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Background. Clear cell renal cell carcinoma (ccRCC) is a malignant tumor with high morbidity and mortality. As a member of
the Nudix hydrolase superfamily, Nudix (nucleoside diphosphate-linked moiety X)-type motif 1 (NUDT1) is closely related to the
occurrence and development of cancer. Our study aims to explore the role of NUDT1 in ccRCC and its relationship with immune
infiltration. Methods. The NUDT1 expression matrix and corresponding clinical information were obtained from The Cancer
Genome Atlas (TCGA) database. The expression difference of NUDT1 in ccRCC and its relationship with the clinical character-
istics were investigated using R software. Kaplan–Meier (K–M) analysis, univariate Cox regression, multivariate Cox regression,
receiver operating characteristic (ROC) curve, and nomogram were utilized to evaluate the survival and prognosis of patients. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized to explore the function of differential genes
in low- or high-expression group of NUDT1. TCGA dataset and Tumor IMmune Estimation Resource (TIMER) database were
utilized to explore the relationship between NUDT1 and immune infiltration. Finally, TCGA dataset was utilized for gene set
enrichment analysis (GSEA). Results. NUDT1 was not only overexpressed in ccRCC but also significantly correlated with clinico-
pathological features (P < 0:05). K–M survival analysis showed that upregulated NUDT1 was closely related to the decrease of
overall survival (OS) and progression-free survival (PFS) in ccRCC patients. Multivariate Cox regression revealed that NUDT1 was
a independent prognostic indicator (HR= 1.437, 95% CI: 1.065–1.939, P ¼ 0:018). The ROC curve showed that NUDT1 had a
certain accuracy in predicting the outcome of ccRCC patiens. Furthermore, a total of 150 coexpressed genes and 1,886 differentially
expressed genes (DEGs) were identified. GO/KEGG and GSEA results suggested that NUDT1 and its DEGs were involved in the
immune-related pathways. NUDT1 expression was positively correlated with infiltrating levels of regulatory T cells (Tregs), CD8+

T cells, follicular helper T cells, and M0 macrophages. In addition, NUDT1 was positively related to immune checkpoints, such as
PD-1, LAG3, CTLA4, and CD70, in ccRCC. Conclusion. NUDT1 plays a key role in the prognosis and immune cell infiltration of
ccRCC patients, indicating its potential use as a prognostic biomarker and therapeutic target.

1. Introduction

Renal cell carcinoma (RCC) is the third urological cancer,
representing 3% of all cancers in women and 5% in men,
with around 400,000 cases worldwide [1]. Clear cell renal cell
carcinoma (ccRCC) is the most common pathological type of
RCC, accounting for more than 70% of adult patients [2, 3].
ccRCC is not susceptible to chemoradiotherapy; the current

antitumor treatment schemes mainly include partial or
radical nephrectomy, local ablation, targeted therapy, and
immunotherapy [4, 5]. Approximately, 25%–30% of ccRCC
patients have metastatic disease at initial presentation and
between 20% and 40% relapse after nephrectomy for local-
ized disease [6]. Although the mechanism of cancer occur-
rence and development has been extensively studied,
considering the high morbidity and mortality of ccRCC,
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it is essential to explore the molecular signature with prog-
nostic value in ccRCC patients.

Nudix (nucleoside diphosphate-linked moiety X)-type
motif 1 (NUDT1), also known as mutT human homolog
1 (MTH1), is an enzyme that encoded by the NUDT1 gene
in humans [7]. It has been reported that NUDT1 is overex-
pressed in various cancers, including cancers of the bladder,
breast, colon, and kidney [8, 9]. Overexpression of NUDT1
may have a series of protective effects on cancer cells by hydro-
lyzing 8-oxo-dGTP or other oxidized nucleotides produced by
endogenous elevated reactive oxygen species (ROS) or by
therapy-induced ROS, resulting in the malignant phenotypes,
poor prognosis, and drug resistance of cancer patients [10].
A study shown that the overexpression of NUDT1 is closely
correlated to the patients’ case history and clinicopathological
characteristics in oral squamous cell carcinoma [11]. In addi-
tion, high expression of NUDT1 in tumor tissues will lead to
worse overall survival (OS) and progression-free survival
(PFS) of colorectal cancer patients [12].

