �P is the instantaneous transpulmonary pressure, V is the volume, V ′ is the rate of
change of volume or flow rate [19]. Mead et al. [19] proved that part of the observed hystere-
sis was a result of surface tension. This phenomenon is associated with the elastic nature of
the lungs. Air inhalation causes the lungs to inflate, which results in the elastic recoil forces
within the tissues of the lung to exert a pressure back toward the interior of the lungs. These
internal and external pressure forces actively contest to inflate and deflate the lung whilst
maintaining the physiological curvature of the lung. Hysteresis was found to be almost neg-
ligible in the pressure-volume diagram for the saline-filled lung. This was in contrast to
the observations made on the air-filled lung, where hysteresis was highly noticeable dur-
ing inflation and lung expansion was nonuniform. Several considerations were undertaken
in developing a plausible theory around how surface forces could lead to nonuniform lung
inflation [19]. These considerations were not mentioned in [19], however the mechanism
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was described as follows. Mead et al. [19] assume the tension originating at the air-liquid
interface as being the result of a pressure difference occurring on either side of the surface.
Note that this phenomenon is dependent on the extent of the curvature of the interface or
surface [19]. For example, the smaller the radius of curvature the greater the required pres-
sure differences needed to maintain the curvature. Therefore, as air flows along a series of
successive small bronchioles during inflation, the opposing pressures to surface tension must
increase [19]. Consequently, this leads to an increase in the radius of curvature of alveolar
openings. Thus, as air flows past the openings to alveoli of a greater radii, there will be a de-
crease in pressure. Air will continue to flow and inflate the units beyond until a new state of
equilibrium is reached, i.e., airway pressure is balanced by opposing forces of local elastic
elements and surface forces of stretched alveoli [19]. The above circumstances contribute
to the nonuniform expansion of the lung and Mead et al. [19] used this to further examine
the sequence of opening and closing of the alveoli. However, they could not distinguish an
obvious pattern relating to the sequential opening and closing of the alveoli [19].

During natural breathing, it was often assumed that the loss of energy as a consequence
of quasi-static hysteresis was negligible when compared to that of dynamic hysteresis [11].
Bayliss and Robertson [28] concluded that pulmonary tissue hysteresis decreases as the rate
of flow increases. Therefore, Saibene and Mead [11] describe pulmonary pressure-volume
hysteresis at low rates of volume change whilst under controlled conditions of volume his-
tory. They also sought to separate the quasi-static and dynamic contributions to hysteresis at
higher rates of volume change [11]. They discovered that quasi-static hysteresis decreases
as respiratory frequency increases. From their findings, under quiet breathing, the overall
contribution of quasi-static hysteresis tends toward zero. During exercise, increased tidal
volume is countered by an increase in respiratory flow. Thus, the contribution is negligi-
ble [11]. Bayliss and Robertson [28] initially suggested that “structure viscance” is a result
of some phenomenon other than the flow of a viscous fluid. Saibene and Mead [11] report
that the viscance remaining in the lung is independent of frequency. Furthermore, they also
highlighted that surface tension on the surface of the lung does not have a constant value
during respiration, unless in a state of equilibrium. However, it varies depending on the
speed at which the lung surface is stretched (greatest at low speeds), i.e., at low frequencies
becoming negligible at higher frequencies [11].

Using data initially obtained by Clements [16], Hills [29] hypothesised that hysteresis is
associated with an irreversible surface tension-area (γ − A) relationship amongst the alve-
oli. There was much doubt around the existence of surfactant at the alveolar air-liquid inter-
face [29]. Pierce et al. [30] motivated this by presenting results indicating that hysteresis in
the lung still occurs upon inflation with mercury. Moreover, Hills [29] questioned whether
surface tension-area hysteresis is independent of pressure-volume hysteresis. That is, he ex-
amined whether hysteresis can result from a variable or element of the lung surface besides
surface tension, and whether the effects of this surface parameter could be eliminated by
a substance other than surfactant, such as saline solution [29]. The classical Helmholtz ap-
proach is considered to be a suitable alternative method to studying surface tension as a
function of surface energy, Es , because of its benefit of considering the lung to be an gen-
eral matrix as opposed to the Laplace equation which can only be applied to an individual
alveolus [14, 29, 31]. Hills [29] considers the relationship between the total surface area A

and the surface energy, such that Es = γA. At equilibrium, dE = 0, as a result of the quasi-
static conditions under which hysteresis is observed [29]. Therefore, Hills [29] derived the
following expression for the inflation pressure:

P = d

dV
(γA) , (3.7)
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where γ is surface tension, and P and V denote the inflation pressure and inflation volume,
respectively. Equation (3.7) reveals that any pressure-volume loop is a result of irreversibility
of A, which cannot be described by the Laplace equation (3.1) [29]. This finding supports the
theory that geometric irreversibility is exhibited in the lung. Therefore, Hills [29] explains
that lung pressure-volume hysteresis is not a result of lung surface tension and surfactant, but
rather some unknown surface parameter. Emphasis is placed on lung anisotropic behaviour
being the main factor responsible for pressure-volume hysteresis [29]. Hills’ [29] argument
around lung surface tension-area hysteresis and surfactant not affecting pressure-volume
hysteresis was deemed invalid by Ardila et al. [32]. They explain that surface tension-area
hysteresis is a reflection of the pressure-volume hysteresis of the lung. That is, suppose a
pressure-volume curve exhibits hysteresis, then the plot of surface tension against surface
area will display a similar hysteresis loop in general. This is also the case for the perfect
isotropic expansion of a lung with a reversible stress-strain curve [32]. Pressure-volume
hysteresis is in fact a result lung surface tension and the distribution of alveolar surfactant
over surface area of the lung [14, 32, 33]. Moreover, Ardila et al. [32] and Lai-Fook et al. [33]
concluded that lung parenchyma undergoes isotropic uniform expansion for both inflation
and deflation. However, this conclusion neglects the nonuniform sequential opening and
closing of the alveoli during the inflation/deflation cycle.

Accounting for the interfacial effects of the lungs brought about an increase in the under-
standing of the behaviour of the lungs. However, this also brought about confusion pertain-
ing to the stability of the alveoli. For example, the alveolar surface was described as a fluid
which led to the assumption that the alveolar structure was highly unstable [34]. Clements
et al. [34] hypothesised that alveolar structure stability is dependent on pulmonary surfac-
tant. Their findings supported this hypothesis. Therefore, Clements et al. [34] developed a
stability analysis to describe the mathematical relations governing alveolar stability. This
analysis considers the behaviour of a single alveolar unit, as well as its component of recoil
due to surface tension which is obtained from: (i) the Laplace equation (3.1), and (ii) the sur-
face tension-area behaviour of a lung extract. The total recoil of a unit is estimated by taking
the sum of surface components and tissue components [34]. The alveolar unit is considered
to assume the geometry of a hemisphere over a range of volumes necessary for stability
[13, 34]. Further, the definite volume of the unit is established under the condition that ap-
plied pressure is constant and that the pressure-volume plot has a positive gradient, [34, 35].
Therefore, the following condition for alveolar stability is

3R E
V

Vmax

+ 4s − 2γ > 0, (3.8)

where γ is the surface tension, R the radius of curvature of a unit, E the coefficient of
tissue elasticity, V the unit volume, Vmax the largest volume assumed by the unit, P the
unit pressure, A the area of the alveolar unit and s = A

dγ

dA
denotes surface elastance, i.e.,

the reciprocal of the coefficient of surface compressibility K [34, 35]. Thus, taking the
total recoil of the individual unit along with the criterion for alveolar stability (3.8) yields,
3Pr > 8γ − 4s, where Pr is the recoil pressure [34]. Hence, Rmin is taken to denote the
radius of the smallest stable units, at given values of γ, s,P , such that

Rmin = (8γ − 4s)

3P
. (3.9)

Alternatively, Pmin is considered to be the least transpulmonary pressure required to stabilise
a unit with given values of γ, s,R, such that

Pmin = (8γ − 4s) 3R. (3.10)
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The above stability analysis governs the separation of the alveoli into stable and unstable
groups at an initial transpulmonary pressure [34]. Clements et al. [34] defines a normal lung
as stable. Subsequently, at high lung volumes, the lung is described as strongly stable [34].
However, the alveoli are vulnerable to atelectasis at low lung volumes, particularly when the
alveoli are subjected to an applied compressive force [34]. Moreover, they determined that
the lung is unstable at low lung volumes provided surface tension is constant or abnormally
large [34]. Film-forming activity is also under examination in this study [34]. Film-forming
activity refers to the development and adsorption of pulmonary surfactant onto the surface
of lung tissue. A lung with high film-forming activity is found to greatly reduce the effects
of surface tension whilst ensuring the alveolar structure of the lung is stable. A lung with
low film-forming activity struggles to decrease the effects of surface tension, therefore this
lung is deemed unstable [34]. Clements et al. [34] did not consider the stability criteria for
different geometries of the alveolar structure.

Bachofen et al. [36] re-examined and adjusted the method used by Brown [15]. This was
done to establish suitable surface tension-area hysteresis plots [36]. Most of their results dif-
fered from prior evaluations on lung extracts which utilised a Wilhelmy balance [16]. Using
the assumption that alveolar surface area is related to the two-thirds power by a constant
of proportionality along with (3.5) [15], Bachofen et al. [36] calculated the surface tension
using the following equation:

γ = 3

2
k−1 (PA − PS)V

1
3 , (3.11)

where k is a constant of proportionality determined by any initial value of surface tension
γ , PA and PS the area and surface components of recoil pressure, respectively, and V the
volume. A higher maximum estimate of surface tension was noticed. Subsequently, this was
observed with minor hysteresis and less surface compressibility. Flicker and Lee [37] cal-
culated similar results and their pressure-volume curves were in agreement with [36]. They
both concluded that surface tension decreased as surface area decreased. However, Slama
et al. [38] obtained results which did not agree with the observations in [36] and [37]. In-
stead, their findings emphasised that surface tension decreased as surface area increased.
Slama et al. [38] utilised a bubble surfactant technique to develop equilibrium area/surface
tension diagrams (ASDs) for surfactant from dog and goat lungs. The following was noted
based on their observations on the behaviour and effects of surface forces in lung alveoli:
Firstly, surface tension changes with surface area only if surface area changes rapidly. How-
ever, this case is avoided as lung surface area changes slowly due to an intake of surfactant at
the air-liquid interface [38]. Secondly, lung surfactant produced minimal surface tension val-
ues of ≈ 20 dyne/cm, significantly higher than histological surface tension estimates. This
implied that surface tension increases as surface area decreases. Reifenrath and Zimmer-
mann [39] used this bubble method, and similarly, they obtained reduced values of surface
tension (≈ 18–20 dyne/cm). Furthermore, they also did not observe a direct relationship
between surface tension and surface area [39]. They determined that the surface tension dif-
ferences amongst alveoli of varying radii was inadequate in maintaining the correct pressure
requirements for stabilisation of the lung alveolar structure [39]. Reifenrath and Zimmer-
mann [39] questioned whether alternative features are responsible for stabilizing the alve-
olar structure of the lung, however they did not pose a clear answer. Pulmonary surfactant
is the primary constituent responsible for maintaining the stability of the alveoli [24, 34].
One could question and further examine whether the stability of the lungs has more to do
with the microscopic elements of lung tissue than the macroscopic elements. This would
also include investigating the influence of microscopic properties in ensuring lung stability
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and how do they work in relation to the macroscopic properties of the lung. [39] concluded
that surface tension had no dependence on the radius of curvature of an individual alveoli
and that extremely low surface tension values are responsible for the omission of atelectasis
in alveoli with a minor surface area. These particular bubble models [38, 39] oversimplified
and neglected surface forces which are dependent on an underlying tissue structure for sup-
port. The underlying network of tissue is responsible for maintaining elastic and structural
integrity [31].

Reifenrath [14] attempted to provide an answer to the coexistence problem, i.e., how is
it possible for alveoli of different radii to exist side by side? [14, 35]. Reifenrath [14] uti-
lized the two models initially presented in [13] to explain the coexistence problem. Neither
model could directly justify why this concept could work. However, the second model is
said to describe the coexistence problem more accurately, i.e., it describes the dependent
behaviour of the surface tension-area relationship [14]. This relationship is similar to the
actual observed pressure-volume behaviour of the lungs [15, 16, 21]. Clements et al. [35]
consider the dependence of surface tension on surface area as a mechanism which can com-
pensate for differences in recoil pressure. According to the Laplace equation, larger alveoli
must be ventilated first due to their lower recoil pressures. Thereafter, smaller alveoli are
ventilated, and as a result of their higher recoil pressures, tend to become atelectatic, i.e.,
the alveolar structure will tend to be unstable under these conditions [14, 35]. However, the
Laplace equation and both models by Neergaard [13] have a common characteristic. That
is, the surface tension and stability of the whole lung is described with regards to an in-
dividual alveolus with a spherical geometry [13]. Mead et al. [31] explain that the elastic
behaviour of the whole lung cannot be described accurately with respect to an isolated in-
dividual spherical alveoli. Through mechanical interdependence, the actual elastic response
of the lung can be described by examining a cluster of polyhedral air spaces separated by
the alveolar septa, i.e., lung parenchyma [31]. Therefore, Reifenrath [14] assumes that the
alveoli adopts a polyhedral geometry throughout the entirety of the lung, with the exception
of those septa which are adjoined by an alveolar space on only one side. Thus, Reifenrath
[14] presented a new theory on the alveolar geometry explaining that considering a cluster
of polyhedral alveoli enables low surface tension values to be negated, thus being the reason
why different alveoli of different radii can coexist at the same time. The geometrical model
developed in [14] has no explicit dependence of surface tension to surface area. According
to Reifenrath [14], the surface tension-area relationship is not necessary for describing the
pressure-volume relationship of the whole lung or needed to support the coexistence prob-
lem. This contrasts with the standard definition of alveolar mechanics which made use of
equation (3.1) [13]. In this description [14], an increase in recoil pressure during inhalation
is anticipated even if surface tension is constant. Thus, surface tension is not responsible
for guaranteeing alveolar stability and hysteresis [14]. Instead, the differential covering of
surfactant onto the surface of the lung at a given surface area can guarantee stability and
hysteresis to a greater extent [14]. Reifenrath [14] concluded by inferring that changes to
the surface tension of the alveoli would lead to changes in lung volume.

There was a sudden rise in data indicating that surface tension distorts alveolar geometry
[14, 31, 40], tissue energy differs in air-filled lungs and saline-filled lungs [41], and that
surface tension plays a vital role in lung recoil [40]. Wilson [42] took into account these
effects in establishing correlations between recoil pressure, surface area, and surface tension.
Surface tension is considered to behave in two ways: (i) A direct manner, by an added
contractile force, and (ii) an indirect manner, whereby the shape of the alveoli is distorted
and internal forces within the tissue elements are increased [42]. In this paper [42], the
indirect approach is used and two models are considered when analysing the relationship
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between surface tension and recoil pressure. That is, the quadratic energy difference model
and the large energy difference model. Using the description for the total energy difference,
two equations are obtained for each model. For the quadratic energy difference model, at
equilibrium, the total energy of the lung is minimum [42]. A saline-filled lung is considered
whereby the potential energy is equal to the tissue energy. Further, the state of the alveoli
for any particular volume, is one in which the energy is minimum [42]. The assumption is
made that if this configuration experiences distortion resulting in changes to the surface area
S of a lung filled with saline solution Ss , the tissue energy U must increase regardless of any
increases or decreases to surface area [42]. The first term relating to an increase in tissue
energy U , corresponding to its minimum, Us , is a quadratic term for the difference in area,
i.e., Ss − S [42]. Therefore, in the case of small deformations where α may be a function
of lung volume or an unknown variable and surface tension γ �= 0 [42]. Then the stored
energy is a combination of both tissue energy and surface energy [42]. The surface energy is
expressed by

∫ S

0 γ dS. Therefore, the total energy of the lung, denoted by E, is defined by

E = Us + α (Ss − S)2 +
∫ S

0
γ dS. (3.12)

Wilson [42] determines the minimum of the surface area by taking the derivative of (3.12)
with respect to S, where S = 0. That is, 2α (Ss − SA) = γA. Substituting this expression for
α into (3.12) eliminates α in the formulation of EA. Note that E = EA and S = SA [42].
Taking the derivative of EA with respect to V and letting PA = dEA/dV and Ps = dUs/dV

yields

PA − Ps = γA

d

dV

(
Ss + SA

2

)
+

(
Ss − SA

2

)
dγA

dV
, (3.13)

where PA, Ps denote the total retraction pressures of air-filled lungs and saline-filled lungs,
respectively, and SA and Ss refer to the total surface areas of air-filled lungs and saline-
filled lungs, respectively. Further, γA denotes the surface tension of the air-filled lung, and
V represents total lung volume [42]. Equation (3.13) describes the relationships between
surface tension, surface area, and recoil pressure [42]. For the large energy difference model,
Wilson [42] generalised the above quadratic energy model by expressing �U as an arbitrary
function of the volume V and surface area S. For each volume, Wilson [42] assumes there
exists a balanced state with subsequent values for �U , S relating to each value of surface
tension γ . The total energy E, is expressed by summing together the tissue energy and the
surface energy. For a particular lung volume, S equates to the value for when the total energy
is minimum [42]. Therefore, the following equation is derived by taking the minimum of
total energy and quasi-static changes in lung volume due to V and S [42]:

P − Ps − ∂�U

∂V
, (3.14)

where P = dE/dV and Ps = dUs/dV . Recall that �U = 0 at P = Ps . Thus, �U can be
derived by integrating (3.14). Hence, from (3.12) and by integrating (3.14), [42] obtains this
expression for the surface tension as a function of lung volume:

γ (V ) = −
∫ V

Vs (S)

∂

∂S
(P − Ps) dV . (3.15)
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Surface tension values were estimated to be < 20 dyne/cm [42]. These values for surface
tension are much lower than the values obtained by ignoring the tissue elastic forces within
an air-filled lung [38, 39]. Wilson [42] explains that surface tension contributes to the added
recoil of the air-filled lung, and increases with increasing lung volume. It should be noted
that (3.13) has a number of disadvantages, especially when compared to (3.11). Firstly,
(3.13) is a differential equation rather than a straightforward algebraic expression for sur-
face tension. It requires data on surface area that was not readily available when compared
to the generous availability of data on lung recoil pressure. Secondly, it involves derivatives
of surface area data. If this data were to be inaccurate, differentiation would yield inaccurate
surface tension estimates. On the other hand, (3.13) was advantageous in providing more
accurate approximations of surface tension than (3.11) [42]. Wilson [42] did not base his
energy analysis on a specific geometric model of the alveolar structure. He may have as-
sumed a standard polyhedral structure for the alveoli. However, if this is not the case, one
may question if there is any variation with the results if a certain geometry is imposed on
his energy difference models [42].

Wilson [43] provided his finalised approximations of surface tension upon inflation and
deflation. Using the energy analysis from [42] and histological data for relations among re-
coil pressure, surface area, and lung volume, Wilson [43] produced surface tension-area
curves from pressure-volume diagrams. In this paper [43], surface tension is calculated
from recoil pressure using (3.15). However, unlike previous studies [42, 44], Wilson [43]
neglected an important assumption relating to the tissue compensation properties of recoil
pressure in both the air-filled lung and the saline-filled lung. That is, they are not the equal
at the same lung volumes. Wilson [43] reported estimates of surface tension that reduced
to < 2 dyne/cm as surface area decreased upon deflation. Similarly, surface tension was
found to increase rapidly with increasing surface tension upon inflation. This value was ap-
proximated to be < 30 dyne/cm [43]. This highlighted a particular dependence of surface
tension to surface area. His findings were consistent with results relating to inhomogenous
lung deformations. Wilson [43] additionally examined alveolar stability by using a positive-
ness of the bulk modulus of lung parenchyma which was used to develop a basic theoretical
criterion for stability. This stability criterion [43] could be considered for future research,
whereby one could determine critical values of surface tension for the lung which correlate
to certain healthy and pathological states of the lung.

Stamenovic [45] considered lung instability to be the consequence of a type of inhomo-
geneity that resulted in atelectasis. That is, it was suggested that the dependent behaviour
of surface tension on the surface area of the alveoli could describe a particular lung insta-
bility. Atelectasis was thought to occur under pathological conditions where portions of the
lung suddenly became over-inflated, whilst the remainder of the lung experienced little to
no effects of inflation [45]. This instability was associated with the structural network of
lung parenchyma [31, 40, 43, 46]. Mead et al. [31] initially identified various types of lung
inhomogeneity that may result in lung instability. These include the instability and sub-
sequent collapse of alveoli and airways, i.e., atelectasis, nonuniform dynamic ventilation,
lung inflation from a gas-free state, and airway obstruction resulting in collapsed airways
leading to atelectasis [31]. Stamenovic [45] utilized an alternative approach to lung insta-
bility and atelectasis, while still maintaining the properties of mechanical and parenchymal
interdependence. He viewed atelectasis as the simultaneous existence of random stages of
expansion which was termed the mixture of phases [45]. With regards to this concept, the
lung is neutrally stable and stable. A pressure-volume analysis and an energy analysis were
used to examine the stability of the lung. Both methods of analysis were vague in determin-
ing how the mixture of phases arises after transitioning from a state of uniform expansion.
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Stamenovic [45] questioned whether uniform lung inflation occurs to a degree where a nega-
tive slope on the pressure-volume curve is observed, provided the equilibrium configurations
are small, and whether this causes the lung to become unstable. Stamenovic [45] explains
that the instability present at the smaller, more expanded section of the lung is stabilised
through the minor expansive areas since these particular areas also have a larger volume
[45]. Therefore, during natural lung inflation, the lung tends to maintain its most stable con-
figurations such that the lung uniformly stretches to a point where it is stable with regards
to all surrounding disturbances. If this does not occur, the mixture phase takes precedence.
Therefore, the strain-energy function W is a potential [45]:

W

(
V

V0

)
− W

(
V̄

V0

)
=

∫ V
V0

V̄
V0

W ′(J ) dJ = P

(
V

V0
− V̄

V0

)
, (3.16)

where V is the volume, V0 the relative reference volume, J the volume stretch, V/V0 and
V̄ /V0 denote two equilibrium solutions and P = W ′ (V/V0) = W ′ (V̄ /V0

)
is the recoil

stress which is uniform at equilibrium [45]. Hence, by the Weierstrass condition [45], the
lung is neutrally stable while the mixture of phases takes place. Stamenovic [45] states that
the mixture phase exists in a domain where a region of a pressure-volume plot attributes
a negative gradient or where an instability may occur. This is inclusive of the sections of
minor disturbances where the lung is stable. This suggests that the mixture phase has a sta-
bilising effect on the lungs. Stamenovic [45] stated, “During the mixture of phases, the level
of stored elastic energy is reduced by the amount of work done in propagating the transition
front between phases, leading to stabilisation”. Stamenovic [45] also provides a description
for the surface tenion-area relationship using the basic constitutive equation for uniform
lung inflation:

P = f (V,γ ) , (3.17)

where P is the pressure difference across the lung surface expressed as a function of volume
V and surface tension γ [45]. The recoil pressure of uniformly inflated lungs is equal to P

[45]. While this particular inflation occurs, surface area of the alveoli decreases. The volume
elements of lung tissue fibres also decrease. As a result, lung recoil pressure diminishes.
However, this outcome can be negated if there is a dependent relationship between surface
tension and lung volume [45]. Suppose this relationship is nonexistent, then sections or the
lung as a whole would approach a state of atelectasis. This would happen in an attempt to
minimise the effects of surface tension on the force-bearing elements. Thus, surface tension
must depend on alveolar surface area to prevent atelectasis [45].

Stamenovic and Wilson [10] attempted to provide an accurate theory around alveolar
stability. They developed a continuum stability analysis which incorporates local distortions
occurring within the transition area between open regions and atelectatic regions, i.e., by
including the bounds of the elastic moduli obtained from the microstructural model [10].
Furthermore, their analysis examines the stability of a homogeneous and a nonhomoge-
neous lung [10]. For the homogeneous lung, [10] considers the answer to a specific question
regarding the displacement of a surface with a spherical hole in a elastic material. This so-
lution is explained as a consequential decrease of the inner displacement of the surrounding
material as the square distance from the centre of the hole decreases. As a result, volume
is preserved and shear distortion occurs. Moreover, the stress at the surface of the hole
increases by 4μu/R, where μ is the shear modulus of the material [10]. Thus, the sur-
rounding parenchyma apply an outward stress on the boundary, equal to P + (4μu/R).
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Subsequently, the inner region of parenchyma exerts an inward stress on the boundary,
equal to P − (3Ku/R). In the case the outward stress is greater than the inner stress,
P + (4μu/R) > P − (3Ku/R). Note that P is transpulmonary pressure, R is the radius
of a sphere used to model the parenchyma, K denotes the bulk modulus, μ the shear modu-
lus, and u is the minimum inward displacement [10]. In the case whereby the outward stress
is less than the inner stress, any increase in displacement u results in a subsequent failure or
collapse of the sphere [10]. Therefore, Stamenovic and Wilson [10] derived the following
condition for stability of a homogeneous lung:

3K + 4μ > 0. (3.18)

For the stability of a nonhomogeneous lung, Stamenovic and Wilson [10] consider the spher-
ical interior region to have a greater surface-to-volume ratio in comparison to the exterior
regions. Therefore, the associated recoil pressure, P1, of the inner region is greater than the
recoil pressure of the outer region, P0. Shear deformation occurs in the exterior sections
upon contraction of the interior sections [10]. Similarly, changes to stresses occur at the
boundary proportional to the boundary of u. Therefore, the stresses at equilibrium are equal.
Simplifying the equilibrium equation provides the following formula for u:

(3K1 + 4μ0)u

R
= P1 − P0, (3.19)

where the bulk modulus K1 corresponds to the interior region, and the shear modulus μ0

relates to the exterior region [10]. Stamenovic and Wilson [10] explain that the lung con-
tinuously transitions from a state of uniform expansion to the mixture of phases state, pre-
viously considered to be irregular or discontinuous [45]. From the stability analysis, they
determined that both homogeneous and nonhomogeneous lungs are stable [10]. However, if
surface tension is extensive or constant, along with no explicit dependence on surface area,
then surface forces will greatly influence the elastic behaviour of the lung due to decreases
in lung volume or tissue forces with a dependence on volume [10]. This will result in an
increase with the surface-to-volume ratio, which is used to describe the mechanism respon-
sible for regional collapse during the transition in [10]. Stamenovic and Wilson [10] explain
that should the surface-to-volume ratio be greater in one region of a foam than in another,
the gas pressure will be higher in the first region when compared to the second. The result-
ing change in pressure enables gas diffusion within the alveolar walls [10]. This signified a
difference in the ratio between surface tension and volume [10].

4 Constitutive Theory of Lung Parenchyma

Describing the complex elastic behaviour of the lung required the development of constitu-
tive equations. In lung mechanics, constitutive equations can describe the nonlinear elastic
behaviour exhibited by lung parenchyma through the relationship between the macroscopic
stress and the macroscopic strain. Therefore, understanding the elastic behaviour of lung
parenchyma formed the foundation for various theoretical and experimental models within
lung mechanics [3]. The governing equations of elasticity have been greatly simplified by
assuming small displacement gradients. However, with biological materials (organs, tissue,
cells), specifically lung parenchyma, the assumption of small displacement gradients is not
entirely valid as the lung actually experiences large deformations. Therefore, in order to
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obtain efficient measurements of biological lung material, one must consider large displace-
ment gradients [47]. Thus, using finite-strain elasticity theory is more applicable. Lai-Fook
[48] gives a reason for adopting this particular method, stating that large displacement gra-
dients will allow one to measure values that correlate with physiological parameters, such as
heart rate or lung volume. These parameters can be used to assess the welfare of human be-
ings and animals. Hence, the elastic behaviour of lung parenchyma was represented through
strain-energy functions [41] or through nonlinear stress-strain laws [47]. The models devel-
oped under this particular approach exhibit a nonlinear stress-strain relationship for large
displacement gradients.

Carton et al. [49] and various other studies [17, 19, 30] utilised pressure-volume curves
and data to examine the elasticity of lung tissue. However, pressure-volume curves cannot
express the stress-strain response of lung tissue along with the overall elastic response of the
lung. Mitzner [7] discussed two challenging aspects that contributed to this issue. Firstly,
there was a lack of understanding around how the different mechanical components of the
respiratory system interacted and depended on each other. That is, how the forces induced in
different parts of the lungs could be divided into their respective mechanical elastic, resistive
and inertial components. Mead [50] considered these forces as pressures since the motion
of the lung mechanical system is expressed in terms of volume. He provided a theoretical
basis around this particular concept by redefining Newton’s third law of motion, i.e., any
pressure applied to a body is opposed by an equal pressure developed by the body [50].
He determined that the applied pressure at each section of the lung is equal to the pressure
difference at each boundary of that particular section. Thereafter, taking the sum of the
equations for the opposing pressures of gas and the lung tissue, Mead [50] developed the
following equation of motion for the lung:

PL = Pao − Ppl = PelL + PresL + PinL
, (4.1)

where Pa0 and Ppl correspond to the pressures at the respective boundaries of the airway
opening, ao, and the visceral pleura, pl [50]. Furthermore, PelL = PelT i

, PresL = PresT i
+

PresG , and PinL
= PinT i

+ PinG
, represent the opposing pressures of the lung with respect to

the elastic, flow-resistive, and inertial parts of the lung [50]. The second challenge discussed
by Mitzner [7] is based on the forces acting within the lung that are responsible for its
deformation. To explain further, consider the structure of the lung. It is comprised of a
complex network of connective tissue. Moreover, there is a complex portion of the lung
that is responsible for several important physiological processes, such as gas exchange and
blood flow, that are influenced by elastic stresses and strains. This area is known as the lung
parenchyma and can be described as the part of lung relating to alveolar tissue and any
form of lung tissue involved in lung physiological processes, i.e., the bronchioles, bronchi,
blood vessels, interstitium and alveoli. Thus, instead of relying on an individual alveolus
to describe the mechanical behaviour of the whole lung, studies dedicated their attention
to understanding the macroscopic behaviour of either the alveolar septa or layers of lung
parenchyma to describe the complex structural and mechanical elasticity of the lung [31,
41, 51].

This major turning point for research into the elasticity of the lung is credited to the
prominent study conducted by Mead et al. [31]. An influential description of the mechani-
cal functioning of the lung was presented which changed how lung elasticity was examined.
This was termed mechanical interdependence [31]. During inflation, the pressure in the alve-
oli must surpass the pressure found outside the visceral pleura. Nonetheless, this pressure
difference is not applied to only a single unit, but rather to all alveoli. This includes the units
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completely surrounded by other alveoli, airways, and blood vessels. The lung elements sit-
uated within surrounding elastic tissue forms an interconnected network. This brought up
the question regarding what forces are responsible for inflating the internal structures of the
lung, including the airways and blood vessels. Mead et al. [31] showed how the effective
pressure (transpulmonary) found around the regions surrounded by parenchyma correlated
to the pressure outside the visceral pleura, i.e., the pleural pressure. Transpulmonary pres-
sure may be greater than, less than, or equal to the pleural pressure. In more general terms,
mechanical interdependence describes the effects of surrounding lung tissue on the mechan-
ics of local elastic elements. The theoretical simplification adopted from this paper [31] was
to now analyse the mechanics of lung tissue as a whole or a cluster of lung parenchyma,
rather than observing the behaviour of a single independent unit. This newly detailed con-
cept was applied to their analysis on the distribution of stresses within the lung [31]. Mead
et al. [31] analyse the equilibrium of radial forces occurring on a section of the lung wall.
The assumption is made to neglect gravitational forces. This assumption is valid because
gravitational forces acting across the surface of the lung walls are minimal such that any
differences in the distribution of stress as a result of gravity is considered negligible [31].
Moreover, radial stresses were deemed appropriate for the lung walls since the walls of the
lung are usually shaped in terms of a cylinder or sphere. The equation for the equilibrium of
radial stresses is as follows:

(Pi − Po) +
(∑

Fo

A
−

∑
Fi

A

)
− Pw = 0, (4.2)

where Pi , Po, Fi , Fo refer to the inner and outer pressures and forces, respectively, acting
upon A the area of the surface, and Pw is the acting pressure on the lung wall. The term,
(Pi − Po), describes the applied forces acting on two surfaces on the wall (inner and outer
surface) through molecular gas/liquid interactions. By Pascal’s law, for a liquid, the stress
is equal to the pressure in all directions [31]. Therefore, the radial stress is the sum of the
pressures at the two surfaces. The second term in (4.2) defines the sum of radial stresses
arising from the outer and inner wall components. The last term, Pw , is the resulting radial
stress from the circumferential components of stress applied to the parenchymal membrane
by neighbouring membranes [31]. Now consider the application of (4.2) to the pleural sur-
face (outer wall), and subsequently to the inner walls of the lung. Through this extension,
Mead et al. [31] defined the transpulmonary pressure-radial stress relationship which is re-
sponsible for distorting particular areas within the lung. Transpulmonary pressure is equally
opposed by the sum of a acting tissue and surface forces (inner forces) acting across the
pleural surface. Moreover, since the radii of curvature is greater at normal lung volumes, Pw

is omitted [31]. Mead et al. [31] further considered an arbitrary spherical region, re, com-
prised of a wall of adjacent alveolar septa. This wall experiences both outward and inward
tissue and surface forces. Furthermore, Pw is accounted for in this instance since the radius
of curvature is minimal. Suppose the airways are open such that the pressure of gases acting
on the outer and inner surfaces of the parenchymal membrane are both equal to the alveolar
pressure. This results in the first term of (4.2) being equal to zero. Thus,

∑
Fo

Are

=
∑

Fi

Are

| Pw, (4.3)

where Are is the area of the spherical region. From (4.3), the left-hand side refers to the dis-
torting regional stress resulting from parenchymal surface tension and parenchymal tissue
stresses [31]. This is equally opposed by the right-hand side of (4.3) describing the applica-
tion of parenchymal surface and tissue stresses acting within the membrane of the spherical
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region as well as through the pressure from within the wall. Mead et al. [31] proposed the fol-
lowing question, “How does the local distending stress,

∑
Fo

Are
, relate to static transpulmonary

pressure, Palv − Ppl”? This question was answered by referring to the transpulmonary pres-
sure. That is, the forces acting outward to any wall is an inner acting force for the next outer
wall. Therefore, this interdependent relationship progresses to the pleural surface such that
the only external force acting on the surface is transpulmonary pressure [31]. Suppose the
lung is homogeneous such that the stress occurring at any surface is equivalent to the pres-
sure at that surface, then transpulmonary pressure is applied to the innermost regions of the
lung without distention [31]. Accordingly, suppose the stress is equal at all surfaces in the
lung, then transpulmonary pressure is transferred towards the inner part of the lung by

Palv − Ppl =
∑

Fi

Apl

= nF

A
=

∑
Fo

Are

, (4.4)

where n represents the number of connections per unit area A. Hence, all distorted regions
of the lung are susceptible to transpulmonary pressure [31]. The dependence of the attached
regions on the distribution of stresses and pressures from the outermost region to the in-
nermost region is a reflection of mechanical interdependence [31]. Mead et al. [31] further
applied the concept of mechanical interdependence to the static and dynamic stability of
the lung, and collateral ventilation. Mead et al. [31] noted that small airways which are ob-
structed have high opening pressures, which can result in hemorrhagic atelectasis. Therefore,
mechanical interdependence plays a crucial part in reducing the magnitude of pulmonary
obstruction by collapsing certain regions of the lung towards a focal point [31]. This can
be explained more appropriately by examining the extent of mechanical interdependence
with respect to the distribution of stresses in the lung. That is, stress distribution in the lung
only occurs during nonuniform lung deformation [31]. Mechanical interdependence results
in a less nonhomogeneous deformation due to the interconnected network [31]. If regions
or lung elements were examined individually, the deformation observed would be highly
nonuniform. Further, they modelled the lung as a network of springs in order to analyse
the stress-strain relationship. They concluded from their findings that imposing certain con-
straints at particular points in the model resulted in deformations that occurred in distant,
but connected areas of the lung [31]. These deformations are suitable for study under elas-
tic theory. However, Mead et al. [31] did not provide a mathematical formulation of the
constitutive equation. Dayman [52] hinted at the breakdown of the complex interconnected
network of lung parenchyma being the main reason for advanced cases of emphysema, even
going as far as suggesting that a major loss of elasticity within the entirety of lung was not
the reason for the disease. Even though it was not stated explicitly, Dayman [52] may have
indirectly provided the first possible indication of lung mechanical interdependence.

Mead et al. [31] did not provide a mathematical description of the constitutive equations
for the stress-strain response of lung parenchyma. Instead, the formulation of the constitutive
equations was developed by Wilson [53], who considered a two-dimensional spring system.
The equations are given by

τxx = λ

(
∂ux

∂x
+ ∂uy

∂y

)
+ 2μ

∂ux

∂x
, τyy = λ

(
∂ux

∂x
+ ∂uy

∂y

)
+ 2μ

∂uy

∂y
,

τxy = τyx = μ

(
∂ux

∂y
+ ∂uy

∂x

)
, (4.5)
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where τ is the Cartesian component of stress, ux and uy are the x and y components of
strain. They also represent small deformations. Further, μ and λ are the material constants.
Note that equations (4) are linearised and only account for small deformations. From his
observations on the stress-strain response, Wilson [53] details that it is not directly appli-
cable to the lung. Rather, the elastic behaviour displayed in his study is similar to that of a
spring network, whose properties are based of the properties of lung parenchyma. For the
two-dimensional spring model, the shear modulus of the lung material is observed to in-
crease with increasing initial stretching of the springs [53]. Thus, for a low shear modulus,
the effects of local disturbances are seen to spread out and diminish the further away they
got from the surrounding material. A high shear modulus is seen to have a greater effect on
the surrounding material [53].

Understanding the mechanical elastic properties of biological tissues is considered im-
portant to solving physiological problems. In particular, the stress-strain relationship of these
tissues is of great importance. For example, consider the elastic behaviour of the lung. If
one can accurately describe the stress-strain relationship of the lung, then it can be applied
to analysing flow-resistive and fluid mechanical properties of the airways, i.e., the defor-
mation of the airways which result in airway obstruction or reduce the flow of air in the
lungs. The fluid mechanical properties of the lung have an explicit dependence on the elas-
tic stress-strain relationship of lung tissue. Fung [54] identified an issue with the application
of linearised elastic theory to biological material, that is, biological tissues exhibit finite
deformations and are associated with having a highly nonlinear stress-strain relationship.
Applying linearised elasticity to a highly nonlinear material presents several inaccuracies
with the data [54]. Fung [54] explains that biological materials exhibit a dependence of the
stress on not only the strain, but also on the history of the strain, i.e., hysteresis, relaxation,
creep [54]. Fung [54] used experimental stress-strain curves to develop a general consti-
tutive equation (containing two or three parameters) for biological materials undergoing
simple elongation. The biological material of concern in this paper is not lung tissue, but
rather mesentery [54], a membrane connecting the intestine to the abdominal wall and hold-
ing them together. The constitutive equation for the mesentery neglects any time-dependent
properties and the mesentery undergoes uniform stretch [54]. The Eulerian stress, σ , with
respect to tension is

σ = P

A
= P

A0
λ = T λ, (4.6)

where A is the cross-sectional area, A0 the area in terms of the reference configuration, T the
elastic tension, and P is the total tensile force [54]. Equation (4.6) expresses simple tension
through a single component of stress σ and a single extension ratio λ [54]. The elastic
curve for mesentery is approximated by the quadratic expression, dT /dλ = aT (1 − bT ).
Integrating this quadratic expression and substituting (4.6) into the resulting equations yields
the constitutive equation describing the stress-strain relationship of mesentery:

σ = λ
exp(aλ)

c + b exp(aλ)
,

(
1 ≤ λ ≤ λy

)
, (4.7)

where a, b are constants of proportionality, and c is a constant of integration. Equation (4.7)
is an exponential constitutive equation which describes the nonlinear stress-strain relation-
ship of mesentery. According to Fung [54], exponential constitutive equations can be used
to model the elastic response of biological tissue. However, Fung [54] does not state the
form of the constitutive equation for lung tissue. Instead, he highlights that lung tissue may
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be modelled in a similar manner to materials undergoing simple stretch, by describing the
stress as an exponential function of the strain [54]. Note that an actual lung undergoes triax-
ial loading. Thus, it would be more efficient to model the highly nonlinear elastic response
of the lung with respect to triaxial experimental stress-strain data [54]. However, triaxial
loading of the lung is difficult and complex to perform experimentally. Fung [54] also ap-
plied (4.7) to other soft biological tissues such as heart muscles, muscle fibres, and skin.
These are discussed briefly in [54].

Soft tissues are major components of every living organism, composed of collagen,
elastin, muscle, cells, and ground substances [55]. The mechanical properties of soft tis-
sue depends on both their chemical and structural composition. For organs, the mechanical
properties depend on the material, structure, and the environment [55]. Fung [55] states that
soft tissues actually exhibit a pseudo-elastic behaviour, i.e., not elastic, but under periodic
loading and unloading a steady-state stress-strain relationship exists which is independent
of the rate of strain. Further, hysteresis loops observed on pressure-volume curves are as-
sociated with viscoelastic behaviour, rather than elastic behaviour [55]. Since this loop is
repeatable, Fung [55] emphasises that preconditioning may be applied in order to use elas-
tic theory since the material or curves will begin to display elastic behaviour after periodic
loading and unloading, i.e., the curves can be treated separately to examine the elasticity
of the material. Preconditioning is the process of considering the loading and unloading
pressure-volume curves separately after repeated cycles. This method could be applied to
soft tissues of a viscoelastic nature. Fung [55] further suggests that the mathematical model
governing the viscoelastcity of a soft tissue, such as lung parenchyma, must account for all
features of hysteresis, creep and relaxation. An example of a popular viscoelastic model is
known as the Maxwell model, which displays properties of both an elastic and viscoelastic
material [55, 56]. Maxwell models have been exhaustively applied to model the viscoelas-
ticity of the lung [57], however they are attributed with several limitations [57, 58]. This will
be discussed later in the paper.