This study was to investigate the relationship between the
expression of NUDT1 and the clinicopathological features
and prognosis of RCC. In addition, we also explored the
mechanism of NUDT1 in ccRCC and its relationship with
immune infiltration.

2. Materials and Methods

2.1. Data Sources. RNA-seq count data and corresponding
clinical feature information of ccRCC samples and adjacent
tumor samples were obtained from the official website of The
Cancer Genome Atlas (TCGA) (https://tcga-data.nci.nih.gov/
tcga/). The inclusion criteria were set as follows: (1) patients
were diagnosed as ccRCC; (2) patients had complete mRNA
data and clinical information. According to the inclusion cri-
teria, our study excluded any samples that had missing or
insufficient data on grade, TNM stage, distant metastasis,
and lymph node metastasis. RNA sequencing data were col-
lated and converted into “symbol.txt” data for subsequent
analysis. Since all of the data in this study were publicly avail-
able, there is no need for approval by the ethics committee.

2.2. NUDT1 Gene Expression Analysis. Tumor IMmune
Estimation Resource (TIMER) (https://cistrome.shinyapps.
io/timer/) is a comprehensive resource for systematical
analysis of immune infiltrates across diverse cancer types,
which included 10,897 samples of 32 cancer types from
TCGA database [13]. We first analyzed NUDT1 expression
level in Pan-cancer via gene modules. Subsequently, the
TCGA-Kidney Clear Cell Carcinoma (KIRC) cohort was
analyzed by using the R software limma package to explore the
expression difference of NUDT1 between ccRCC group and
control group, as well as the expression difference between
ccRCC samples and adjacent tissues of its paired samples. In
addition, we also evaluated NUDT1 expression on the basis of
multiple clinicopathological features in ccRCC samples from
TCGA. Boxplots using disease state as variable were graphed
to calculate differential expression of NUDT1, Finally, the
R software ggpubr package is used to visualize the results.

3. RNA Extraction and Quantitative
Real-Time PCR

The resected tissues were immediately stored in liquid nitro-
gen. Total RNA was extracted using TRIzol reagent (Thermo
Fisher Scientific, USA) from a total of 10 paired tumor and
paracarcinoma normal samples. cDNA library was obtained
using Servicebio® RT First Strand cDNA Synthesis Kit
(Servicebio, Wuhan, China). qRT-PCR was performed using
SYBR Green qPCR Master Mix (Servicebio, Wuhan, China).
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
was set as internal control for gene quantification. The
expression level of each gene was detected at least three
times. The following primers were used: GAPDH forward
5′-GGAAGCTTGTCATCAATGGAAATC-3′ and reverse
5′-TGATGACCCTTTTGGCTCCC-3′; NUDT1 forward 5′-
CAGATCGTGTTTGAGTTCGTGG-3′ and reverse 5′-
AAGCAGGAGTGGAAACCAGTAG-3′. Relative quantifi-
cation was calculated as 2−ΔΔCt.

3.1. Prognosis Analysis. Kaplan–Meier (K–M) survival anal-
ysis was performed to analyze the relationship between the
expression of NUDT1 survival days of ccRCC patients. The
expression level of NUDT1 mRNA in ccRCC was classified
as low- or high-expression groups according to the median
value. We used survminer R package to analyze the OS and
PFS of low- or high-expression groups in ccRCC. Receiver
operating characteristic (ROC) curve was used to evaluate
the accuracy of the K–M survival analysis. Univariate Cox
regression and multivariate Cox regression were used to eval-
uate the independent prognostic factors of patients with
ccRCC. Nomogram was used to predict the survival of the
patients. Finally, we used calibration curves to evaluate the
predictive ability of nomograms.