The methods used by Mead et al. [31] and Wilson [53] differ quite significantly from
the approaches taken by Frankus and Lee [59], and Fung [46]. These methods involve the
development of structural models in which the size, shape, and properties of the alveolar
septa and parenchyma are modelled. [59] considered the structure of the lung parenchyma
as a cluster of alveoli. This was then modelled as a collection of dodecahedrons, which is
described as a regular polygon with twelve pentagonal faces. Frankus and Lee [59] first
considered a three-dimensional isotropic material whereby its stress-strain relationship is
derived in terms of a strain-energy function W , with respect to the strain invariants I1, I2,
I3, as follows

τ11 = 2

{
∂W

∂I1
+ ∂W

∂I2

(
λ2

2 + λ2
3

) + ∂W

∂I3

I3

λ2
1

}
,

τ22 = 2

{
∂W

∂I1
+ ∂W

∂I2

(
λ2

1 + λ2
3

) + ∂W

∂I3

I3

λ2
2

}
,

τ33 = 2

{
∂W

∂I1
+ ∂W

∂I2

(
λ2

1 + λ2
2

) + ∂W

∂I3

I3

λ2
3

}
, (4.8)

where λi , i = 1,2,3, denotes the stretch ratios and τii , i = 1,2,3 represent the principal
components of stress. Frankus and Lee [59] used a numerical finite-element method and
pentagonal membrane elements to model the pure homogeneous deformation of the dodeca-
hedrons. They determined that the deformation of a single dodecahedral substructure results
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in the displacement of points proportional to the coordinates if the origin of the coordi-
nates is zero. This approximation compared well with experimental data. In this instance,
no equation was developed to relate the microscopic distortion properties of the lung to its
associated macroscopic deformation. Developing a constitutive equation relating the macro-
scopic and microscopic stresses and strains of the lung is a subject for future research due
to its potential to describe how the microscopic elastic elements of the lung directly influ-
ence the macroscopic elements. This study also allowed for pressure-volume curves to be
formulated in order to analyse any discontinuities within the parenchyma [59]. Emphysema
showed a strong correlation to changes in the pressure-volume response and was linked to
structural discontinuities [59]. Frankus and Lee [59] explain that distinguishing between
these changes and those that are specific to lung defects requires a theoretical hypothesis to
mathematically simulate any irregular lung behaviour arising from internal deformations.

Fung [46] maintained a similar theoretical approach to that of Frankus and Lee [59],
whereby the stress-strain relationship of lung parenchyma can be derived by considering
different geometries for the alveoli. In this paper [46], the stress-strain relationship is said
to be dependent on three factors: The magnitude of stress present in the alveolar walls,
the characteristics of surface tension, and the geometry of the alveoli. The above factors
are all considered to be a function of the macroscopic strain [46]. Lung parenchyma is
considered as a continuum comprised of voids, rather than an individual rubber-like structure
or unit [46]. This assumption is useful because it allows for the stresses and strains to be
analysed across the whole lung [31, 46]. Fung [46] examined the elasticity of the alveolar
sheet. By solving sets of integrals for the macroscopic stress distribution in the lung, the
model of the three-dimensional stress-strain relationship for the alveolar tissue is assumed
to be similar to that of other soft tissues developed in [54]. However, the physical constants
are different [46]. The form of this constitutive equation is derived from the pseudo-strain-
energy function W ,

W = 1

2
Cijhleij ek

[
β + exp

(
αmnemn + γpqr epeers

)]
, (4.9)

such that

σij = ∂W

∂eij

, (4.10)

where the two sets of constants Cijkl , αmn, γpqrs , and β are fundamental for loading and
unloading, respectively [46]. For soft tissues, the stress is defined as an exponential function
of the strain [54]. Therefore, the constitutive equations describing the nonlinear relationship
between the macroscopic stresses and strains of lung parenchyma is

σ1 = β (c1e1 + c4e2) +
[
c1e1 + c4e2 + a1

2

(
c1e

2
1 + c2e

2
2 + 2c4e1e2 + c7e

2
12

)]

· exp [a1e1 + a2e2] , σ12 = βc7e12 + e12c7 exp
[
a1e1 + a2e2 + γ e2

12

]
, (4.11)

where σij denotes the stress tensor, eij represents the strain tensor, and β , c1, c2, c4, c7, a1,
a2 are the material coefficients [46]. It is important to mention that the formulation of (4.11)
is not affected by the specified geometries since these equations correspond to the the elas-
ticity of the alveolar interface as a whole, and not to the geometrical representations of the
parenchyma. Fung [46] analysed the deformation of lung parenchyma by defining a geom-
etry for the parenchymal structure, that is, cubic and spherical geometries. These alveolar
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geometries correspond to the structure of the lung parenchyma in the reference configura-
tion. However, in its deformed state or current configuration, the alveolar geometries become
parallelopiped or ellipsoid in structure, respectively. Fung [46] presents a theoretical analy-
sis of how to obtain the stress tensor for lung parenchyma within these specified geometries,
whereby the macroscopic stresses are statistically averaged for random distributions of the
polyhedron. This theoretical model is termed the mean alveolus model which uses Ergodic
theory [46]. The mean alveolus model was successful in determining the stresses and strain
of lung parenchyma defined by a cubic or spherical geometry. However, the downside to
this study is that Fung [46] did not account for the stresses resulting from surface tension.
Instead, only accounting for the stresses and strains arising as a result of uniform lung de-
formation [46]. It would be interesting to examine how accurate the mean alveolus model
[46] is to modelling the stresses and strains of a diseased lung or whether the mean alveolus
model can simulate the elastic behaviour of lung parenchyma through complex geometries.
For example, consider the dodecahedra geometry assumed by Frankus and Lee [59].

Fung [40] examined the macroscopic stresses due to surface tension, and its correlation to
deformation and atelectasis. Fung [40] provides an extension of the analysis in [46] whereby
the stresses due to surface tension are now incorporated into the strain-energy function and
stress-strain constitutive equations for the lung parenchyma. Fung [40] accounts for both the
surface tension and the elastic stresses in the alveolar septum within a predefined cubic alve-
olar geometry. He considers a lung consisting of a cluster of alveoli which are cubic in shape
in the reference configuration. Upon deformation, the distorted alveoli now assume a rectan-
gular parallelopiped geometry where the boundaries are parallel in relation to the principal
axes of strain [40]. The macroscopic stress σ11 is obtained by first summing the tensions of
every alveoli and then dividing the sum by the cross-sectional area of the membranes. Fung
[40] expresses this by the following equation:

σ11 = [2γ13 + N13(e)]
1

(λ2�)
+

[
2γ12 + N

(e)

12

] 1

(λ3�)
, (4.12)

where N(e) is elastic tension, γij the surface tension components, λi are the stretch ratios,
and � is the dimension of the cubic alveoli in the reference configuration. Fung [40] states
that knowing how both γ and N(e) changes in relation to λ1, λ2, and λ3, will result in (4.12)
being the stress-strain constitutive equation of the parenchyma. Note that σ22 and σ33 may
be derived from (4.12) through a cyclic permutation of subscripts 1,2,3. The stress due to
surface tension is obtained by separating σ11 into its respective components for the elastic
tissue stress, σ

(e)

11 , and the surface tension stress, σ
(s)

11 , such that

σ
(e)

11 = 1

�

[
N

(e)

13

1

λ2
+ N

(e)

12

1

λ3

]
, σ

(s)

11 = 2

�

[
γ13

1

λ2
+ γ12

1

λ3

]
. (4.13)

Consider the surface tension term given in (4.13). Suppose γ12 = γ13 = constant, then (4.13)
is not dependent on the stretch λ1. Furthermore, an increase in transverse stretch, λ2 or λ3,
results in the stress, σ

(s)

11 , to decrease [40]. The conceptualised lung described here is com-
posed of rectangular lung parenchyma grouped into a cluster of parallel planes such that the
lung undergoes stretch with respect to the direction of the planes [40]. The importance of de-
riving the lung stress-strain response is emphasised by Fung [40]. He explains that this will
allow one to formulate the general equations of lung mechanics as well as provide solutions
to three specific problems: (i) uniform lung inflation, (ii) the nonuniform stress distribution
in the lung as a result of gravity, and (iii) three potential cases of atelectasis, i.e., planar,
axial and focal atelectasis. In order to determine the relationship between the stress and the
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strain of the lung, Fung [40] introduces a strain-energy function along with two important
assumptions. Firstly, the lung is considered to be preconditioned. In this instance, the lung is
actually a pseudo-elastic material. Secondly, the form of the strain-energy function is taken
to be similar to the exponential constitutive equation (4.11) due to its affinity with biological
tissue [54]. The pseudo-strain-energy function, ρ0W , incorporates both surface tension and
tissue elasticity [40]:

ρoW = 2

�
(γ12 − γ12)

{
λ12 min

γ12max − γ12min

λ1λ2

+ 1

(λ1λ2)max − (λ1λ2)min
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2λ2
2
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]

−
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nπ
· cos

nπ
[
λ1λ2 − (λ1λ2)min

]
(
λ1λ2

)
max

− (λ1λ2)min

}

+ C exp
[
a1e

2
1 + a2e

2
2 + 2a4e1e2

] + cyclic permutation terms, (4.14)

where λi are the stretch ratios, ρ0 refers to the reference density, γi are components of sur-
face tension, a1, a2, a4,C the material constants, ei the unit basis vectors. By differentiating
ρ0W with respect to the stretch ratios λi , the Lagrangian stresses can be obtained [40]. Thus,
the corresponding Cauchy stress tensor is expressed by

σij = ρ

ρ0
λiTij = λi

λ1λ2λ3
Tij , (4.15)

where ρ defines the density, and i, j = 1,2,3. [40] explicitly states that the relationship
between the stress and the strain of lung parenchyma is nonlinear.

Hoppin et al. [60] investigated the properties of lung parenchymal distortion. Instead
of developing a mathematical model to describe the stress-strain relationship of the lung,
Hoppin et al. [60] developed an experiment to collect data in order to define the relation-
ship between symmetrical and asymmetrical elastic expansion. For this experiment, lung
parenchymal tissue is subjected to triaxial stretch both symmetrically and asymmetrically
for a large deformation range. Since lung parenchyma is characterised as a continuum, the
assumption was made to model its distortion as a continuum [60]. Microscopically, this
characterisation is not applicable as the alveolar walls are discrete elements. Macroscopi-
cally, this characterisation is appropriate because the structure of the lung is assumed to be
homogeneous to a certain extent, with discrete elements being small enough to be negligi-
ble [60]. Hoppin et al. [60] examined cubic parenchymal extracts whereby a tensile force
is applied evenly over the entire surface of each side of the extract, with no applied shear
stress. A parallel force is further applied at independent points on each parenchymal sur-
face. Under this particular method, the lung became locally distorted in the areas where the
forces are applied [60]. Hoppin et al. [60] saw this as a disadvantage as local regional dis-
tortions cannot be used to describe the overall distortion of the whole lung. To minimise this
disadvantage, they assume that the weight of the whole lung is primarily affected by lung
parenchyma, with gravity being negated. According to West [61], regional distortion anoma-
lies occur during lung expansion and the resulting stresses from this distortion is associated
with gravity. West and Matthews [62] stated otherwise, claiming that the stresses induced
by the weight of the lung are insignificant and are primarily due to lung expansion. Hoppin
et al. [60] observed that the distortion due to displacement of an individual alveoli relative to
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the surrounding parenchyma did not impact the distortion of the surrounding tissue. Instead,
the distribution of the distortion of a cluster of alveoli or lung parenchyma to surrounding
parenchyma would be more noticeable in the lung, i.e., mechanical interdependence [31].
The elastic coefficients obtained by Hoppin et al. [60]: the bulk modulus, Young’s Modulus
and Poisson’s Ratio, were directly compared to the model presented in [63]. They described
lung parenchyma as a continuum equivalent to an array of interconnected elastic membranes
[63]. The bulk modulus and Young’s Modulus were observed to increase at high lung vol-
umes, indicating an increase in stiffness of the parenchyma. Poisson’s Ratio was measured
at ≈ 0.3 in an air-filled lung, whilst this value varied between 0.16–0.24 in a saline-filled
lung. However, for this study [60], the lung parenchyma is assumed to undergo small defor-
mations. Whilst this assumption greatly simplifies the elastic analysis of the lung, it does not
apply to actual elastic behaviour of the lung. A real lung is said to undergo large nonuniform
deformations [8, 64].

Using the distortion data collected by Hoppin et al. [60], Lee and Frankus [65] derived a
strain-energy function W for dog lung parenchyma. Firstly, a continuous constitutive rela-
tionship is developed to describe the stiffness of parenchyma using Finite Element Methods
(FEM) [65]. This is usually expressed in the form of a stiffness matrix, however it is not
given in this paper [65]. The strain-energy function for lung parenchyma is derived by con-
sidering the strain-energy of an elastic continuum body, expressed as a general function of
strain, W = W

(
eij

)
[65]. Thereafter, the stretch ratios λi may be substituted in for the strain

eij . Lee and Frankus [65] consider the elastic continuum body to be a nonlinear material.
They approximate the strain-energy function as a polynomial with even powers of the stretch
ratios λi :

W = �k Cijkl λ
l
i λk−l

j , (4.16)

where i, j = 1,2,3; k = 2,4,6, . . . , n; l = 0,2,4, . . . , k, and Cijk is a cyclic permutation
symbol. Lee and Frankus [65] assume that the material is initially isotropic, implying (4.16)
is cyclically symmetric in i, j . The strain-energy function is expressed as

W = a1I1 + a2

(
I 2

1 − 2I2

) + a3

(
I 3

1 − 3I1I2 + 3I3

)
+ a4

(
I 4

1 − 4I 2
1 I2 + 2I 2

2 + 4I1I3
) + b1I2 + b2

(
I 2

2 − 2I1I3
)

+ c1I3 + c2 (I1I2 − 3I3) + c3

(
I 2

1 I2 − 2I 2
2 − I1I3

)
, (4.17)

where a1, a2, a3, a4, b1, b2, c1, c2, c3 are material coefficients [65]. Lee and Frankus [65]
evaluated their strain-energy model against the mean alveolus model developed by Fung
[40, 46]. Using the experimental distortion data from [60], Lee and Frankus [65] observed
that their model captured the nonlinear distortion properties of lung parenchyma more ac-
curately. However, they still considered the mean alveolus model as being a reasonable and
efficient method for analysing parenchymal distortion properties. The only difference be-
tween the two models is that their model accounted for the pressure-volume relationship of
the lung [65], whereas the mean alveolus model did not [40, 46]. Whilst the pressure-volume
relationship of the lung does not provide direct information of the stress-strain response of
the lung, it can be used to obtain values of the elastic constants such as the bulk modulus,
Young’s modulus, or Poisson’s Ratio [60].

Lee et al. [66] revisited the distortion properties of lung parenchyma from [65]. In this
instance, the assumption is made whereby the deformations resulting in any changes to the
geometry of the lung parenchyma is considered to be so small that this geometric change is
neglected [66]. This assumption is justified by comparing the extent of small deformations
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acting on the lung parenchyma to the extent of the overall deformation experienced by the
lung [66]. This assumption allowed them to superimpose infinitesimal deformation on fi-
nite uniform deformation [66]. Superimposing small deformation onto a large deformation
provides a basis for deriving the elastic constants pertaining to each uniform expansion and
allows for the lung to be treated as an ideal elastic material [66]. A further assumption is
made whereby lung parenchyma is assumed to be a homogeneous compressible continuum
[66]. Lee et al. [66] obtained the mechanical elastic properties of lung parenchyma through a
strain-energy function W , whereby the parenchyma is subject to small deformations super-
imposed on large uniform deformation. For an isotropic, homogeneous material, whereby
the lung parenchyma undergoes pure homogeneous deformation, the strain-energy function
is defined in terms of the stretch ratios λi , i.e., W = W (λ1, λ2, λ3). In order to determine
the elastic properties of lung parenchyma at different volume levels, Lee et al. [66] assume
that the lung undergoes finite uniform expansion to a given volume in the collapsed con-
figuration. The deformation from the reference configuration to the current configuration is
infinitesimal pure homogeneous deformation [66]. The Eulerian stresses σi given in terms
of W are expressed by

σiλjλk = ∂W

∂λi

, σ ∗
i ηj ηk = ∂Ŵ

∂ηi

, (4.18)

where ηi, ηj , ηk denote the principal stretch ratios of the equal triaxial intermediate state
with respect to the reference configuration, Ŵ is the strain-energy function in terms of ηi ,
and σ ∗

i is the Eulerian stress of the intermediate configuration measured with respect to
the reference configuration [66]. By the Taylor series expansion and the stretch ratios λi ,
W is expressed to the first order of smallness in the current configuration. Therefore, the
particular form of the strain-energy function for the uniformly expanded lung is derived by
taking the derivative with respect to η. This gives an expression for Ŵ such that the stress-
strain relationship is determined by taking the derivative of Ŵ with respect to ηi :

∂Ŵ

∂ηi

|α = a (η − 1)n . (4.19)

Thus, by integrating (4.19), the strain-energy function is expressed by

W (λ1, λ2, λ3) = 3a

n + 1
(η − 1)n+1

+ a (η − 1) (λ1 + λ2 + λ3 − 3η) , (4.20)

where a is the coefficient of the equal triaxial stress-strain relationship and n is an integer
exponent of equal triaxial stress-strain relationship [66]. This model presents several ques-
tions: What is the purpose of describing the above relation as a power-law relation? Has
any insight already been provided on the power-law description of lung behaviour? The
measured elastic constants were found to be in agreement with the distortion data initially
obtained by Hoppin et al. [60]. Lee et al. [66] applied the above model to a particular lung
elasticity problem termed the local compliance problem. This problem is concerned with
determining the incremental stresses and strains around an internal spherical segment, pro-
vided an incremental pressure δPi is applied to the uniformly deformed configuration [66].
Lee et al. [66] determined that by expressing the lung compliance problem in terms of cylin-
drical polar coordinates, i.e., a cylindrical domain with a cylindrical internal segment, the
stress-strain relationship approximately close to the airways/blood vessels in the lung can
be modelled [66]. This problem is explored in more detail in their paper [66].
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Nonuniform lung deformation is reliant on respiratory function, which in turn is also
dependent on mechanical interdependence [31] and gravity [62]. Therefore, understanding
the inhomogeneous behaviour of the lung requires knowledge or insight into the mechanical
elastic properties of the lung [67]. Lai-Fook et al. [67] presented their findings from exper-
iments specifically designed to determine some of these properties, whereby lung lobes are
subjected to uniaxial loading and indentation tests. Data from pressure-volume curves and
these experiments are used to derive the elastic constants of the lung [67]. Under the clas-
sical theory of elasticity, the elastic constants were suggested to be capable of describing
the lung as an isotropic elastic continuum undergoing small deformations [67]. Lai-Fook
et al. [67] describes the elastic behaviour of a theoretical lung model under two assump-
tions. Firstly, the lung is assumed to be a continuum whereby the stresses and strains are
determined as an average over large regions of parenchyma [67]. This assumption satisfies
mechanical interdependence. The second assumption neglects the effects of hysteresis as the
lung is considered to be an ideal elastic material in this study [67]. Applying this assump-
tion to this theoretical model simplified the nonuniform deformation analysis, although this
model becomes inaccurate in describing different loading scenarios where hysteretic be-
haviour is fundamental [67]. However, assuming the lobes to be uniformly supported when
subjected to an applied load provided their most significant source of error [67]. This is be-
cause part of the lung lobe which was not loaded by an upper force indirectly participated in
supporting the force applied at the lower regions of the lobe [67]. Subsequently, this resulted
in Lai-Fook et al. [67] overestimating the area of contact and underestimating the applied
stresses. Additionally, they also overestimated the bulk modulus (≈ 0.43) which is much
lower at lower inflation pressures [67]. Similarly, Young’s Modulus for lung parenchyma at
low inflation pressures was two times larger than the actual value at low inflation pressures
[67]. These findings did not compare well with the elastic constants derived in [63] and the
experimental data in [60]. The reason for this is because the elastic constants of Hoppin et al.
[60] and Lambert and Wilson [63] are based on models whereby lung parenchyma is consid-
ered to consist of many randomly orientated plane membranes. Lai-Fook et al. [67] suggest
that the assumptions made in [60] and [63] may be invalid. However, no particular reason is
given to support this statement. Nevertheless, Lai-Fook et al.’s [67] elastic constants agreed
with the estimates of Mead et al. [31]. One could argue that mechanical interdependence
played a crucial part in this agreement, however the effects of mechanical interdependence
are considered to be minor [67]. This consideration stems from their experimental results
where lung parenchyma was observed to be easily distorted in shear, rather than in expan-
sion. This was the first mechanical property highlighted by Lai-Fook et al. [67]. Lastly, this
property is also functionally significant, i.e., nonuniform deformations result in relatively
small ventilation distortions [67].

Vawter et al. [3] examined the elasticity of excised dog lung parenchyma in order to
gather data on the elastic properties of lung tissue in distortion. They designed an exper-
imental model to obtain measurements of the stresses and strains on excised rectangular
layers of lung parenchyma [3]. This experiment minimised the effects of gravity, surface
tension and any boundary conditions associated with the parenchyma. However, the stresses
due to surface tension and the effects of gravity on lung deformation play an important
role in the overall elastic and physiological response of the lung [21, 40, 61]. This exper-
iment considered biaxial loading [3]. Realistically, the lung undergoes triaxial loading [3].
Further, triaxial loading of the lungs is complex with [60] being one of the few studies to
examine the effects of triaxial loading on the lung. Vawter et al. [3] determined that for high
levels of stress under biaxial loading, the deformation of lung parenchyma is greater than
the deformation observed under uniaxial loading. This is because the parenchymal tissue is
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stiffer for high values of stress when loaded in only one direction. For low levels of stress,
the parenchymal tissue is less stiff when loaded in only one direction than under biaxial
loading [3]. Moreover, Vawter et al. [3] observed no points of intersection between biaxial
loading data and triaxial loading data [60]. They also determined that the applied loads in
triaxial tests were not large enough to result in compressive strains in the lateral directions
[3]. Furthermore, they associated uniaxial parenchymal distortion with low lung volumes,
particularly when lung stiffness is low [3]. Vawter et al. [3] emphasise that in order to obtain
a complete understanding of the mechanics of lung parenchyma, one must understand the
effects of surface tension and consider the viscoelastic properties of the lung. These two
properties of the lung must be incorporated into future models in order to describe the exact
mechanical behaviour of the lung. Vawter et al. [3] question what the pattern of distortion
is like in an intact lung, however, are unable to provide a conclusive answer for this aspect.
This is explored in future studies on parenchymal distortion properties [68, 69].

Vawter et al. [3] did not derive a constitutive equation for the stress-strain behaviour
of lung parenchyma. This was instead formulated in their subsequent study on lung tissue
elasticity in [41]. The constitutive equation is developed under the hypothesis of a simplified
alveolar geometry (cubic alveoli) and a pseudo-strain-energy function for the interalveolar
septa. By considering the alveolar membranes perpendicular to the z-axis, parallel to the
x-and-y-axes, Vawter et al. [41] assumed the following pseudo-strain-energy function W for
the alveolar membranes:

MoW =
(

C ′

2

)
exp

(
a1E

2
x + a2E

2
y + 2a1ExEy

)
, (4.21)

where Mo is the mass of the interalveolar septa or parenchyma per unit area of the membrane
in the reference configuration, C ′, a1, a2, a4 denote the material coefficients, and Ex , Ey re-
fer to the Green strain tensors in the x and y directions, respectively. The resulting stresses
within the interalveolar septa, Fx and Fy , are obtained by differentiating Ex and Ey with re-
spect to λx and λy , respectively. Note that these stresses relate to the forces in the reference
configuration [41]. Using the expressions for Ex and Ey given in [41], ∂/∂λx = λx(∂/∂Ex)

and ∂/∂λy = λy(∂/∂Ey). Thus, the constitutive equation for the interalveolar septa is ex-
pressed by
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where C ′ is used to obtain the overall level of stress, a1 and a2 represent the rate of change
of stress with increasing stretch, and a4 denotes the coupling between two perpendicular
directions [41]. Furthermore, Vawter et al. [41] consider the macroscopic stress-strain rela-
tionship of lung tissue where Tx denotes the stresses acting on any section perpendicular to
the x-axis. The force acting on a unit undeformed area of parenchyma is the resultant of the
forces acting within the alveolar septa. Summing all the contributions yields

Tx = Cλx
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2
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)
, (4.23)

where C = C ′/�, and � is the distance between membranes. The constitutive equation
(4.23) is derived by differentiating ρ0W with respect to λx :

ρ0W = 1

2
C exp

[
a1E

2
x + a2E

2
y + 2a4ExEy

]

+ Cyclic Permutation Terms, (4.24)
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where ρ0 is the density of the lung in the reference configuration. The second term in (4.24)
represents the sum of all terms obtained by cyclic permutation of subscripts x, y of the strain
E by x, y, z. Note that (4.24) is a simplified version of the strain-energy function (4.14)
derived in [40]. This is because Vawter et al. [41] only considered the elastic stress and
not the stresses due to surface tension. Therefore, applying the above constitutive equations
to examine the physiological behaviour of an actual lung would require surface tension as
an additional term in the equation [41]. Nonetheless, the data gathered from this model
matched the experimental data in a satisfactory manner, implying that the model may be
used to some extent in analysing the physiological behaviour of an intact lung with suitable
boundary conditions [41].

There was still much uncertainty around the magnitude of the elastic constants, largely
due to a lack of a well-defined strain-energy function [33]. The need was for a constitutive
equation or strain-energy function that could adequately describe the parenchymal elastic
properties under the assumption of large deformations. Lai-Fook [33] proposed a differ-
ent approach towards the formulation of a strain-energy function. Much like the study by
Lambert and Wilson [63], they considerd uniform prestressed states [33]. It is assumed
that should the prestress of a homogeneous isotropic material be uniform, it would imply
that the material is isotropic and the elastic constants are functions of the prestress [33].
Pressure-volume hysteresis was also considered in a certain manner, whereby they assume
that the parenchyma is uniformly expanded during both inflation and deflation [33]. This
assumption is extremely important as the validity of the elastic moduli estimates depends
on this assumption. There are several advantages to this particular approach. Firstly, lin-
ear elastic theory could be used to solve problems of small nonhomogeneous deformations
superimposed on large deformations. Second, with the superimposed deformations being
large, a second-order strain-energy function may be derived with the potential of solving the
deformation problems of lung parenchyma [33]. However, the strain-energy function and the
constitutive equation for lung parenchyma is not derived in this paper [33]. Instead, Lai-Fook
[33] provides measurements of the bulk modulus K , obtained from small pressure-volume
perturbations, and the shear modulus μ, measured via indentation tests at a fixed transpul-
monary pressure (Ptp). The mean value of the bulk modulus varied between 3–6 Ptp as the
pressure increased from 4–16 cm H2O [33]. The mean value of the shear modulus is ≈ 0.7
Ptp [33]. Lai-Fook [33] determined an estimate of Poisson’s Ratio using the mean values of
K and μ. Poisson’s Ratio varied between 0.37–0.45 as the pressure increased from 4–16 cm
H2O [33]. This result showed consistency with the values for Poisson’s Ratio previously
reported in [67]. Thus, for small deformations superimposed on reasonably large lung vol-
umes, the lung appears to behave like an ideal elastic material [33]. However, Lai-Fook [33]
did not attempt to derive a relationship between the elastic constants and surface tension.

Since the initial discovery of mechanical interdependence by Mead et al. [31], numer-
ous studies focused their attention towards the application of elastic theory to the analysis
of lung tissue deformation [40, 46, 65]. Various numerical models were constructed in an
attempt to simulate gross lung deformation behaviour [3, 62]. All these studies assume an
isotropic, homogeneous lung parenchyma. However, Tai and Lee [70] argue that should
lung parenchyma exhibit anisotropic behaviour, major analytical revisions of lung tissue
deformation is required. The literature has often presented mixed findings on this subject.
Ardila et al. [32] concluded isotropic pleural surface deformation, whilst Hills et al. [29]
concluded anisotropic lung expansion. Hoppin et al. [60] used triaxial tension tests on cu-
bical lung tissue specimens, where they observed irregular directional extension behaviour.
Note that Hoppin et al. [60] were not concerned with determining the isotropic behaviour
of lung parenchyma. Tai and Lee [70] conducted an investigation examining any potential
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anisotropic or non-uniform properties of lung tissue. This study makes use of the methodol-
ogy in [60]. Tai and Lee [70] made no effort to identify the stress-strain behaviour of lung
parenchyma. From the results, they observed no clear indication of locational-dependent de-
formation behaviour, implying uniformity [70]. They noticed arrangements of directional-
dependent deformation indicating a general case of mild anisotropic behaviour for young
tissue samples [70]. Older tissues samples exhibited less anisotropic features. This study
concludes by stating that the assumption of a isotropic homogeneous parenchymal tissue is
fairly practical for analysis of regional lung volume deformation studies [70].

Zeng et al. [71] studied human lung tissue to derive its elastic properties. The stresses due
to surface tension were neglected by filling the lung with saline-solution [71]. In this paper
[71], lung parenchyma is subject to experiments under biaxial loading. They observed evi-
dence of a highly nonlinear stress-strain relationship for the human lung parenchyma from
experimental stress-strain curves. Further, they also noticed strong evidence of hysteresis
exhibited by the pressure-volume curves. This finding is similar to results produced by [3].
Zeng et al. [71] use preconditioning to derive the unique stress-strain response for loading
and unloading, respectively. The formulated pseudo-strain-energy function ρ0W for either
loading or unloading is a symmetric function of the strain components Eij , expressed in
terms of the stretch ratios λx , λy , λz. Taking the derivative of ρ0W with respect to Eij yields
the components of stress Sij :

Sij = ρ0
∂W

∂Eij

, (4.25)

where ρ0 is the material density with respect to the reference configuration [71]. Taking
the derivative of the pseudo-strain-energy function ρ0W with respect to the stretch ratio λx ,
gives the corresponding Lagrangian stress Tx :

Tx = ∂ρ0W

∂λx

= ∂ρ0W

∂Exx

∂Exx

∂λx

= λxSxx. (4.26)

Note that the expression for ρ0W used in [71] is the general exponential strain-energy func-
tion initially proposed by Fung [46], given by (4.9). Zeng et al. [71] present the pseudo-
strain-energy function for lung parenchyma as
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where c, a1, a2, a4 denote the material constants, and Ex,Ey,Ez are the corresponding
strains in the x, y, z-directions, respectively. Zeng et al. [71] compared their experimental
findings on the human lung with that of a dog lung. They determined that both lungs develop
similar stresses, however only if the dog lung is stretched more than the human lung. This is
because the overall stress distribution for human lungs is three times greater than that of dog
lungs, i.e., human lung parenchyma is stiffer than dog lung parenchyma [71]. Zeng et al.
[71] did not obtain pressure-volume curves of a saline-filled lung despite multiple attempts.
The lung sank with saline and preconditioning was never achieved. The reason for this is
unclear, perhaps this occurred as the lungs were experimented on postmortem.
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Debes and Fung [72] investigated the influence temperature has on the mechanical prop-
erties of lung parenchyma at low lung volumes. They state that the full structural mechan-
ics of the lung must include exploration of how collagen and elastin fibres influence the
mechanics of lung parenchyma from within the lung tissue. This is because collagen and
elastin fibres are the primary microscopic force-bearing constituents of lung parenchyma
[73]. They determined the extent to which lung tissue material undergoes a phase transition
between 20 ◦C–40 ◦C [72]. This was also done to evaluate whether elastin has a critical
temperature between 10 ◦C–40 ◦C. Karlinsky et al. [74] provided details on the quasi-static
properties of uniaxially deformed lung strips at various temperatures. They found mini-
mal change to the stress-strain relationship between 20 ◦C–40 ◦C corresponding to strains
between 60%–110%. That is, strains corresponding to high lung volumes with associated
forces exhibited by collagen are dominant [74]. Therefore, Debes and Fung [72] directed
their study on the mechanical properties of the lung at low lung volumes in order to empha-
sise the effects of elastin. Note that surface tension is neglected in this study, with partic-
ular focus being placed on the mechanics of the structural proteins [72]. Moreover, strains
were kept below 30% to emphasise the effects of elastin [72]. From the results, Debes and
Fung [72] establish that both collagen and elastin fibres play a fundamental role in the me-
chanical properties of the lung at low volumes. The stress-strain relationship of collagen is
highly nonlinear, whilst elastin exhibits a linear relationship [72]. They conclude that the
lung does not have a critical temperature in the 10 ◦C–40 ◦C range for mechanical property
changes. Instead, these experiments imply that the behaviour of lung tissue at room tempera-
ture (25 ◦C) closely resembles the response at physiological temperatures [72]. The authors
did encounter a piece of missing information when examining the mechanical properties
of the lung, that may be of potential for future studies to consider. That is, the zero-stress
state of these fibres relative to the zero-stress state of parenchyma is unknown, including the
material constants of these fibres in the lung [72].

Masksym et al. [75] examined how forces arise in a two-dimensional model of lung
tissue elasticity with distributed heterogeneous elements. Each element of the model com-
prises of generalised collagen and elastin fibres parallel to one another. Note that the fibres
stretch and reorient to counter the effects of the applied uniaxial load. Collagen fibres are
inelastic at low strains, only contributing to the elasticity of the elements when they become
straight [75]. The authors also assume that the straightening lengths of collagen fibres are
randomly assigned according to the various distributions. Lastly, a comparison of the force-
length curves is made against those measured in a real lung [75]. The model is developed
using artificial tissue as a two-dimensional finite element mesh consisting of interconnected
line elements. Each line element correlates to a spring-string pair, i.e., springs correspond
to elastin fibres and strings correspond to collagen fibres [75]. Each pair has a starting rest-
ing length with no applied force. As tension increases for each independent pair, the unit
stretches with respect to the elastin stiffness (k1). The string becomes tightly stretched at
knee length (lk), with the unit now stretching is response to a much stiffer parallel sequence
of the spring and string with a combined stiffness (K2). Therefore, string stiffness = k2 −k1.
Thus, the length-tension relationship of an individual unit is expressed by [75]:

F = k1(l − lr ), l ≤ lk,

= k1(lk − lr ) + k2(l − lk), l > lk, (4.28)

where F is the force carried by a respective unit, l is the length of a unit, lr is the resting
length, and k1 & k2 represent the stiffness below and above lk , respectively. Tissue simula-
tion software is used to model the lung tissue, and the solution is achieved via the steepest
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descent method [75]. Maksym et al. [75] state that their model is capable of quantitatively
accounting for the nonlinear stress-strain behaviour of lung tissue strips, particularly when
the knee lengths of the collagen fibres are distributed in accordance with an inverse power-
law. The key findings from this model establish that as the macroscopic strain increases as
the tissue is stretched, several elements start to support more load than their neighbours [75].
This leads to local distortions with an increased chance of neighbouring elements becom-
ing stressed. As stretch continuously increases, favoured pathways are seen to emerge for
force transmission [75]. For large extensions, a continuous network is formed from one end
of the tissue to the other, whereby each element of the network is stressed passed its knee
length [75]. When the knee length is distributed hyperbolically, Maksym et al. [75] observe
that the progressive manner in which this network is created and distributes tension leads to
force-length curves similar to physiological lung tissue. This observation could demonstrate
the manner in which collagen fibres are recruited with increasing strain to derive smoothly
stiffening stress-strain curves of actual lung tissue [75]. Moreover, the morphology of the
self-orienting pathways of force transmission express a close resemblance to crack prop-
agation of a solid, however, they behave in a manner opposite to that of cracks. Instead,
Maksym et al. [75] acknowledge that these are actually anti-cracks. Cracks tend to form in
regions of high stress, where the material begins to yield locally in order to relieve tension.
Anti-cracks tend to correspond to areas of force concentration, whereby they self-organise
by connecting to neighbouring elements in order to reduce local stresses [75].

Collagen and elastin fibres have been observed to undergo remodelling when affected
by stress or disease [73, 75]. Therefore, the re-organised fibre network exhibits altered me-
chanical properties. This can take the form of a further loss of elastic recoil or a decrease
in surface area for gas exchange [73]. The importance of tissue degradation and the remod-
elling of the tissue network is fundamental for studies involving disease such as emphy-
sema. These aspects can be evaluated by organ-level measurements such as lung resistance
and elastance [73]. Lung tissue resistance is a major component of total lung resistance at
different breathing frequencies. Brewer et al. [73] hypothesise that during disease progres-
sion, the destruction and remodelling of connective tissue results in microscopic alterations
of the alveolar walls, which is expressed through lung tissue elastance and hysteresivity.
Hysteresivity describes an intensive tissue property defined as the ratio of dissipated energy
over a cycle [76]. At the macroscopic level, it is a material property dependent on tissue
composition and microstructure. The hypothesis of this study is evaluated using analysis of
the mechanical behaviour of the lung parenchyma at both macro-and-microscopic levels in
normal and elastance-treated lungs (diseased lungs). Thereafter, the associated changes be-
tween the organ-level elastic and hysteresis behaviour and the inflicted mechanical changes
across the alveolar wall are examined [73]. From the results of their experiment, the alve-
olar walls of the treated tissue tended to be more extensible at the microscopic level, i.e.,
the alveolar walls of diseased tissue is less likely to fold [73]. Brewer et al. [73] observed
a strong network effect across the microscopic and macroscopic levels. They state that de-
formation of an isolated component can have a different response to a component that is
included in a network. This effect may highlight that individual alveolar walls may not ad-
here to the continuum macroscopic strain field [73]. In order to simulate this network effect,
the authors calculated expected changes in angles that would take place if deformation of
individual alveolar walls adhered to the macroscopic strain field:

�α = − arctan

[
ε (1 + ν) sinα0 cosα0

1 + ε
(
cos2 α0 − ν sin2 α0

)
]

, (4.29)
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where ε is the macroscopic strain, α0 is the original angle of a component with regards to
ε, and ν is Poisson’s ratio. Their results imply that a continuum analysis cannot be utilised
to assess the properties of individual alveolar walls and that a systems model must be im-
plemented to understand the response [73]. To account for the network behaviour, heteroge-
neous relaxation was enforced into their experimental model. The behaviour of the network
elements mimicked the response of the individual alveolar walls in the tissue strips [73].
The reason for this is that the heterogeneous relaxation allows each alveolar wall segment to
respond differently to an applied strain [73]. They also agree with the study of Mead et al.
[31], where the observed response for each alveolar wall is dependent on the behaviour
of its neighbouring walls. Brewer et al. [73] conclude by stating that the alveolar network
response is fundamental to the overall mechanical behaviour of individual wall segments.
Therefore, they cannot be examined in isolation from their neighbouring parts. Moreover,
the degradation of the alveolar walls results in changes to the stress distribution and dis-
sipation of the tissue. If failure is present anywhere throughout the network during cyclic
stretching, increased hysteresis could be observed within the microscopic behaviour of the
individual components [73]. Thus, failure of the parenchymal walls at high strains could
potentially affect elastance at high levels of transpulmonary pressure [73]. Hence, consid-
ering emphysema, changes with the structural composition of the tissue, including network
failure, could be described in changes to the elasticity and hysteresivity [73]. An interesting
avenue to explore could be to examine the mechanics of individual fibres within a single
alveolar wall and construct quantitative network models which can associate the scales from
fibre constituents to alveolar wall mechanics to the overall lung mechanical behaviour.

Pulmonary distortion cannot be considered small, especially when modelling the nonuni-
form distortion properties of lung parenchyma. Subsequently, the elastic moduli cannot be
deemed as constants when considering large parenchymal distortions. Most importantly,
these distortions should not be modelled under the theory of linearised elasticity [64]. There-
fore, the elastic moduli should instead be functions of transpulmonary pressure, as well as
the magnitude and form of the distortion [64]. The distortion results in reorientation and
a corresponding alteration with the strain of the force-bearing components. As a conse-
quence, lung parenchyma becomes a physically inhomogeneous anisotropic material [64].
Recall that Hills [29] considered the lung to exhibit anisotropic behavior without the influ-
ence of surface tension and surfactant. Ardila et al. [32] deemed this assumption by Hills
[29] to be invalid, showing that the lung is an isotropic homogeneous continuum. Hills’ [29]
assumption was correct with regards to the lung exhibiting anisotropic behaviour. However,
his claim that lung surface tension and surfactant do not contribute to pressure-volume hys-
teresis and the anisotropic behavior of the lung is invalid. Surface tension and pulmonary
surfactant are directly responsible for the observed pressure-volume hysteresis and subse-
quent anisotropic behaviour of the lung.

Denny and Schroter [64] state that parenchymal elasticity should be described by more
than two elastic moduli in order to describe the anisotropic behaviour of the lung. They
investigate the degree of anisotropy introduced by nonuniform deformities and examine
how applicable the limits of small deformation approximations are to modelling the lung
parenchyma in an accurate manner [64]. The elastic response of the large nonuniform defor-
mation on the material properties of lung parenchyma is evaluated using the Finite Element
Method (FEM). The elastic moduli are determined for a cuboidal block of parenchyma under
the influence of a large nonuniform deformation through uniaxial stretch. The anisotropic
parenchymal behaviour is modelled by five elastic moduli, however particular focus is
placed on Young’s Modulus, Poisson’s Ratio and the shear modulus [64]. Several assump-
tions are made with respect to the model. Firstly, it is assumed that the anisotropic structural
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properties of the model can provide the anisotropic elastic properties of the lung parenchyma
[64]. This assumption is evaluated by computing the incremental Young’s Modulus Ez un-
der uniaxial expansion. They determined that the model has similar elastic properties when
deformed in different directions, despite its structure being anisotropic [64]. The deviation
from linearity observed in this model has minimal dependence on the chosen direction of the
axes [64]. This assumption validates their model as being an ideal simplified representation
for a block of actual lung parenchyma. Denny and Schroter [64] also assume that the effects
of the alveolar duct to the elasticity of lung parenchyma would have a minor effect on elas-
tic properties. This model is validated against the study by Hoppin et al. [60]. Denny and
Schroter [64] observe similar model results to that of the experimental data gathered in [60].
Young’s Modulus Ez is observed to increase significantly, while Ex remains approximately
constant. That is, the stiffness of the parenchymal fibres increase with stretch, however the
component of fibre stiffness perpendicular to the direction of expansion decreases. This
indicates the significance of the effect of nonlinear anisotropic material properties whilst
undergoing large deformations [64]. The model tends to resist shear by two mechanisms,
i.e., reorientation and stretching. The model becomes stiffer with increasing expansion pres-
sures as a consequence of the nonlinear properties of collagen fibres. The shear modulus
was slightly higher than Young’s Modulus [64]. However, based on the assumptions and
the accuracy of the model in trying to replicate actual human lung parenchyma, the com-
puted values are deemed appropriate by Denny and Schroter [64]. Poisson’s Ratio is found
to vary over a range of values rather than being one constant value. This result is due to the
anisotropic behaviour of the parenchymal model [64]. The values of the elastic constants
are slightly lower than the results presented in [67]. Denny and Schroter [64] suggest that
this is because the elastic constants in [67] are determined from indentation tests, which
may have overestimated the values of these constants. Denny and Schroter [64] explain that
Young’s Modulus does not completely influence the uniform expansion and contraction of
lung parenchyma. Similarly, the main determinant of nonuniform parenchymal distortion is
not exclusively reliant on only the shear modulus [64]. Instead, all the elastic constants play
a role in governing these factors.