3.2. Gene Coexpressed and Differentially Expressed Genes
Analysis. R software was used to screen the coexpressed
genes of NUDT1 by set the square of correlation coefficient
|R2|> 0.6, P < 0:05 as the screening condition. The top-
ranked genes were visualized by R software circlize package.
Differentially expressed genes (DEGs) were divided into low-
and high-expression groups and according to the expression
of NUDT1 and |logFC|> 1, false discovery rate (FDR) <0.05
was considered to be significant DEG. The top 100 upregu-
lated or downregulated DEGs were visualized by the pheat-
map R package of R software. Gene Ontology (GO) function
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis of DEGs were performed by
R software clusterProfiler package, and visual analysis of data
was performed by ggplot2 software package.

3.3. Immune Correlation Analysis. Based on TCGA-KIRC
cohort, we explored the relationship between NUDT1 and
cancer immune infiltrates at the mRNA level. CIBERSORT,
an analytical tool developed by Newman et al. [14], can
quantify the infiltrating immune cell fractions based on
normalized gene expression profiles. We calculated the
immune infiltration scores of 22 immune cell subtypes by
CIBERSORT algorithm to explore the correlation between
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NUDT1 and immune cell infiltration. We then analyzed the
correlation between NUDT1 and immune checkpoint
molecules in ccRCC. Finally, we validated our analysis
through the “correlation” module of the TIMER database.

3.4. Gene Set Enrichment Analysis. GSEA is a computational
method that determines whether a previously defined set of
genes have concordant and significant statistical differences in
two biological states [15]. To gain more insight into the func-
tion of NUDT1, we performed GSEA on the high- and
low-expression datasets of NUDT1 by using the R package
“clusterProfiler.”Using GSEA, we analyzed GO terms and the
KEGG pathways to investigate possible biological functions of
NUDT1. Relevant gene pathways were selected according to
the truncation criteria FDR< 0.25 and P < 0:05, and five
related functional genomes were visualized.

3.5. Statistical Analysis. R (v.4.2.0) was used to perform
statistical analysis. The impact of NUDT1 on the prognosis
of ccRCC was evaluated using K–M and Cox regression anal-
yses. ROC curve was utilized to evaluate the accuracy of K–M
survival analysis. Spearman’s analysis was used to explore the
correlation betweenNUDT1 expression and immune cell infil-
tration level. All P-values were two-tailed, and P < 0:05 was
deemed to be statistically significant. The intensity of P-value
defined as follows:  ∗P < 0:05,  ∗∗P < 0:01, and  ∗∗∗P < 0:001.

4. Results

4.1. The Expression of NUDT1 Was Upregulated in Tumor
Samples.We first assessed NUDT1 expression in Pan-cancer
data from TIMER database; the results showed that the
expression of NUDT1 was upregulated in 18 tumors, includ
ing BCLA, BRCA, CHOL, COAD, ESCA, HNSC, KICH,
KIRC, KIRP, LIHC, LUAD, LUSC, PRAD, READ, SKCM,
STAD, THCA, and UCEC (Figure 1(a)). In addition, the
analysis of TCGA-KIRC cohort showed that NUDT1 was
highly expressed in ccRCC samples compared with normal
samples (P < 0:001, Figure 1(b)). In paired specimens, the
expression of NUDT1 in the ccRCC group was significantly
higher than that found in the adjacent normal tissue
(P < 0:001, Figure 1(c)). Finally, the difference in NUDT1
expression between ccRCC tissue and its adjacent normal
tissue was validated by qRT-PCR (P < 0:001, Figure 1(d)).

4.2. NUDT1 Is Closely Related to the Clinical Features of
ccRCC. In order to further explore the correlation between
the expression of NUDT1 and the clinicopathological fea-
tures of ccRCC, we extracted and collated the clinicopatho-
logical features of patients from TCGA-KIRC cohort
(Table 1); the gender, age, grade, clinical stage, and T stage,
N stage, and M stage were included. The results showed that
in addition to age (Figure 2(a)), upregulated NUDT1 expres-
sion was significantly associated with gender (Figure 2(b)),
grade (Figure 2(c)), clinical stage (Figure 2(d)), and T stage
(Figure 2(e)), N stage (Figure 2(f)), and M stage (Figure 2(g)).