Denny and Schroter [64] established the following general elastic theory for modelling
the lung. Moreover, it provides a methodical description of the numerous elastic variables
and their relation to each other [64]. Most importantly, this theory presents a consistent
description for modelling lung parenchyma under the assumption of large nonuniform de-
formations [64]. The stress σ and the strain ε of lung parenchyma under distortion are
decomposed into their respective mean (m) and deviatoric (d) segments [64]. That is, σm

and σd correspond to the mean and deviatoric parts of the stress σ , respectively. Similarly,
εm and εd correspond to the mean and deviatoric parts of the strain ε, respectively. Denny
and Schroter [64] express the mean stress σm and mean strain εm, by

σm = 1

3

(
σxx + σyy + σzz

)
, εm = 1

3

(
εxx + εyy + εzz

)
. (4.30)

Consider an isotropic body undergoing small displacement gradients such that the stress-
strain relationship is described by [64],

σm = 3Kεm, σd = 3Gεd. (4.31)

Note that the bulk modulus K , and the shear modulus μ, correspond to the Young’s modulus
E and Poisson’s ratio v, by the following equations:

K = E

3(1 − 2v)
, μ = E

2(1 + v)
. (4.32)
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Therefore, for any isotropic homogeneous material, the bulk modulus K defines the uniform
expansion of the material and the shear modulus μ describes the nonuniform distortion of
the material [64]. Denny and Schroter [64] state that two independent material constants
can be used to express small displacement gradient material characteristics. Nevertheless, in
order to model the nonuniform deformations of the lung, the assumption of small displace-
ment gradients become invalid [64]. The lung experiences large nonuniform deformations.
Further, lung parenchyma can no longer be considered an isotropic homogeneous material.
Instead, lung parenchyma is actually a nonhomogeneous anisotropic material [64]. However,
modelling the stress-strain relationship of a nonhomogeneous anisotropic lung is complex
and difficult [64]. Suppose for large deformations, there exists three orthogonal planes of
elastic symmetry such that orthogonal anisotropy takes place. Thus, the stress-strain rela-
tionship can be obtained by the following components of strain:

εx = 1

Ex

σx − vyx

Ey

σy − vzx

Ez

σz, εy = vxy

Ex

σx − 1
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σz, (4.33)
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μyz

σyz, (4.34)

εxz = 1

μxz

σxz, εxy = 1

μxy

σxy. (4.35)

Note that only nine out of the twelve elastic moduli from the above equations are inde-
pendent [64]. This is because Exvyx = Eyvxy , Eyvzy = Ezvyz, and Ezvxz = Exvzx . More-
over, the elastic moduli are not constants, but are dependent variables of the response of
the nonuniform deformation and the magnitude of uniform inflation pressure [64]. The elas-
tic variables are further said to be dependent on where they are situated within the lung
parenchyma, since the deformation is assumed to be localised [64]. Equations (4.33)–(4.35)
represent the stress-strain equations for the general case of lung anisotropic behaviour.
Denny and Schroter [64] simplify the case of lung anisotropy by considering transverse
anisotropy, where the z-axis is taken as the direction in which the lung parenchyma is
stretched from its reference configuration of uniform expansion, perpendicular to the xy-
plane of isotropy. Thus, equations (4.33)–(4.35) are expressed as

εx = 1

Ex

(
σx − vxyσy

) − vxz

Ez

σz, εy = 1
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) − 1

Ez

σz, εxy = 1

μxz

σyz, (4.37)

εxz = 1

μxz

σxz, εxy = 1

μxy

σxy. (4.38)

The full derivation of this three-dimensional lung elastic theory is given in [64].
Majority of studies on the elasticity of the lung, including the ones mentioned in this

review, derive constitutive equations where the stress σ is explicitly defined as a function
of the strain E. Freed and Einstein [8] proposed an alternate approach for analysing the
elastic response of lung parenchyma. They apply the implicit theory of elasticity, developed
by Rajagopal [77] from a thermodynamics standpoint. The stress is expressed as an implicit
function of the strain, h(σ,E) = 0. Note that h is the response function. Implicit elastic
theory incorporates several features that are absent from the classical theory of elasticity.
For example, implicit elastic materials can maintain limiting states of either the stress or
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the strain, although it is more for the latter. With regards to biological tissue, they exhibit a
limiting strain [8]. For the lung in particular, the limiting strain is physiologically expressed
in terms of transpulmonary pressure. However, this may also be defined with respect to a
limiting volume [8].

A hypo-elastic model for lung parenchyma where the stress rate is defined as an explicit
homogeneous function of the strain rate is proposed in a previous paper by Freed and Ein-
stein [78]. That is, dσ = h(E) dE. Freed and Einstein’s [78] hypo-elastic theory determines
a linear relationship between the pressure P and the bulk modulus K . This finding improves
on the classical theory of elasticity where the bulk modulus K = constant . However, from
the experimental data gathered by Freed and Einstein [78], the lung material should assume
a more nonlinear relationship between the pressure P and the bulk modulus K . As a result,
this model did not accurately describe the actual behaviour of lung parenchyma. Therefore,
Freed and Einstein [8] used implicit constitutive theory to address the need for more accu-
rate and efficient lung parenchymal models. This improved hypo-elastic model expresses the
stress rate as an implicit function of the strain rate, dσ = h(σ,E) dE. Freed and Einstein [8]
develop an implicit framework for strain-energy which displays similar characteristics to the
exponential model for biological tissues given in [54]. To support this novel implicit frame-
work, a unique definition of the Lagrangian strain rate is introduced. Contrary to the classic
definition of the Lagrangian strain rate, this new definition separates the Lagrangian strain
rate into its respective volumetric and deviatoric terms [8]. Freed and Einstein [8] consider
this separation to be mathematically and physically justified, as it enables the strain-energy
function to be specified in terms of a pair of bulk and shear strain-energy functions for
the volumetric strain rate and deviatoric strain rate, respectively. In turn, this allows one to
individually distinguish between the bulk modulus and the elastic moduli [8]. The elastic
strain-energy function W with respect to the bulk modulus is given by

W (ln�,P ) = 1

K

( α

ln2

)2
2− P

α , (4.39)

where K is the bulk modulus, � is the change in pressure, α is the doubling interval of
pressure P [8]. The parameters K and α contain units of stress, therefore W also has units
of stress [8]. Thus, the respective constitutive equations for the volumetric and deviatoric
contributions are expressed by

EV = −2P, ED = 2μ + βP, (4.40)

where P is the pressure, μ the shear modulus, and β is Fung’s parameter, a dimensionless
constant fundamental for loading and unloading [8, 46]. Combining the two expressions in
(4.40) with E|λ=1 = EV + ED , yields

E|λ=1 = 2μ + (β − 2)P . (4.41)

Equation (4.41) defines the elastic response of lung parenchyma [8]. Note, (4.41) is inde-
pendent of the tangent bulk modulus and dependent on pressure. The elastic response of
the parenchyma is compared against the experimental data gathered by Lai-Fook et al. [67],
corresponding well with the data. In particular, the bulk modulus K exhibits a nonlinear
response, whilst the remaining elastic moduli are linear. This highlights an improvement in
the accuracy of their model, when compared to the hypo-elastic model [78] in describing
the actual elastic response of lung parenchyma. Moreover, the resulting models have four
parameters for describing the overall elastic behaviour of lung parenchyma. That is, two for
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the bulk response and two for the deviatoric response. This satisfies the condition made by
[64], i.e., there must be more than two elastic moduli to model the large nonuniform defor-
mations of lung parenchyma. These models are also designed in such a way that they may
be implemented and analysed with computational fluid-structure interactions in future stud-
ies [8]. Freed and Einstein [8] state that the lung is in fact not an anisotropic material, but
rather the pressure dependence of the lung exemplifies an anisotropic response. The lung
is considered to be an isotropic hypo-elastic material. Lastly, Freed and Einstein [8] state
that understanding the underlying mechanisms and the contribution of this nonlinear elas-
tic behaviour to the overall lung parenchymal response can help in establishing a definitive
viscoelastic theory for lung parenchyma in future. Recall that lung parenchyma is not a per-
fect elastic material. Like all soft biological tissue, it also exhibits identical properties of a
viscoelastic material [8, 54, 55].

Predicting the complex respiratory patterns of the lung can be advantageous in manag-
ing respiratory motion for physiological therapies and treatments for pathologies such as
lung cancer. Eom et al. [79] developed a patient-specific, physiologically applicable res-
piratory motion model that is able to predict lung tumor motion during cycles of normal
breathing. Modern day computational techniques for analysing the geometry of the lung
often utilise four-dimensional (4-D) computed tomography (CT) data. However, this data
has a tendency to overlook information relating to mesh topology due to excessive surface
smoothing [79]. Consequently, the authors make use of an intermediate nonuniform rational
basis spline surface representation to evade multiple geometric smoothing procedures used
in computational mesh preparations. This is done by relying on measured chest pressure-
volume relationships to simulate pressure forces acting on the surface of the model with
respect to a particular lung volume [79]. From experimental observations, a hyperelastic
model is developed and implemented to model the lung tissue material. This experimen-
tal hyperelastic model also accounts for the pleural sliding that takes place inside the rib
cage [79]. Eom et al. [79] conclude that the prediction capability of the pressure-volume
curve, induced by a nonlinear finite element method, is consistent over the entire cycle of
respiration. Furthermore, the biomechanical parameters relating to the model are physiolog-
ically measurable [79]. This study can be further applied actual human patients, as well as
neighbouring organs affected by respiratory motion and disease.

If we consider the case where lung deformation is the result of cyclic inflation of tidal
volume, the strain is completely dynamic [80]. The use of positive end-expiratory pressure
(PEEP) allows the lungs to be kept inflated above its functional residual capacity. Therefore,
the lung is exposed to further static strain. Protti et al. [80] explain that at any end-inspiration,
lung volume can be determined through several combinations of static and dynamic strains
resulting in a global strain. Thus, if the lung is inflated to its maximum physiological limit, it
will always fail regardless of whether the strain is static or dynamic. However, according to
Protti et al. [80], there is data which suggests that for a given global deformation, the static
strains are less significant than the dynamic strains. Protti et al. [80] provides clarification
on whether different patterns of static and dynamic strains lead to one singular global strain,
which in turn produces lung edema. They determined that small dynamic strains and large
static strains led to delayed tissue failure, indicating that PEEP tends to protect healthy lungs.
However, the extent of this protection is unknown. Moreover, when the lungs are ventilated
to their total lung capacity, large static strains are indicative of pulmonary edema [80].

Computational modelling examinations on lung parenchyma illustrate how the geometry
of the alveoli and nonuniform stiffness are responsible for deriving the sequence of alveo-
lar expansion [75]. However, Perlman and Bhattacharya [81] identified a lack of data with
regards to the direct classification of alveolar segmental distension. They applied real-time
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fluorescence imaging with optical sectioning microscopy (RFI-OSM) to an isolated perfused
rat lung to determine the micromechanics of alveolar perimeter distension. They hypothesise
that alveoli undergo nonuniform expansion. Perlman and Bhattacharya [81] observe much
greater distortion due to inflation of type-I epithelial cells when compared to type-II cells.
Therefore, when the lung is inflated to near maximum, alveolar expansion exhibits a nonuni-
form response. Possible reasons for this nonuniform response include heterogeneous septal
stiffness or heterogeneous levels of force bearing by the septa, however, an exact cause was
not stated in this paper [81]. Perlman and Bhattacharya [81] suggest that the expansion be-
haviour of a single alveoli is an underlying mechanism of the hysteresis of the whole lung.
The observed hysteresis in this paper during alveolar expansion validates previous reports
where acinar expansion occurs with hysteresis [81, 82]. Furthermore, they agree with the
data from Oldmixon and Hoppin [83], where alveolar recruitment has no affect in physio-
logical lung inflation [81]. Mead et al. [31] determined that subpleural and internal alveoli
are subject to similar pressures, whilst Gil et al. [84] showed there is no difference in the
alveolar surface area-volume relation between subpleural and parenchymal alveoli. These
two findings support the theory that the micromechanics of lung expansion is similar be-
tween subpleural and parenchymal alveoli [81]. Perlman and Bhattacharya [81] also found
evidence of distention heterogeneity between elements and within within the network. They
suggest that these heterogeneities are dependent on the manner in which alveolar expansion
activates alveolar secretion. The authors conclude that their finding is indicative of a novel
aspect of alveolar micromechanics, where the alveolar perimeter possess considerably dif-
ferent mechanical properties at different locations. These mechanical differences result in
at least two unforeseen alveolar predicaments: (i) nonuniform alveolar expansion, and (ii)
differences with the degree to which major epithelial cell types in the alveolar perimeter
experience distension [81]. The physiological impact of (i) and (ii) are unclear but impor-
tant to consider. They suggest that uneven alveolar expansion may affect septal and vascular
mechanics, while the differences in the micromechanical properties could influence the reg-
ulation of surfactant [81].

Bates [57] addresses the confusion around why stress relaxation in lung parenchymal tis-
sue follows a power-law distribution, rather than any other monotonically decreasing func-
tion of time. In the literature, it is not clear why this is the case or why a power-law form is
preferential in certain complex systems. The common notion amongst theories for the origin
of power-laws is sequentiality [57, 85]. That is, the presence of a particular stochastic event
may be attributed to a sequence of former necessary events. Each past event is associated
with its own likelihood of occurring once the chance presents itself. Thereafter, it has to
reach completion before the next event can occur [57]. Therefore, sequentiality could po-
tentially be fundamental in modelling power-law stress adaptation. Bates [57] developed a
model of pulmonary lung parenchymal tissue mechanics on the basis of sequential recruit-
ment of Maxwell components. According to Bates [57], all Maxwell elements bear a sum of
the overall stress across the model at all times. If sequentiality is the primary component to
power-law stress behaviour, then simulating power-law stress adaptation requires a model
whereby its elements influence the system dynamics sequentially rather than simultaneously
[57]. The model developed in this study is an advancement over general models based on
the Maxwell bodies for two reason: (i) It exhibits power-law stress relaxation without the
need for a specific distribution of constitutive properties amongst its components (identical
components), and (ii) the model already displays quasi-linear viscoelastic behaviour. This
model implies that the stress adaption in lung tissue can occur via a sequence of discrete
yielding events which result in local stresses being distributed from one stress-bearing re-
gion to another. This finding is similar to the data provided in [31, 73, 75]. An advantage of
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Maxwell models is that they are useful for describing empirical data, although, they fail to
reflect several key aspects of the underlying mechanics which express the progressive relief
of stress within lung parenchymal tissue [57].

Al-Mayah et al. [86] examined the influence of the bronchial tree on the accuracy of
biomechanical specific image registration of human lungs. The literature often consists of
various finite element models which have been established to study the effects of lung weight
[62, 64], material properties and boundary conditions [87]. The lung is considered to display
homogeneous material behaviour in these investigations. Lung parenchyma comprises of nu-
merous branching tubes within the bronchial tree that have distinct material properties when
compared to other tissues [86]. The bronchial tree is the main branch of the lung, therefore,
its biomechanical features and geometrical shape should affect the deformation of the lung.
Tai and Lee [70] conducted an experiment on the effects of heterogeneous and isotropic
behaviour with respect to lung deformation. They included tissue samples from various ar-
eas of the lung, particularly the large airway situated at the centre of the parenchyma [70].
Tai and Lee [70] determined that the mean deformation is not affected by the large airway.
In the study by Al-Mayah et al. [86], the complete lung is under investigation in order to
obtain a more accurate model that is able to simulate the lung’s realistic geometry, material
properties, and it’s interconnecting behavioural response with neighbouring tissue. The lung
parenchyma is modelled using hyperelastic material properties initially derived from the ex-
perimental data of Zeng et al. [71]. The assumption is made whereby the lungs are allowed
to slide relative to the chest cavity via frictionless contact surface [86]. Al-Mayah et al. [86]
state that a frictionless surface is effective for improving the accuracy of the final results
as it simulates the realistic lubrication of pleural liquid. Three-dimensional finite element
models are developed using four-dimensional computed tomography (4DCT) image data.
The results of this study show that the bronchial tree has no meaningful influence on the
global deformation of the lung. Al-Mayah et al. [86] suggest that this is probably due to the
overall response of the lung parenchyma to the applied deformation. This effect is described
by its ability to incorporate the applied displacement within a finite distance from the di-
aphragm, where the largest displacement occurs [86]. Mead [88] describes the mechanics of
expanding airways inside the lungs as being highly dependent on geometry and not exclu-
sively dependent on the elastic properties of the lung structure. Thus, the bronchial material
properties have minimal influence on the lung mechanical properties [86]. Al-Mayah et al.
[86] conclude that the bronchial tree has no global effect on model accuracy, regardless of
the modulus of elasticity used for the bronchial tree. Note, the modulus of elasticity does
influence the deformation locally, however it’s global presence is small enough to be con-
sidered negligible. Lastly, the overall estimates of homogeneity in the lungs is sufficient for
deformable image registration techniques, although, a more concise local examination at
smaller scales is needed [86]. This is due to the fact that heterogeneity could be a significant
factor at the local level. That is, modelling the response of the lung as a homogeneous or
heterogeneous entity depends on the scale of deformation [86].

The structural deformation of an object can be described by the regional distribution of
a strain or stress tensor under classical mechanics [89]. Strains have the capability of de-
tailing the entire deformation of a material, however, the utilisation of strain components
or principal strains to describe the behaviour of lung deformation is said to not be the best
approach [89]. This is because strain components are not physiologically intuitive with re-
gards to lung deformation. Furthermore, the lungs are not subject to a definitive coordinate
system, making interpretation of the individual strain components difficult. Amelon et al.
[89] explain that regional lung deformation can best be described through indices capable
of reflecting the independent aspects of lung deformation. Three indices for lung deforma-
tion are proposed in this study. These indices are determined from the displacement field
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and uniquely represent the change in volume and the subsequent preferred orientation that
occur with respect to volume change [89]. The first index of lung deformation is taken as
the Jacobian (J ), which gives a measure of volume change. This is expressed in terms of the
stretch ratios λ [89]:

J = λ1λ2λ3, (4.42)

where J is the ratio between the current volume and the reference volume of a particular
region and varies from zero to infinity. Note: J = 1 implies no change in volume, J < 1
implies a reduction in volume or net contraction, and J > 1 implies an increase in volume
or net expansion. The second and third indices are derived from a shape-change spectrum
graph, where the origin relates to areas that have experienced perfectly isotropic volume
change (λ1 = λ2 = λ3). The x and y axes are independent of changes in volume. Amelon
et al. [89] state that the further a point is from the origin, the deformation is more anisotropic.
Therefore, the distance between a data point and the origin represents the magnitude of
anisotropy and is defined as the anisotropic deformation index (ADI) [89]:

ADI =
√(

λ1 − λ2

λ2

)2

+
(

λ2 − λ3

λ3

)2

, (4.43)

where λ represents the stretch ratios. ADI ranges from 0 − ∞, where 0 implies perfectly
isotropic deformation. Additionally, the degree and behaviour of anisotropic deformation is
reflected by the angular position of the spectrum graph. That is, points closer to the y-axis
describe stretching in one direction (regions where a cube deforms into rod-like cuboid),
while points closer to the x-axis describe stretching in two directions (regions where a cube
transforms into a slab-like cuboid) [89]. Thus, the angular position is reflective of where a
particular region is characterised within the spectrum of shapes between these two bound-
aries. The angular position of a data point, normalised between 0 − 1, describes the be-
haviour of anisotropy [89]. This is termed the slab-rod index (SRI) [89]:

SRI = arctan (λ3 (λ1 − λ2) /λ2 (λ2 − λ3))

π/2
. (4.44)

J , ADI , and SRI are indices with independent physical interpretations capable of describ-
ing both the change in volume and directional preferences to it [89]. Amelon et al. [89]
elevated the change in volume within the inferior-dorsal region. The ADI was increased in
this region due to its relative position to the diaphragm and due to lobar fissures whilst slid-
ing. Vessel areas of the lung experienced significant rod-like deformation compared to the
rest of the lung, indicating a high SRI [89]. Amelon et al. [89] suggest that these indices can
enable future research on regional lung deformation, both experimentally and computation-
ally, to determine efficient physiological descriptions of lung displacement fields through
image processing or numerical analysis.

Roan and Waters [90] explain that image processing capabilities are greatly hindered by
the limitations and complex features of lung mechanics. Consequently, this limits the un-
derstanding of the micromechanics of an individual alveolus. Investigating the mechanical
environment of the alveolus usually accounts for the properties at the level of the entire
organ (macroscopic) or at the level of the alveolus (microscopic). The microscopic proper-
ties of the lung are very important as they influence the overall macroscopic behaviour of
the lung. Therefore, the lung must be considered as a prestressed interconnected network
whereby its global response to a mechanical force is reliant on both the properties of its
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network components and how those components influence their neighbouring counterparts
[31, 90]. Thus, the mechanical properties, composition, geometry, mechanical forces, and
boundary conditions are all crucial features which can directly or indirectly impact the me-
chanical behaviour of the alveolus [90]. The alveolar strain field has always been challenging
to describe due to its complex structure and the limited imaging techniques that are capa-
ble of measuring the deformation as a function of volume at the alveolar scale [90]. Roan
and Waters [90] describe the extent of mechanical deformation in the alveolus and how it
affects it through controlling surfactant release, permeability, inflammation, and cell injury
and repair. Lung injury and disease are considered to arise from substantial changes to the
alveolar mechanical network, directly affecting the cells through changes in the strain field
[90]. However, there still exists many gaps in the understanding of the alveolar network
due to the complexities of lung parenchymal tissue. Moreover, the use of computational
mechanics to attempt to characterise lung function in health and disease is important in de-
termining certain features that cannot be expressed through imaging methods. However, the
authors explain that these models cannot describe, to full extent, the complex physiological
mechanical instances that take place within the lung [90]. Accordingly, these issues can only
be addressed by determining the relevant mechanical properties, boundary conditions, and
mechanical loads. Roan and Waters [90] disclose that complicated experimental, computa-
tional, and theoretical techniques are which also combine biology, chemistry, mechanics,
and image processing techniques are required to fully understand the alveolar mechanical
network and its influence on neighbouring alveolar cells.

Suki and Bates [58] delve deeper into the complexities of lung parenchymal tissue. They
explain how this complexity is a result of the mechanical behaviour of lung tissue which
reflects the properties of its components, however, it displays contrasting differences to be-
haviour of its individual microscopic elements. Therefore, understanding the overall me-
chanical tissue response is fundamental because of the way in which the various compo-
nents are arranged and how they interact with respect to one another [58]. Similarly, Suki
and Bates [58] agree that lung tissue mechanical properties must be understood as one singu-
lar interconnected system [31, 90], as opposed to understanding these properties on the basis
of individual components independent of each other. They suggest that a systems method-
ology is required to describe how the macroscopic properties of lung tissue emerge from
the behaviour of its associated microscopic properties. This must involve mathematical and
computational modelling for the various relationships and nonlinear responses [58]. The
mechanical properties of lung parenchyma are elastic, dissipative, and highly nonlinear.
The bulk elastic response of parenchymal tissue is described by the relationship between
inflation pressure and volume [1]. However, lung tissue is viscoelastic, implying that the
observed elastic properties are actually dependent on the change in volume over a period
of time. Additionally, it is not possible to determine perfectly static elastic properties as
this requires changing volume at an infinitesimal rate [58]. Therefore, it is more efficient
to measure the quasi-static properties that tend to occur during cyclic rates, although, these
are slower than normal rates of respiration [58]. Thus, the quasi-static compliance of the
lung (C) is defined by the ratio of change in volume to the change in pressure under these
conditions. The microscopic elements (collagen and elastin) are interconnected within the
complex tissue network, accordingly, the quasi-static compliance is not representative of the
properties of any fundamental components. That is, the bulk pressure-volume behaviour of
the parenchyma does not reflect the stress-strain behaviour of either elastin or collagen [58].
Instead, it exemplifies the manner in which collagen gradually overtakes the stress-bearing
function from elastin as volume increases. This emergent behaviour is known as percolation
[58], as network strain increases there is an increase in the number of network constituents
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that distribute to the stiffer portions of the tissue. Percolation provides a general mecha-
nism whereby changes at the microscopic scale can largely impact the overall response at
the macroscopic level [58]. Suki and Bates [58] note that this is not the only mechanism
responsible for this effect. Percolation can be useful toward understanding how patholog-
ical alterations at the microscopic level and macroscopic level are connected, however, it
is important to first determine whether percolation actually has any medical significance.
On the other hand, this highlights the important role of lung imaging techniques as they
have the potential to discover early stages of parenchymal tissue failure using the concept of
percolation [58].

Suki and Bates [58] also touch on the power-law behaviour of lung parenchyma. They
explain that power-law behaviour should not correspond to a single element to reflect any
emergent responses. Furthermore, they argue that a complete understanding of power-law
theory cannot be based on standard Maxwell (spring and dashpot) models described by
ordinary differential equations. Instead, it is more appropriate to derive partial differential
equations describing these continuous parameter models [58]. The authors also suggest that
fractional calculus may be useful due to its natural ability to support the behaviour of power-
law phenomena [58, 91]. Additionally, lung tissue is not only dynamic, but highly nonlinear.
Suki and Bates [58] highlight that the nonlinear and dynamic properties are separable to
an appropriate approximation, implying quasi-linear viscoelasticity. This suggests that the
relaxation of stress in lung tissue following sudden increments of strain, x, is expressed by
[58]:

S(t) = A(x)t−k, (4.45)

where S is the stress dependent on time t , A is a constant, and k is a positive exponent
less than one. Equation (4.45) maintains this form regardless of where the strain values are
taken along the nonlinear static stress-strain [58]. That is, all nonlinear behaviour in (4.45)
is represented by A(x), while the time-dependent segment (tk) remains linear [58]. The
dynamical mechanical behaviour exhibited by lung tissue is considered to be an emergent
phenomenon that requires further evaluation with respect to the underlying behaviour of its
microscopic elements [58]. Lastly, Suki and Bates [58] provide an explanation as to why
lung tissue is so complicated. They state that lung tissue has to be a complex material as
it has to satisfy a large number of biological and mechanical processes. Furthermore, the
underlying mechanisms of this complex tissue network, such as sequential fibre recruitment
and percolation, result in subsequent emergent behaviours disregarding any crucial details
of individual parenchymal tissue elements [58]. Gaining a comprehensive understanding of
how these emergent responses arise and function is highlighted as a possible avenue for
future research in lung mechanics [58].

It is globally accepted that the elastic properties of soft tissues within the lung are in fact
heterogeneous and vary depending on each person. Although, current finite element models
are described with regards to the assumption that lung parenchymal tissue is homogeneous
[62, 86, 87]. This is primarily due to the fact that the elastic material constants of human
lung parenchyma are difficult to measure. Furthermore, the literature does not provide ac-
curate numerical approximations of these constants. Li et al. [92] use a deformable image
registration (DIR) modelling approach to derive a more physically accurate assumption of
the lung under heterogeneity. Deformable image registration is used to establish a spatial
correlation between time-varying volumetric images, under four-dimensional computed to-
mography, in order to produce efficient ventilation images [92]. The information reflected
by deformable image registration also describes complex respiratory motion and physio-
logical details that modern radiotherapy techniques can utilise to treat lung tumors [92].
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The objective of their study is to determine how efficient the deformable image registration
method can overcome two fundamental challenges of previous biomechanical lung defor-
mation models, the need for accurate boundary conditions and the lack of information on
the elastic distribution within the lung. The authors assume lung tissue to be heterogeneous.
The proposed deformable image registration technique combines a varying intensity flow
block-matching algorithm along with a finite element model for lung deformation [92]. The
primary properties of an elastic material are described through Young’s modulus and Pois-
son’s ratio. Therefore, Li et al. [92] assume Poisson’s ratio to be constant during lung defor-
mation, and Young’s modulus is taken to vary spatially in order to characterise the unknown
elasticity distribution. Specifically, lung deformation is considered to be a stress-strain prob-
lem, whereby the associated boundary conditions are determined from the algorithm and the
element-specific Young’s modulus distribution is estimated by solving an optimisation prob-
lem via the quasi-Newton method [92]. The results show that the algorithm provided vastly
improved accuracy when describing lung deformation. This model is capable of simulating
patient-specific and position-accurate lung deformation by spatially varying estimates of
Young’s modulus [92]. It further improves on the registration accuracy when compared to a
standard uniform model, implying that the model in [92] is more applicable for characteris-
ing lung deformation. Li et al. [92] were not able to determine whether the sizes of different
tumors play a role in affecting the accuracy of image registration. However, they hypothe-
sise that large tumors have more influence on the elasticity of the lungs when compared to
smaller abnormalities. Recall that Li et al. [92] assume Poisson’s ratio is constant, however,
lung tissue naturally comprises of different structures each associated with unique values of
Poisson’s ratio. Therefore, one can attempt to include this behaviour into the deformation
model, which will have an effect on accuracy of image registration. Lastly, the significance
of estimating tissue elasticity for patient-specific and position-accurate cases is important in
clinical application. For example, Young’s modulus is advantageous for detecting the area
or region of a lung tumor since tissue abnormalities have different elastic properties when
compared to normal healthy lung tissue [92].

Mechanical models employing techniques involving spring and dashpot components
have been used to reflect the parenchymal tissue viscoelastic properties [57]. The param-
eters of these components can be estimated by least squares fitting the temporal response
of the material’s Young’s modulus or shear modulus to the approximations of the various
mechanical models [93]. Dai et al. [93] measure the stress relaxation on excised lungs dur-
ing inflation and apply these measurements to three models, namely, the standard linear
solid model (SLS), the generalised Maxwell model (GM), and the fractional standard linear
solid model (FSLS). The SLS model is the simplest model capable of estimating the stress
relaxation and creep with a parallel sequence of a Maxwell model and a spring [94]. The
temporal response to a step strain described by this model is expressed by a decaying expo-
nential function [93]. However, the SLS model is limited in its ability to provide an accurate
representation of dynamic phenomena over numerous time periods and within expansive
material content such as biological tissue [94]. This limitation can be overcome, although,
often at the expense of obscuring the physical significance of viscoelasticity [93]. The FSLS
model is based on the theory of fractional order derivatives extended to biological tissue vis-
coelasticity [94]. Fractional order derivatives explore the behaviour of materials that seem to
coexist between pure elastic and viscous material [93]. The temporal and frequency response
follow power-law functions [58, 91]. These power-law functions seem to occur naturally in
soft tissue viscoelasticity. Moreover, they have shown potential to introduce new disease and
medical treatment specific parameters, as well as being effective in describing underlying
tissue alterations associated with pathology [58, 93]. In this study by Dai et al. [93], lung
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viscoelasticity is characterised by determining lung stress relaxation behaviour using the
above mentioned models. Note that the relaxed Young’s modulus was measured separately
via an indentation test [93]. They determined that the FSLS model provides the best fit from
all the models. It characterises stress relaxation phenomena including an initial steep decay
and the corresponding slow asymptotic decay toward stability [93]. This finding indicates
that stress relaxation simulates a power-law decay rather than an exponential decay [93].
Quantitatively, this is expressed by the equation:

G(t) = at−β + b, (4.46)

where G is the stress dependent on time t , a and b are constants, and β ≈ 0.07 is a positive
experimental parameter less than one [58, 93]. The GM model identified one parameter in
a more efficient manner than the FSLS model, although, the FSLS model still provided the
best overall description of stress relaxation in lung parenchymal tissue [93]. The authors
conclude that the fractional order viscoelastic model is superior due to its ability to reflect
a power-law stress decay. In this study, the reported measurements were observed at only
a single transpulmonary pressure due to time constraints and the number of airways that
were examined [93]. Future studies could examine the effects of different airway pressures
and attempt to identify how airway pressure influences the stress relaxation behaviour of
lung parenchyma. Additionally, Dai et al. [93] pointed out that indentation tests and stress
relaxation tests have only been applied with regards to static transpulmonary pressure and
small parenchymal deformation. Another potential avenue for future research includes in-
vestigating the dynamic viscoelastic behaviour of the lung during breathing and provide a
more descriptive understanding of breathing mechanics which could improve the current
understanding of lung pathology and disease [93].

The lung parenchyma is often assumed to exhibit an isotropic response [8, 33, 40, 46, 66],
however, verification of this assumption is lacking within the literature [95]. Comparative
methods usually provide some insight into the isotropy of an elastic material, although,
they fail to compare the entire stress-strain relationship at different directions of loading
to quantitative histological data [95]. Weed et al. [95] evaluated lung parenchymal tissue
under compression attributed to three experimental groups comprising of tissue specimens
oriented against three anatomical planes. Each group is subject to uniaxial compression and
correspond to a particular anatomical plane. The main objective of this study is to charac-
terise whether the assumption of lung isotropic behaviour is valid in lung mechanics [95].
Weed et al. [95] present data which strongly supports the concept of lung parenchyma be-
ing an isotropic material. The methods and techniques documented in this paper establish
an effective system for assessing the isotropic response for other biological tissues [95].
This verification of isotropy enables further analysis of more complex properties such as
viscoelasticity, strain-rate dependency, and stress-rate dependency.

During respiration, the global deformation of lung tissue is uniform. However, the in-
ternal strains expressed by the lung during respiration are locally nonuniform as a result
of its interconnected network [58, 81]. Subsequently, this causes local binding strains that
increase the stiffness in the parenchyma [64, 75, 81]. Andrikakou et al. [96] explain that dur-
ing any external mechanical loading, the response of the tissue structure is nonuniform. This
phenomenon correlates to the micromechanics of the lung parenchymal structure, the lung
constituents, the associated pre-strain exhibited by the parenchyma and the rate of strain
differentials apparent during deformation [96]. Andrikakou et al. [96] identify the strain-
rate sensitivity of lung parenchymal tissue under quasi-static tension and compression. The
objective of this study is to characterise the bulk deformation response. Compression and
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tension experiments were performed at three different rates of strain, i.e., 0.25, 2.5, and
25 min−1. A nonlinear viscoelastic model is used to describe the tissue behaviour using
experimental data. They assume a separable time-dependent and strain-dependent material
response, whereby the relaxation stress with respect to a step-strain loading history is ex-
pressed by:

σ(ε, t) = σ0(ε)g(t), (4.47)

where the functions g(t) and σ0(ε) are dependent on time and strain, respectively [96, 97].
The time function obtains its form through the Prony series [97], such that:

g(t) = c5 +
4∑

i=1

ci exp(−t/φi ), (4.48)

where t and φi represent time and the time constants, respectively. Further, ci is the dimen-
sionless constants associated with c5 through

∑4
i=1 ci + c5 = 1. Therefore, for an arbitrary

strain history, the stress is measured via the Leaderman form of the superposition integral
[98], given by:

σ(ε, t) =
∫ t

0
g(t − s)

dσ0(ε)

ds
ds, (4.49)

such that σ0(ε) defines the instantaneous stress at strain ε. Substituting (4.48) into (4.49), and
solving the subsequent integral via finite time increments leads to the following expression:

σ (tn+1) = c5σ0 (tn+1) +
N∑

i=1

(
exp−�t/φi σi (tn) + ci

1 − e−�t/φi

�t/φi

[σ0 (tn+1) − σ0 (tn)]

)
.

(4.50)
On the basis that the stress at the previous time increment (tn) is known, then (4.50) can
characterise the stress at any time (tn+1) [96]. The full derivation of this model can be found
in [96] and [97]. Suki and Bates [58] previously stated that lung parenchymal tissue exhibits
both elastic and dissipative mechanical properties, along with highly nonlinear phenomena.
The compression and tension tests at the different rates of strain coincided with a nonlinear
elastic and viscoelastic mechanical behaviour for the rat lung tissue [96]. Moreover, a highly
nonlinear stress-strain relationship was observed for the tissue. Andrikakou et al. [96] ac-
curately characterised the parenchymal tissue behaviour using a hyper-viscoelastic model,
commonly utilised in soft tissue mechanical studies.

Al-Mayah et al. [99] presented evidence highlighting that a simple linear material model
is satisfactory for describing lung deformation as an alternative to a hyper-elastic model.
This particular study determined that if a large diaphragm motion occurs, the deformation
is concentrated towards the lower lobes of the lung. This finding is similar to the observa-
tion made by Maksym et al. [75]. Additionally, they also determined that this concentrated
deformation dissipates rapidly within a short distance from the diaphragm-lung interface.
Al-Mayah et al. [99] conclude that when a large deformation is applied to the lung tissue,
most of the lung actually experiences minimal deformation. This implies that linear isotropic
material properties can provide results analogous to nonlinear anisotropic material proper-
ties [99].

There have been numerous dynamic lung tissue studies [11, 87, 100], however, a sys-
tematic validation of these experiment’s modelling results from patient image data has not
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been carried out. This is addressed by Seyfi et al. [101] by validating human lung defor-
mation estimates against the results of image registration. Image registration can accurately
represent lung motion based on four-dimensional computed tomography imaging [86, 87].
This study makes use of geometrical and spatially-dependent elastic properties derived from
two human patients [101]. Lung tissue is assumed to be a linear isotropic elastic material
in this study [101], based on the findings in [99]. Their results show that this assumption is
satisfactory for the majority of the lung, except near the diaphragm [101]. Seyfi et al. [101]
explain that this assumption acts as a compromise between complexity and computational
cost. Furthermore, the effects of any errors are a direct consequence of this assumption,
which are already accounted for due to the overbearing influence of diaphragm pressure
[101]. The findings reported in this study indicate that the absolute displacement tends to
increase from the interior surface to the exterior surface, also from the top to the bottom of
the lung. That is, the distribution of intrapleural pressure reduces towards the top and interior
parts of the lung lobe [101]. This is a consistent observation with regards to the distribution
of the intrapleural pressure, which originates from the rib-cage and diaphragm [101]. Re-
gions close to the rib-cage and heart exhibited relatively larger displacement errors than the
interior portion of the lung, approximately less than or equal to 3 mm [101]. Errors of this
magnitude are not a major issue and are considered to be clinically acceptable. However,
these discrepancies imply that the contact between the lung and the chest wall, including
the motion of the heart, should be considerable areas of further examination for potential
model accuracy improvement in lung deformation research. Seyfi et al. [101] also observed
a significant improvement in the approximated displacement values when considering the
heterogeneous behaviour of lung parenchyma, however, they state this does not correlate to
the isotropic homogeneous linear behaviour of the whole lung.

Advancements in the field of image processing and registration have made it possible
to examine regional lung deformation through noninvasive techniques. These methods have
the ability to describe the complex spatial patterns that occur during volumetric deforma-
tion in healthy lungs [68]. Additionally, they can provide information about whether these
deformations are patient-specific and whether the deformation is isotropic or anisotropic
[68]. Hurtado et al. [68] investigate spatial geometries and frequency distribution of ap-
propriate lung deformation values corresponding to regional deformation in healthy human
subjects. They utilised image-based finite element biomechanical analysis, which previously
resulted in significant accuracy improvements of regional lung deformation estimates [102].
The corresponding regional deformation images were used to determine potential spatial
arrangements and frequency distribution from various estimates of deformation [68]. This
study also utilises the anisotropic deformation index (4.43) and the slab-rod index (4.44),
initially explored in [89]. Hurtado et al. [68] assume hyperelastic constitutive behaviour for
the parenchymal tissue, implying that the biomechanical response may be derived through
a deformation energy density W(F). If the deformation is considered to be isotropic, then

W(F) = W̄ (I1, I2, I3) , (4.51)

where I1, I2, I3, are the strain invariants. That is, the deformation energy density is only de-
pendent on the strain invariants of the right Cauchy-Green deformation tensor U, expressed
by

I1 = 1

3
tr (U) = 1

3
(λ1 + λ2 + λ3) , (4.52)
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I2 = 1

6

(
(tr (U))2 − tr (U)2)

= 1

3
(λ1λ2 + λ2λ3 + λ3λ1) , (4.53)

I3 = det (U) = λ1λ2λ3, (4.54)

where λ defines the stretch ratios. Note that the definition of invariants differs by a constant
of 1/3, in this study, when compared to the definitions of the first and second invariants. This
is done for with respect to normalisation, i.e., all invariants will assume a unitary value when
deformation does not occur (F = I) [68]. Hurtado et al. [68] determined from histograms of
the individual lungs that log-normal distributions adequately represent the frequency distri-
butions of deformation invariants in the lung. This finding is said to commonly support the
normalisation of the invariants [68]. At the regional level, the local volumetric deformation
within the lung parenchyma demonstrates unique spatial variations in healthy human sub-
jects [68]. This study is limited by several factors, including the consideration of a small
population sample of eleven subjects whereby age, gender, and fitness are all neglected. In
general, this would limit the conclusions made around frequency distributions and spatial
arrangements [68]. Moreover, small regions of highly localised deformation were seen to
occur close to lung fissures in some subjects, however, this was not accounted for by the
authors. Fissure sliding can induce irregularly high shear strain values, directly affecting the
accuracy of approximating the minimum and maximum values of the stretch ratios [68]. In-
stead, Hurtado et al. [68] attributed this effect to the high cases of regional deformation due
to lobar sliding. These deformations are considered to be negligible due to them occurring
within localised regions with finite volumes [68]. Future research could use deformable im-
age registration methods to account for shear strains due to sliding and make a distinction
between them and actual shear deformation.

Eskandari et al. [103] address the lack of knowledge surrounding functionally rele-
vant data for lung parenchyma through experimental characterisation of the heterogeneous,
anisotropic material properties of porcine extraparenchymal and intraparenchymal airways.
Their objective is achieved through uniaxial tension tests applied to lung specimens at three
different airway levels (trachea, large bronchi, and small bronchi) and with respect to two
orientations (axial and circumferential) [103]. The data revealed significant anisotropy and
regional differences in sampled pseudo-elastic and viscoelastic tissue behaviours of proxi-
mal and distal brochial airways [103]. The findings presented in this study are similar to the
responses of other biological tissues. Specifically, lung tissue is sensitive to preconditioning,
although, not to the extent of some other organ tissues [103]. Circumferential airway tissue
was observed to be more compliant than axial airway tissue. That is, axial airway tissue
reaches stress relaxation at a faster rate than the circumferential airway tissue [103]. Eskan-
dari et al. [103] state that it is appropriate to assume uniform behaviour for the the bronchial
tree’s intraparenchymal regions, during the modelling process. However, the same cannot
be implied for pseudo-elastic and fractional stress relaxation responses, because anisotropy
and heterogeneity must be taken into consideration [103]. They also suggest that due to the
time-dependent behaviours of lung parenchyma, a potential metric for disease characteri-
sation and progression can be developed through research on airway viscoelasticity [103].
This suggestion is based on this study’s anisotropic and heterogeneous observations regard-
ing pertinent stress relaxation and time constants [103].