4.3. High NUDT1 Expression Is Associated with Adverse
Outcomes in ccRCC. We further evaluated the value of
NUDT1 in the prognosis of patients with ccRCC; K–M

survival analysis showed that the OS in the high NUDT1
expression group was shorter than that in the low NUDT1
expression group (Figure 3(a)). Meanwhile, the expression of
NUDT1 was negatively correlated with PFS in patients with
ccRCC (Figure 3(b)). As shown in Figure 3(c), the ROC
curve shows that the area under curve (AUC) corresponding
to 1, 3, and 5 years was 0.671, 0.650, and 0.616, respectively.
Generally, an AUC from 0.6 to 0.9 is deemed reliable.

We then used Cox regression analysis to evaluate the inde-
pendent prognostic factors for ccRCC. Univariate analysis of
correlation of using Cox regression revealed that NUDT1 is
significantly associated with prognosis of patients with ccRCC
(HR= 1.908, 95% CI: 1.477–2.465, P < 0:001, Figure 4(a),
Supplementary 1). In addition, the age, grade, and stage also
significantly affect the prognosis of patients. We incorporated
significant factors in univariate Cox regression analysis
into multivariate Cox regression analysis; the results show
that NUDT1 remained an independent prognostic factor
(HR= 1.437, 95% CI: 1.065–1.939, P ¼ 0:018, Figure 4(b),
Table 2). Finally, we constructed the nomogram containing
NUDT1 and clinical characteristics to predict the survival
of patients with ccRCC (Figure 4(c)). In the nomogram, we
can calculate the total score according to the score of each
clinical characteristics, and a higher total score was consid-
ered a worse the prognosis of the patient. The OS calibra-
tion chart of 1, 3, and 5 years indicates that the prediction
effect of nomogram is satisfactory (Figure 4(d)).

4.4. Analysis of Gene Coexpressed and DEGs with NUDT1 in
ccRCC. We analyzed the expression data files of NUDT1
mRNA to explore the coexpressed genes with NUDT1.
According to our preset criteria, we found 150 coexpressed
genes with NUDT1 (Supplementary 2). As shown in the cir-
cos plot (Figure 5(a)), NUDT1 expression level was posi-
tively correlated with the expression of BCL2L12, POLR2J,
PPP1R14B, SNRPD2, PSMG3, and POP7. On the contrary,
NUDT1 expression level was negatively correlated with the
expression of LIFR, PRKAA2, WDFY3, MYO6, and FBXO3.
We then performed differential expression analysis of NUDT1
to find the DEGs in the high- and low-expression groups of
NUDT1. A total of 1,886 DEGs were obtained, and we used
heatmap to visualize the top 100 genes that were significantly
upregulated or downregulated (Supplementary 3, Figure 5(b)).
According to the expression heatmap, we visually observed
that the upper part of DEGs was overexpressed in the high-
expression group and the lower part of DEGs was overex-
pressed in the low-expression group.

Subsequently, we performed GO function and KEGG
pathway enrichment analysis for these DEGs. Based on the
screening criteria, there are 171 biological process (GO-BP),
29 cell component (GO-CC), 65 molecular function
(GO-MF), and 13 KEGG were involved (Figure 6(a), Supple-
mentary 4 and 5). GO functional annotations showed that
the DEGs were mainly enriched in humoral immune
response, immunoglobulin complex, and receptor ligand
activity (Figures 6(b) and 6(c)). KEGG pathway analysis
showed that these genes were enriched in neuroactive
ligand-receptor interaction, cytokine–cytokine receptor
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interaction, and protein digestion and absorption pathway
(Figures 6(d) and 6(e)).