The lung is complex due to it being mechanically and structurally heterogeneous [104].
Vast amounts of investigations have attempted to understand the mechanics of the lung
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in order to grasp this complexity. These studies have tried to define a consistent relation-
ship between lung structure and compliance in relation to the organ, tissue, and cellular
constituents [93, 105, 106]. Polio et al. [104] explain that this complexity cannot be fully
comprehended, because the literature comprises of numerous techniques and methodologies
attempting to determine lung tissue compliance. This includes indentation tests on small ex-
cised parenchymal tissue samples and elastography performed on whole lungs. Polio et al.
[104] analyse these different techniques, and provide a direct comparison on various evalua-
tion procedures in order to characterise how the reported modulus of lung tissue varies across
each method, along with their associated constraints. The limited knowledge on nonlinear,
viscoelastic, heterogeneous and anisotropic materials is also addressed in this study. Polio
et al. [104] utilised techniques commonly applied in tissue mechanics to approximate the lin-
ear and nonlinear responses of lung parenchyma. The authors also present a new method for
measuring the modulus of lung tissue at similar length scales to that of microstructure het-
erogeneities within the tissue [104]. This technique is called cavitation rheology, a method
for focal examination of the mechanical properties of material. Cavitation rheology involves
creating an air cavity at the tip of a needle which is then inserted into a material and pres-
surised until the material fails due to the rapid elastic deformation or irreversible fracture.
Their findings indicate that cavitation rheology exhibits significantly higher measurements
when compared to indentation, uniaxial expansion, and small amplitude oscillatory shear
(SAOS) tests. Additionally, cavitation rheology is considered to be the least destructive ap-
plied technique as it does not require any excised lung tissue to perform testing [104]. The
reported bulk modulus of lung parenchyma is very similar to the bulk modulus obtained
using micro-indentation. However, the stiffness values derived through cavitation rheology
were much higher and similar to the reported bulk modulus of pulmonary vessels [104].
They explain that cavitation rheology may be more sensitive to the stiffness contributions
of vessels and the constituents of the extracellular matrix (ECM). They also consider that it
could be sensitive to local heterogeneities within the tissue [104]. Polio et al. [104] conclude
that cavitation rheology gives a consistent measurement of the mechanical properties of the
lung on a tens-of-microns scale, and is unaffected by tissue damage induced by other testing
methods. Furthermore, it provides a suitable technique for characterising localised hetero-
geneities within lung parenchyma. This attribute is meaningful since the tens-of-microns
scale could be more pertinent to how cells interact with their local regions [104]. Therefore,
future studies could look at determining the modulus of materials and biological tissues via
cavitation rheology to not only describe the mechanical properties of the lung, but to also
potentially identify and develop materials which can accurately represent lung parenchymal
tissue [104].

Biaxial tension tests have been used often in the literature to examine the different states
of deformation and the stress-strain relationship of lung parenchyma [3]. However, biax-
ial tension tests fail to provide accurate representations of the three-dimensional volumet-
ric deformation states within the lung, i.e., large stretches in three dimensions [107]. As
a consequence of this fact, physiologically superior compressible material properties are
not precisely reported in these studies. Hoppin et al. [60] provided the only triaxial tension
experiment examining the compressibility of lung parenchyma, following the same method-
ology in [70]. However, this particular study had several limitations [60]. Firstly, lung tis-
sue was kept frozen which is known to alter its mechanical behaviour [74]. Secondly, lung
tissue was kept fixed by fish hooks during the experimental procedure, with these hooks
causing local distortions resulting in large boundary effects. Third, the corresponding vol-
umes of the reference state and current state was measured through approximations using
lines drawn manually on photographs. This affected the accuracy of the calculations of the
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stresses [107]. Lastly, only three specimens were experimented on. Therefore, according to
Birzle et al. [107], there exists no experimental procedures or subsequent data to adequately
describe the compressible material behaviour of viable lung parenchyma at high volume
changes. Birzle et al. [107] address this lack of knowledge by presenting a unique exper-
iment to accurately capture the compressible lung tissue properties. Using the results of
the experiment, a suitable hyperelastic strain-energy function describing the nonlinear com-
pressible behaviour of lung parenchyma is derived, along with its corresponding material
constants. Lung parenchyma is assumed to be a an isotropic material [107]. The subsequent
hyperelastic strain-energy function

� (I1, I2, I3) , (4.55)

with invariants I corresponding to the right Cauchy-Green deformation tensor is utilised
to describe the elasticity of lung parenchyma [107]. During the pressure-volume-change
experiment, a purely volumetric deformation occurs. Therefore, the deformation gradient,
Fvol , is simplified [107]. Accordingly, the volume change

J = λ3 = Vb/Ve, (4.56)

where λ represents the stretch ratios, is equal to the measured change in volume, with in-
variants

IV ol
1 = 3J 2/3, I V ol

2 = 3J 4/3, I V ol
3 = J 2, (4.57)

are formulated as a function dependent on the volume change J . As a consequence, the
strain-energy function can be reformulated to include purely volumetric deformation [107].
In this instance, the stress-strain relationship can be defined in terms of a pressure-volume-
change expression [107]. Thus, the hydrostatic pressure can be derived from the strain-
energy function [108]. Hence, the strain-energy function,

� (I1, I3) = c (I1 − 3) + c

β

(
I

−β

3 − 1
)

+ cd (I1 − d)d , (4.58)

is defined in terms of the following pressure-volume-change expression:

P = 2c
(
J−1/3 − J−2β−1

) + 2cddJ−1/3
(
3J 2/3 − 3

)d−1
. (4.59)

Birzle et al. state that (4.59) is appropriate for characterising the experimental results, and
is applicable to determine the volumetric material behaviour. According to the authors, this
study is the first to establish accurate experimental data on the volumetric material behaviour
of lung parenchyma over the entire physiological range. The resulting data is used to opti-
mise the material parameters through the above hyperelastic strain-energy function (4.58),
which describes the nonlinear compressible material behaviour of lung parenchyma, partic-
ularly at high pressure changes [107]. Even though an elastic model is presented here, it is
important to remember that lung parenchyma is viscoelastic [8]. In this pressure-volume-
change experiment, the viscoelastic properties cannot be determined, because it compares
static pressure levels. That is, the formation and influence of internal pressures are immea-
surable through this experiment. However, uniaxial tension tests can derive the viscoelastic
features of lung parenchyma [107]. One could look at extending this nonlinear hyperelastic
model in [107] to include viscoelastic data from uniaxial tests to characterise the viscoelastic
behaviour of lung parenchyma.
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Lung parenchymal tissue is mainly exposed to high volumetric deformations [107]. Dur-
ing respiration and mechanical ventilation, isochroic deformations are more likely to oc-
cur, especially in diseased lungs [89]. Birzle et al. [109] identify the volumetric and iso-
choric tissue behaviour of lung parenchyma. Various compression experiments have been
performed in order to capture the compressible material behaviour of lung parenchyma un-
der large volumetric deformations [93, 95, 96], however, compression is not a physiological
feature of lung tissue [109]. Birzle et al. [107] proposed a novel experiment to accurately
examine the volumetric material behaviour of lung tissue at high volume rates. Although,
their experiment was only capable of describing the dominant volumetric behaviour, the iso-
choric deformation was not determined [109]. Accordingly, this study [109] extends on the
pressure-volume change experiment conducted in [107], with the addition of isochoric and
small volumetric deformations. Therefore, two sets of experiments are performed, specifi-
cally, pressure-volume-change experiments and uniaxial tension tests. Consequently, Birzle
et al. [109] utilised a coupled inverse analysis allowing them to combine the data from both
experiments and determine the material constants of their hyperelastic model. The associ-
ated strain-energy function with subsequent material constants is expressed by:

� = 356.7Pa (I1 − 3) + 331.7Pa
(
I−1.075

3 − 1
)

+ 278.2Pa
(
I

−1/3
3 I1 − 3

)3 + 5.766Pa
(
I

1/3
3 − 1

)6
, (4.60)

where I1, I3 are the strain invariants. Note that (4.60) is derived in a similar manner to
the model presented in [107]. Further, (4.60) is recognised to efficiently model both sets of
experiments. Thus, the above constitutive relation is capable of describing the nonlinear vol-
umetric and isochoric response of lung parenchyma [109]. According to Birzle et al. [109],
this is the first study to successfully model the principal volumetric behaviour, along with
the nonlinear isochoric deformation of lung parenchyma via experimental measurements
and numerical analysis. The above constitutive equation can be used to assist in improving
more advanced computational lung models [109]. This would be best applied to the stresses
and strains that take place within the lung parenchyma during normal and artificial breath-
ing, enabling the efficient identification, diagnosis and simulation of diseased lung tissue.

Throughout the literature, it is commonly suggested that describing the actual viscoelas-
tic behaviour of lung parenchyma can improve continuum and computational models, and
contribute to a better comprehensive understanding of lung functionality in health and dis-
ease [8, 95, 96, 107]. Additionally, an accurate and efficient viscoelastic constitutive equa-
tion is fundamental for describing the stress-strain relationship of lung parenchyma dur-
ing normal and artificial respiration. Birzle and Wall [110] present a small extension to
their studies in [107, 109], whereby they determine the viscoelastic constitutive response
of lung parenchyma, with particular emphasis on the nonlinear, compressible, frequency-
dependent material properties. The constitutive model developed in this study corresponds
to a three-dimensional nonlinear viscoelastic material response at large three-dimensional
lung parenchymal deformations [110]. From their experimental observations, Birzle and
Wall [110] determined the material constants of two viscoelastic material models suitable for
three-dimensional deformations. That is, the standard linear solid model (SLS) and the frac-
tional standard linear solid model (FSLS), previously applied in [93]. In order to characterise
the viscoelastic behaviour of rat lung parenchyma, uniaxial tension tests were conducted at
different frequencies. One of their other objectives was to determine a set of material con-
stants capable that represent the whole physiological range of frequencies. Therefore, they
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used a coupled inverse analysis, which equally includes all the different tension tests per-
formed on one sample [109, 110]. The constitutive model deemed appropriate for the de-
scription of the viscoelastic, nonlinear, compressible material response of lung parenchyma
is given as [110]:

� = 356.7Pa (I1 − 3) + 331.7Pa
(
I−1.075

3 − 1
)

+ 71.05Pa
(
J−2/3I1 − 3

)3 + 5.766Pa
(
I

1/3
3 − 1

)6
, (4.61)

where I1, I3 are the strain invariants. Note that (4.61) is modelled in tandem with the model
of fractional viscoelasticity [110]. Birzle and Wall [110] determined that (4.61) is appro-
priate for describing the complex nonlinear, compressible, viscoelastic material response of
lung parenchyma. Moreover, it can be utilised with finite element models in order to char-
acterise the whole range of physiological frequencies [110]. The authors explain that this
model enables one to quantify the stresses and strains of lung parenchymal tissue during
natural and artificial breathing more accurately. An important area for consideration would
be to understand how this model can be utilised to determine the stress-strain relationship
of human lung parenchyma, or apply this technique to examine diseased tissue to further
improve on models describing the mechanics of healthy and diseased lungs.

Birzle et al. [111] presented a method to experimentally quantify the mechanical be-
haviour of the major load-bearing components of lung parenchyma and their associated in-
teractions. They also numerically determine individual material models for each constituent.
Having intricate material descriptions of the contributions of the load-bearing constituents
is uncommon within the context of the literature, with many models inaccurately character-
ising the response of an individual constituent [111]. This is mainly because these models
correspond to experimental data of the whole lung, rather than a single force-bearing con-
stituent [13, 67, 112]. The objective of this study is to provide a clear explanation of the in-
dividual contributions towards maintaining the major load-bearing mechanisms of the lung
parenchyma and their interactions through a constitutive law [111]. Therefore, Birzle et al.
[111] adopt an additive split of a suitable strain-energy function to describe each component
independently. These strain-energy models are formulated within the context of nonlinear
continuum mechanics viewpoint, and are further applied to finite element method simula-
tions. The material response of an individual component is nonlinear and the corresponding
fibre orientation is assumed to be isotropic in their inverse analysis [111]. Therefore, a hy-
perelastic strain-energy function, � (I1, I2, I3), with invariants of the right Cauchy-Green
deformation tensor are utilised in this study. Each constituent is modelled with respect to
an associated strain-energy function, that is, �CF , �EF , �FI , �GS represent the effects of
collagen fibres, elastin fibres, collagen-elastin fibre interaction, and ground substance re-
spectively. These constituents, as a network, describe the behaviour of homogeneous lung
parenchyma, expressed by:

�Parenchyma = �CF + �EF + �FI + �GS. (4.62)

To establish each constituent response, Birzle et al. [111] examine combinations of prese-
lected hyperelastic constitutive relations capable of describing the behaviour of lung tissue.
The authors chose the neo-Hookean strain-energy function,

� = cE (I1 − 3) + cE

β

(
I

−β

3 − 1
)

, (4.63)
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along with the strain-energy function,

�cx = c (I1 − 3)d , (4.64)

where x in �cx is the value of exponent d [111]. In order to identify the material con-
stant x, the error between experimental and computational displacement values must be
minimised in the inverse analysis and optimisation procedure. The optimal combination of
strain-energy functions for each constituents is obtained with respect to (4.63) and (4.64).
For ground substance, the best relation is �NH + �c6 , collagen fibres best correspond
to �NH + �c11 , elastin fibres correlate to �NH , and the collagen-elastin fibre interaction
best agrees with �NH + �c3 [111]. Birzle et al. [111] briefly summarise the identified
constituent-specific material relations of lung parenchyma:

�Parenchyma = �CF + �EF + �FI + �GS, (4.65)

where

�GS = 52.42Pa (I1 − 3) + 48.75Pa
(
I−1.075

3 − 1
) + 0.473Pa (I1 − 3)6 , (4.66)

�CF = 59.64Pa (I1 − 3) + 55.46Pa
(
I−1.075

3 − 1
) + 0.00003337Pa (I1 − 3)6 , (4.67)

�EF = 84.78Pa (I1 − 3) + 78.84Pa
(
I−1.075

3 − 1
)
, (4.68)

�FI = 219.1Pa (I1 − 3) + 203.8Pa
(
I−1.075

3 − 1
) + 1.115Pa (I1 − 3)6 . (4.69)

From their observations, at small strain ranges, ground substance experiences the lowest
mechanical effect. However, the collagen-elastin fibre interaction has the most dominant
effect over the tissue behavior [111]. At larger strain ranges, the mechanical influence of
collagen fibres increase. Moreover, upon comparing the effects of collagen fibres to elastin
fibres, elastin exhibited a slightly stiffer response at small strain ranges. Although, at higher
strain ranges, collagen was observed to have the most influence on the tissue response [111].
This model has the ability to provide a more efficient description of the effects of various
lung diseases that significantly alter the underlying mechanisms of lung tissue. One can
consider incorporating this proposed constituent-specific constitutive relation into computa-
tional models of the respiratory system in order to simulate the behaviour of the individual
components. Furthermore, one could predict the behaviour of any alterations to these con-
stituents and their resulting effects on the whole respiratory system during normal and artifi-
cial breathing, particularly in the case of pathogens that alter the fibres of lung parenchyma,
such as emphysema or fibrosis [111].

Breathing involves interaction between fluid and solid mechanical phenomena within the
lung, however, there is a considerable lack of experimental data describing the effects of air
flow to deformation. Additionally, the relationship between pulmonary structure and lung
function is vague [113]. As a consequence, this makes it difficult to capture how the under-
lying constituents affect the global parenchymal tissue response and limits the potential for
medical advancements and clinical translation [113]. Therefore, Eskandari et al. [113] de-
veloped a structure-based constitutive model that describes uniaxial mechanical behaviour
of the proximal and distal airways [103, 113]. Furthermore, the bio-composition pertaining
to each tissue area is assessed to understand how the individual constituents impact bulk
tissue behaviour [113]. That is, structurally augmented constitutive relations are derived
which include the influence of collagen and elastin fibres within the parenchymal tissue net-
work. Specifically, the corresponding strain-energy functions incorporate a matrix descrip-
tion of six models; namely, the compressible Neo-Hookean, incompressible Neo-Hookean,
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unconstrained Ogden, incompressible Ogden, uncoupled Mooney-Rivlin, and the incom-
pressible Demiray; superimposed with nonlinear fibre constituents [113]. However, only
a brief derivation of the first Piola-Kirchoff stress (P ) for the Neo-Hookean strain-energy
function is provided in [113]. Thus, Eskandari et al. [113] determined that the structural tis-
sue architecture and collagen composition are the main determinants for the reported airway
anisotropy and heterogeneous mechanical behaviour. The subsequent constitutive theory for
the bronchi presented in this paper can be implemented into finite element models. This
will enable further examination of pathological airway obstruction, a possible deeper under-
standing of fluid-structure interaction during respiration, and the development of potential
numerical approximations that can be applied in clinical diagnosis and treatment [113].

The interconnecting behaviour of the whole lung is based on the mechanical interac-
tions of its tissue elastic and resistive properties across all scales [7, 31, 58]. However,
the structural mechanical properties of the lung has not been fully characterised. Classical
pressure-volume experiments involving the inflation of air- or saline-filled lungs to describe
the elasticity and compliance of the lung, although, these studies describe the overall me-
chanical behaviour of the whole lung without accounting for the effects of local stresses
and strains that occur within the lung parenchyma [13, 32, 60]. This lack of information
has lead to scientists indirectly omitting useful physiological details, particularly in the case
of respiratory disease [114]. Recent studies have since provided fundamental insights into
the material description of the airways [103, 113], and lung parenchyma at the tissue and
microscopic levels [107, 109–111, 115]. Mariano et al. [114] further addresses this lack
of knowledge by providing the first detailed description of lung mechanical deformation
throughout the whole lung. They introduce a method of relating pulmonary scales and val-
ues of local strain and deformation behaviour to global pressure-volume response of the
entire lung. Specifically, they utilise digital image correlation (DIC) which can yield novel
insights regarding how the lung continuously stretches and expands during virtual breathing
in real-time [114]. From their observation, Mariano et al. [114] describe various lung phe-
nomena pertaining to surface heterogeneity, lung anisotropy, and changes in tissue compli-
ance. Firstly, the surface strain images show that the lung exhibits significant heterogeneous
behaviour during regional expansion across the lung surface [114]. This response varies
with the size and orientation of the main airways [103]. Furthermore, the lower and central
regions were noticed to exhibit greater strains, however, this is species-dependent. Rat lung
were used in this study, therefore human lungs will display different responses [114]. Sec-
ondly, strain anisotropy was seen to differ across the parenchyma with some locations being
more isotropic than their neighbouring regions [114]. Additionally, the degree of anisotropy
altered with each location. That is, changes to the flow rate resulted in various degrees of
anisotropy regardless of the maximum inflation levels being identical [114]. Lastly, they
observed a nonlinear relationship with varying degrees of decreased lung compliance. This
decreased shift in strain is suggested to be a consequence of the lung reaching maximum
expansion, indicating a potential physiological limit whereby strain hardening occurs [114].
This study also had a limitation, whereby changes in the manner in which the lung inflates
the pleural cavity changes the negative pressures during breathing. Mariano et al. [114] ex-
plain that this can greatly alter local parenchymal tissue dynamics during inflation which
may result in possible implications to the regional aeration of lung tissue. The observations
reported in this study can be used to reinforce the application of surface strains to charac-
terise the subsequent strain in bulk tissue [114]. Moreover, one can use the measured surface
strains from this paper to develop new comparative studies on lung deformation for healthy
and pathological lungs [114]. For example, anisotropy can act as a bio-indicator in the early
diagnosis and treatment of several lung diseases, where the degree of anisotropy becomes
significantly altered.
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The use and effectiveness of image processing techniques has become important through-
out the field of biomechanics [116]. Arora et al. [69] establish the use of digital volume cor-
relation (DVC) analysis in lung parenchymal tissue to evaluate the three-dimensional strain
field at the alveolar level from the time sequence of reconstructed tomograms (images taken
from within a subject). They present an improvement on their methodology for image ac-
quisition within an intact thorax [69, 116]. This computational model aims to deliver more
physiologically relevant strain values, considering the lungs remain intact within the rib
cage, that is, with bounded expansions during respiration [69]. Arora et al. [69] observe that
regions with particularly low deformation, when compared to neighbouring regions, tend to
deform more uniformly at later stages of the experiment. This heterogeneous behaviour is a
common feature of normal breathing [69]. Additionally, digital volume correlation showed
distinct patterns of heterogeneous deformations which further highlighted the contrasting
degree of tensile strains between tangential regions of lung tissue when compared to central
areas [69]. Therefore, regions close to the boundary were observed to expand more signif-
icantly than the central regions, corresponding to the subsequent effect of an airway such
as the trachea [69]. The authors also determined that the intact thorax provides a form of
protection from premature beam damage, enabling more strain states to be captured within
the same region [69]. Future application of digital volume correlation analysis can include
correlating local deformations to the total volumetric changes of different species and eval-
uating how closely they correspond to global pressure-volume measurements. Moreover,
this can assist in analysing varying degrees of lung compressibility or expansion within the
parenchyma in order to describe the absolute volumetric deformation across the whole lung
[69]. Arora et al. [69] state that current studies should involve research into smaller lung
volumes and larger fields of optical views, where the entire lung can be imaged across all
instances of lung inflation. This requires a direct comparison of volume measurements and
its relation to global lung compliance, including a comparison of the distributions of volu-
metric deformation from region to region [69].

Investigations into the physiological and mechanical functions of the lung have since
been rejuvenated due to the recent global Covid-19 pandemic. Computational mechanical
models have the ability to enhance the predictive capabilities and determine more precise
physiological estimates of lung properties, however, most of these studies are impeded by
the lung’s complex mechanical responses and structural networks [117]. There is also an ab-
sence of mechanical experiments linking the load-bearing organ-level response to regional
tissue behaviours. Maghsoudi-Ganjeh et al. [117] address these shortcomings by introduc-
ing a novel reduced-order surface model of the lung, which incorporates the mechanical
response of the bronchial network, parenchymal tissue, and the visceral pleura. Specifically,
they provide the first inverse finite element analysis to computationally characterise the en-
tire lung, supported through digital image correlation (DIC) analysis, resulting from applied
pressure-volume loading [117]. Inverse finite element analysis yields specimen-specific me-
chanical properties by minimising the error between displacement values approximated
through general finite element methods and those determined through experimental tech-
niques [111, 117]. Maghsoudi-Ganjeh et al. [117] explore three different constitutive equa-
tions for their multiple finite element model. First, the homogeneous isotropic hyperelastic
model is used, based on the compressible Mooney-Rivlin hyperelastic model [118], with
strain-energy function:

W = C10

(
Ī1 − 3

) + C01

(
Ī2 − 3

) + 1

D1
(J − 1)2 , (4.70)
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where Ī1, Ī2 are the first and second invariants of the deviatoric deformation tensor, J the
Jacobian of the deformation gradient F, with C10, C01, and D1 the three unknown material
constants [117]. The second model is the homogeneous anisotropic hyperelastic relation,
established from the Holzapfel-Gasser-Ogden (HGO) derivation [56], whereby:

W = Wiso + Wani, (4.71)

with associated equations for the isotropic and anisotropic response, respectively:

Wiso = C10

(
Ī1 − 3

) + 1

D

(
J 2 − 1

2
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,

Wani = k1

2k2

{
expk2

[
k
(
Ī1 − 3

) + (1 − 3k)
(
Ī4 − 1

)]2 − 1
}

, (4.72)

where k, k1, k2, C10, and D are five unknown material constants, and Ī4 is the pseudo-
invariant of the deformation tensor C [117]. Lastly, they consider the heterogeneous
isotropic linear-elastic model, initially presented in [119], with Young’s modulus E and
Poisson’s ratio ν. Maghsoudi-Ganjeh et al. [117] observed that the value of the shear mod-
ulus is much greater when accounting for the parenchyma and it’s underlying constituents
together, rather than only considering isolated lung parenchyma. The ratio between the bulk
modulus and shear modulus was approximately 5.5 in the homogeneous isotropic hypere-
lastic model and 0.5 for the heterogeneous isotropic linear-elastic model, i.e., it is signifi-
cantly less than incompressible materials [117]. This finding justifies the assumption of lung
parenchyma being a compressible material [110]. Furthermore, their computational model
implies that lung elasticity is not evenly distributed across the various regions of the lung
[117]. Although, the shear moduli is at its minimum in the anterior which corresponds to the
location of maximum deformation [117]. The optimisation algorithm applied in this study
suggests that an isotropic description of lung parenchyma is capable of capturing the exper-
imental displacement to a precise degree [117], subsequently, the anisotropic characterisa-
tion could be simplified with a predefined isotropic tissue response, similar to the behaviour
mentioned in [120]. Maghsoudi-Ganjeh et al. [117] also found that major strains tended
to predominantly align with the medial-lateral direction, whereas minor strains preferred
to align with the anterior-posterior direction. This observation could imply that the spatial
patterns and strain orientations are a result of the geometrical and force loading properties,
rather than the anisotropic behaviour of lung tissue [117]. The authors establish a suitable
foundation which can be extended to future studies to attribute the effects of various macro-
scopic ventilation solutions on regional pulmonary stress and strain distributions. Further-
more, this framework can be used to examine how lung pathogens modify the stress-bearing
constituents and the overall response of the lung [117].

Mechanical ventilation is regularly used to assist with breathing in patients suffering
from respiratory diseases and disabilities. It has many advantages, however, it is also known
to cause ventilator-induced lung injuries and death. This has resulted in more refined in-
vestigations attempting to improve on the techniques currently implemented in mechanical
ventilation. These include multi-oscillatory and high-frequency ventilation [121]. Although,
there exist few studies which have analysed lung mechanical deformations under variable
loading. Therefore, Mariano et al. [121] addresses this gap through the use digital image
correlation (DIC) to characterise ventilation strains more effectively. Digital volume corre-
lation (DVC), optical computed tomography (OCT), and elastography have commonly been
used to provide strain measurement values [69, 104], however, these techniques are time
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sensitive which significantly affects the reported lung behaviour [121]. On the other hand,
digital image correlation analysis is a novel method for analysing topological deformations
during porcine lung inflation [121]. Mariano et al. [121] employ DIC as a real-time con-
tinuous imaging approach to examine lung deformations in pigs and provide insight into
regional pulmonary behaviours. Particularly, lung tissue strain heterogeneity and isotropy.
They also further investigate volume and rate ventilation effects on lung behaviour [121].
From the results of this study, they determined that the upper regions of the lung experi-
ence greater strains than lower regions. This is attributed to the bronchial network which
is heterogeneous geometrically, and in terms of its material constants [103, 114]. However,
human alveolar sizes are four times greater in the upper regions when compared to lower
regions, implying that human lungs are more capable of undergoing greater stretches [121].
Additionally, the larger regional surface strains were observed to alter the deformation be-
haviour of surrounding parenchymal tissue, most likely due to the underlying bronchial net-
work [103, 113]. Furthermore, lung surface strains and pressures were observed to depend
on volume. That is, lung surface strains and pressure increases with increasing inflation vol-
ume [121]. Mariano et al. [121] also determined that the greatest concentration of strains are
located towards the upper surface of the parenchymal tissue. However, this finding could
be due to the nature in which this experiment was carried out. The authors noticed that the
breathing rate did not significantly affect local strains, however, significance is seen in the
rate variables where peak pressure increases and peak lung volume decreases with greater
respiratory frequency [121]. This is suggested to be a result of the viscoelasticity of lung
parenchymal tissue which is known to cause pressure drops at slow rates of breathing [11].
Furthermore, faster breathing rates may hinder the permeation of air through the airways and
tissue leading to increased pressures and lower volumes in an inflated lung [121]. Further
research into breathing frequencies is required as the lung inspiratory rate is one of the pri-
mary factors responsible for ventilator-induced lung injuries [121]. Lastly, lung tissue strain
is determined to exhibit an anisotropic response [121], although, this observed anisotropic
behaviour is assumed to be attributed to the underlying airway network, which has demon-
strated to be twice as stiff along the main bronchial tree [114, 122]. Mariano et al. [121]
conclude that this study provides novel characterizations for computational models and it
facilitates a fundamental foundation for future investigations to assess the mechanical func-
tions of healthy and diseased lungs to establish more effective techniques for mechanical
ventilation.

5 Lung Blast Mechanics

Using wave propagation to probe the interior of the lung allowed for scientists to examine
changes to the lung structure and potential areas of disease. Yen et al. [123] investigate why
the lung, compared to all other organs, is more susceptible to injury or deformity when
subjected to a blast force. It also remains unknown as to why the speed of a stress wave is
much smaller in all other organs when compared to the lung [123]. In the lung, edema or
injury is a result of trauma to the lung parenchyma after exposure to a blast wave at a region
of high stress. Yen et al. [123] consider it necessary to determine the stress wave speeds that
cause this trauma, in particular, the speed of shock waves. In their experiments on rabbit and
goat lungs, the wave speed is expressed by

c =
(

B

ρ

) 1
2

, (5.1)



Lung Mechanics: A Review of Solid Mechanical Elasticity in Lung Parenchyma 109

where c is the wave speed, B an elastic constant, and ρ the density [123]. Yen et al. [123]
utilize the first arrival time of the stress wave in order to calculate the wave speed. The wave
is established as a shock/compression wave using (5.1) such that

B = λ + 2μ, (5.2)

where λ and μ denote the Lame constants. Note that λ = K −(2/3)μ, where K and μ denote
the bulk modulus and the shear modulus, respectively. The expression for λ is substituted
into (5.2), which is subsequently substituted into the expression for λ [123]. This yields the
resulting equation for the elastic moduli of the parenchyma, given by

B = K + 4

3
μ. (5.3)

Yen et al. [123] used experimental values of the bulk modulus K and the shear modulus
μ, along with the wave speed equation (5.1) to determine theoretical values of the wave
speed c. For rabbit lungs, they calculated a wave speed of 16.5–36.9 m/s as transpulmonary
pressure varies between 0–16 cm H2O. For goat lungs, the wave speed is 31.4–64.7 m/s
as transpulmonary pressure varies between 0–20 cm H2O. These findings indicate that the
wave speed is dependent on the size of the lungs as well as transpulmonary pressure [123].
The bulk modulus, shear modulus, and parenchymal density also show significant agreement
with theoretical and experimental wave speeds [123]. Yen et al. [123] conclude that weak
supersonic shock is followed by bulk flow within the lungs. In turn, this results in the trauma
associated with the shock wave [123].

Fung et al. [124] describes the mechanism of impact injury on the lung. Lung tissue has
great strength under compression, i.e., it is capable of supporting large deformation. How-
ever, under a rapidly applied compressive load, the lung becomes increasingly susceptible
to edema following impact and injury through hemorrhage [124]. In general, the lung is
dominated by stress waves under rapid applied loading. This compressive load may result
via car accidents or bomb explosions. The first wave from either of these two instances is
known as a shock wave. Fung et al. [124] considered the following question: Why does a
compression wave cause edema or hemorrhage in the lung? Fung et al. [124] hypothesise
that this damage is caused by the tensile principal strains induced in the alveolar walls dur-
ing expansion [124]. As a result, small airways may collapse and trap gas within the alveoli
at a critical strain, leading to traumatic atelectasis [124]. Subsequently, upon completion of
the wave propagation, the collapsed airways will reopen at a higher values of strain. Thus,
this expansion will result in the trapped gas adding further tension to alveolar wall. Note
that tensile and shear stresses develop in the alveolar walls as a consequence of compression
[124]. The results of this experiment agreed with the above hypothesis. Fung et al. [124]
determined that overstretching the lung parenchyma increased the rate of edema fluid for-
mation and the critical strain for airway opening is much higher than it is for closing. Yen
et al. [123] reported similar observations based on his findings on the effects of shock wave
propagation to lung deformation and pulmonary edema. Fung et al. [124] also highlight that
the hysteresis of compressed lungs which are forced to collapse is much larger than the hys-
teresis of normal uncompressed lungs. Fung et al. [124] made an important identification
whereby tension and compressive stress waves result in highly nonuniform stress distribu-
tions throughout the lung parenchymal tissue network. From this observation, Fung et al.
[124] provide a theoretical analysis examining the elastic response of a cluster of alveoli
with trapped gas subject to a compression or tension stress wave. For this analysis, the clus-
ter of alveoli is assumed to attribute a similar behaviour to that of an elastic shell enclosed by
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a continuum [124, 125]. The alveoli are modelled as a cylindrical tube with spherical ends,
and the lung is considered to be a homogeneous compressible material in order to analyse
the dynamic elastic response of the whole lung with respect to the shock wave [124]. The
theoretical analysis confirms that the maximum principal tensile stress is of the same or-
der of magnitude as the maximum initial compressive stress at certain positions of the lung
tissue [124]. Thus, the greater the initial transpulmonary pressure, the membrane clusters
of alveoli will experience a greater maximum tensile stress [124]. Fung et al. [124] did not
derive constitutive equations for the stress-strain relationship of lung parenchyma, instead
using pressure-volume curves to indirectly approximate this relationship. They also did not
identify the precise locations of any collapsed airways.

Blast waves can be extremely severe, especially at the surfaces of differing tissue densi-
ties and organs. In particular, the lung is most susceptible. This damage or injury is the result
of coupled energy into human tissues due to blast over-pressure [126, 127]. This injury is
known as Primary Blast Lung Injury (PBLI) [127]. Blast injuries are drastically influenced
by the environment in which they occur. Complex blast waves generate when an explosion
occurs within the confines of reflecting surfaces (within buildings or vehicles) [127]. These
closed-air blast waves are the product of reflected waves continuously enhancing each other
along with the effects of the original shock wave. This has a additive effect which results in
a greater positive pressure phase which leads to more severe injury. Blast waves also have a
complex form which differs in both magnitude and time. According to Eftaxiopoulou et al.
[126], research on biological systems subjected to blast forces tend to lean in too heavily
on shock over-pressure, neglecting the effect of wave duration. Wave duration is said to
be misunderstood and requires further research to allow for more accurate information on
blast mechanics [126]. Eftaxiopoulou et al. [126] developed an experimental model in or-
der to examine the inflammatory response of primary blast wave application on the lung
limb. This includes investigating the effect of changing the magnitude and duration of the
blast wave. This study permits a controlled delivery of primary blast to depict the duration’s
associated with the a range of open-field and enclosed environments. Their model assess
primary blast limb trauma by utilising a compression driven shock tube to distribute an iso-
lated and controlled blast wave [126]. A shock tube is a piece of equipment that allows one
to generate well-defined pressure oscillations of different magnitudes over varying periods
of time [128]. From the results of their experiment, Eftaxiopoulou et al. [126] observed no
significant differences in heart rate after lung injury. This finding supports their hypothe-
sis whereby the thorax is not exposed to blast loading in the experiments, i.e., it is a true
isolated blast model. Moreover, the results imply that the immune system is highly sensi-
tive to damage caused by blast overpressures during a prolonged period of time. This study
mainly focuses on the application of blast waves to the respiratory limb, which is found to
exhibit a systematic inflammatory response [126]. The inflammatory response observed here
is an immediate autonomic response which may result in haemorrhage and parenchymal in-
jury [126, 127]. The underlying mechanisms responsible for haemorrhage remain unknown.
However, Scott et al. [127] states that a blast wave will dissipate its kinetic energy within
the lung through subsequent generation of shear and stress waves. Low velocity shear waves
result from the deformation of the thoracic wall which leads to the observed surface haemor-
rhage [127]. Shear waves are also responsible for random distribution of tissues of differing
densities around fixed points, resulting in injury of the parenchymal tissue [127]. The asso-
ciated changes observed were dependent on a characteristic of the blast wave, i.e., duration.
However, these changes are brief and can take place in the absence of alternative blast injury
mechanisms [126].

Arora et al. [116] examined the microstructural mechanical changes that take place
within the lung when subjected to blast waves and how these changes influence the strain
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distributions of the tissue. The alterations and deformations to the lung tissue was ex-
plored using digital volume correlation (DVC). DVC is a powerful method for investigating
three-dimensional strain fields within a certain deforming subject [116]. This technique is
achieved through a variety of efficient volumetric image processing methods. Using DVC,
Arora et al. [116] showed how contrasting levels of blast loading can affect the response
of lung tissue during breathing. They also determined whether the observed loss of lung
function correlates to time mechanical effects. That is, can local defects develop into ma-
jor sites of damage over a certain duration. This study also considered the interdependence
of healthy tissue with neighbouring injured tissue units [116]. They conducted shock tube
experiments in order to create blast injured specimens, with blast over-pressures between
100–180 kPa. Synctron tomography imaging was utilised on blast injured lung specimens
to record the volumetric image data of the lungs. Thereafter, DVC was implemented and
quantative analysis was used to describe the damaged architecture of the lungs [116]. Arora
et al. [116] did not observe any significant microstructural changes to the parenchymal tis-
sue morphology when exposed to a controlled low-to-moderate-level of blast waves. Areas
which influenced focal zones of hyperstraining were captured through DVC. These findings
were supported through morphological analysis, whereby the focal injury caused by a blast
tends to diffuse significance throughout the tissue [116]. Arora et al. [116] studied the effect
of non-instantly fatal blast waves and determined that the mechanical response of the lung
had been majorly distorted in these instances. Clinically, with regards to PBLI, the infor-
mation presented in [116] provides new reasons for why patients may experience delayed
symptoms of blast lung injury and inflammation, or experience issues associated with de-
layed injury during treatment. This study is deemed successful by Arora et al. [116]. This is
because the data supports the applicability of the DVC technique to explore more blast con-
ditions to further characterise the nature of PBLI. Furthermore, further studies can attempt
to identify potential high risk diffuse injury processes through this novel applied imaging
analysis technique.

6 Concluding Remarks

Global and continuum lung models have been developed to better understand the mechanical
functioning of the lung in health and disease. Global models include the analysis of pressure-
volume curves on whole lungs. However, the pressure-volume behaviour of the lung is not
capable of describing the underlying mechanical functions, for example, the stress-strain
relationship of lung parenchymal tissue [7, 107]. Continuum models prioritise the individ-
ual effects and associated interactions of lung parenchyma, surfactant, airways, and airflow
[129, 130]. Roth et al. [130] states that by separately analysing the different lung mechani-
cal phenomena, one can reproduce and approximate the response of various lung pathogens,
and the effects of different treatments. However, continuum models require improvement in
order to better understand the mechanical behaviour of lung tissue. That is, a more accurate
description of the constitutive mechanics is necessary to model the lung parenchyma. Lung
parenchyma has often been assumed to be homogeneous and isotropic, including its under-
lying constituents and structures [60, 70]. However, the lung has also been known to exhibit
anisotropic behaviour [29]. Recent studies suggest that lung parenchyma exhibits homoge-
neous or heterogeneous behaviour depending on the scale of deformation experienced by
the surface of the lung [86, 99, 101]. Moreover, examination of the linear isotropic material
properties were seen to closely resemble the results of nonlinear anisotropic material prop-
erties [99]. Weed et al. [95] presented evidence supporting the fact that lung parenchyma is
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isotropic, where the underlying mechanisms and constituents of lung tissue at the micro-
scale had a global impact on the lung macroscopically. In particular, the heterogeneous
behaviour of the microscopic elements of the parenchymal interconnected tissue network
allow the whole lung to behave as a homogeneous system. It has since been established
that lung tissue deformations exhibit an anisotropic response [121]. Although, Maghsoudi-
Ganjeh et al. [117] explains that the anisotropic deformations of the lung parenchyma can
be simplified with an isotropic description, as it can approximate the elastic deformations of
lung tissue to an acceptable degree.

The more recent studies in lung mechanics have concerned themselves with research into
soft biological tissues and analysing the lung at a microscopic level (cellular and molecular).
However, there are still some challenging aspects in lung mechanics that have yet to be dealt
with. One of these challenges relates to understanding the microscopic elastic components
relative to the macroscopic nonlinear elastic response of the lung parenchyma. This could as-
sist in establishing a definite viscoelastic theory for lung parenchyma in future [8]. Further-
more, the potential capabilities of computational systems and multi-scale modelling should
not be underestimated. They have the ability to enable the development of more significant
and efficient lung models that incorporate both macroscopic and microscopic mechanical
lung properties. Determining an accurate and descriptive geometry in computational models
of physiological structures is fundamental for providing potentially meaningful results from
numerical analysis. The lungs are comprised of various mechanical and functional coupled
systems and subsystems. Therefore, computational models must vary in structure over a
range of different scales of interest [100]. High-quality image processing and medical imag-
ing is capable of providing efficient resolution data whereby subject-specific interdependent
models of the lung can be built upon as computational domains. Thereafter, sets of govern-
ing equations would need to be solved to simulate and understand certain lung phenomena.
Additionally, computational modelling and simulation of breathing motion is important as it
provides fundamental insight into the respiratory dynamics of the human lung. The develop-
ment of four-dimensional computed tomography (4DCT) image processing has allowed for
the measurement and characterisation of respiratory motion within the lung. This technique
has also made it possible to quantify the breathing motion of lung tumors more accurately
than standard radiation therapy. Radiation therapy provides insufficient details around organ
and tumour mobility during respiration [87]. Additionally, enhancements in biologically-
concentrated digital image correlation (DIC) analysis has facilitated the effective quantifica-
tion of interdependent mechanical processes between organ-level and local tissue responses
for rapidly occurring large nonlinear deformations [117, 121]. DIC has since been advanced
and extended to examine the behaviour of sensitive soft biological tissues, particularly the
lung [121]. These techniques could possibly introduce new, efficient and accurate methods
of examining how the mechanical functions of the lung are impacted due to changes from
healthy to diseased states. This will enable researchers to engineer systems to improve as-
sessment and early detection of lung health and disease. The primary work and theoretical
foundations of lung mechanics are already set in place.

All future research into lung mechanics must involve the specific examination of the
mechanical elastic and resistive properties of the lung and their associated physiological
significance. Examples include determining a potential consistent constitutive equation that
describes the nonlinear stress-strain relationship of lung parenchyma, obtaining accurate ap-
proximations of the elastic moduli of the lung, determining how pathogens affect the elastic
and mechanical properties of the lung, and defining a consistent theory for the deformation
behaviour of lung parenchyma. A potential area of future research in lung mechanics regards
implicit constitutive theory, which has the potential to describe the nonlinear stress-strain re-
sponse of a material in more consistent manner. This theory could allow one to analyse the
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deformations and distortions experienced by the lung more accurately. Furthermore, future
investigations could build upon the studies of Wall et al. [129] and Roth et al. [130], in at-
tempting to develop an extensive computational model for the entire respiratory system that
combines all properties of fluid and solid mechanics at both macroscopic and microscopic
states. This model must consider the individual effects and mutual mechanical interactions
of lung parenchyma, surfactant, the airways, and air flow; with each interaction allowed
to be modelled separately. Future studies could also attempt to apply fractional derivative
theory to better understand the stress-strain relationship of lung parenchyma or attempt to
derive a more concise viscoelastic constitutive equation for the lung parenchyma. Addi-
tionally, developing an improved understanding of lung parenchyma viscoelastic tissue may
possibly lead to more realistic analytical models. This would result in improved pulmonary
diagnosis, treatment and knowledge within the field of lung mechanics.
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