4.5. NUDT1 Expression Is Associated with the Immune
Infiltration and Immune Checkpoints. Related studies have
proved that tumor-infiltrating lymphocytes are independent
predictors of the OS and sentinel lymph node status among
cancer patients [16, 17]. Therefore, we tried to explore
whether the expression of NUDT1 is related to immune cell
infiltration in ccRCC. We analyzed the expression differences
of 22 immune cell subtypes in high- and low-expression
group of NUDT1 (Figure 7(a), Supplementary 6). Notably,
NUDT1 expression was positively and remarkably linked
with the infiltrating levels of regulatory T cells (Tregs),
CD8+ T cells, follicular helper T cells, and M0 macro-
phages, but negatively linked with the infiltrating levels of
M1 macrophages, M2 macrophages, resting mast cells,
resting memory CD4+ T cells, and monocytes in ccRCC
(Figure 7(b)–7(j)).

We next explore the correlation between NUDT1 expres-
sion level and immune checkpoints through TCGA-
KIRC cohort. The results are shown in Figure 8(a),
(Supplementary 7). NUDT1 expression level is positively
correlated with immune checkpoints such as PD-1, LAG3,
CTLA4, CD70, LGALS9, TMIGD2, and CD276. Up to now,

PD-1, LAG3, CTLA4, and CD70 have been considered
immune checkpoints strongly related to immunotherapy,
so we verified the correlation between the expression level of
NUDT1 and these four immune checkpoints again through the
TIMER database. The results showed that NUDT1 was still
positively correlated with PD-1 (cor= 0.236, P ¼ 3:38e−08),
LAG3 (cor= 0.269, P ¼ 2:78e−10), CTLA4 (cor= 0.106,
P ¼ 1:46e−02), and CD70 (cor= 0.269, P ¼ 2:76e−10)
(Figure 8(b)). Our results suggest that the treatment of rel-
evant immune checkpoint inhibitors may be helpful to
improve the prognosis of patients with high NUDT1
expression group.

4.6. Gene Set Enrichment Analysis. In order to further recog-
nize the potential function of NUDT1, we used GSEA to
investigate the potential signaling pathways through which
NUDT1 might affect ccRCC progression. In GO analysis, we
found that some immune-related biological processes and
cellular components were mainly enriched in the high-
expression group of NUDT1 (Figure 9(a)). Complement
activation, humoral immune response, or humoral immune
response mediated by circulating immunoglobin, keratiniza-
tion, and immunoglobulin complex were included. KEGG
enrichment analysis showed that some metabolic-related
pathways were significantly enriched in the low-expression
group, such as propanoate metabolism, pyruvate metabo-
lism, citrate cycle (tricarboxylic acid (TCA) cycle), and lysine
degradation (Figure 9(b), Table 3). Interestingly, we also
found that the pathways related to olfactory transduction
were significantly enriched in the high-expression group.

5. Discussion

RCC is one of the most frequently occurring types of uro-
logical cancer and in recent years, its prevalence has contin-
ued to increase [18]. The most common histological type of
RCC is clear cell type (70%–90%), followed by papillary
(10%–15%) and chromophobe RCCs (3%–5%) [2]. At pres-
ent, partial or radical nephrectomy is still the main treatment
for early ccRCC [19]. With the deepening of cancer research,
targeted therapy and immunotherapy stand out in the treat-
ment of ccRCC, especially as a current and emerging first-
line treatment for metastatic ccRCC [20]. The basis for the
application of immunotherapy in ccRCC is that the tumor
microenvironment (TME) of ccRCC has the characteristics
of extensive immune infiltration, highly vascularized and
fibrosis compared with other solid tumors [21]. Although
the diagnosis and therapeutic strategies of ccRCC have
improved significantly over the past decades, in view of the
fact that the clinical symptoms of early ccRCC are not sig-
nificant, while advanced ccRCC is often accompanied by
distant metastasis, and the prognosis of patients with ccRCC
is still poor [22, 23]. Abnormal gene expression may be
involved in tumorigenesis and associated with the prognosis
of patients [24]. Therefore, the exploration of new biomar-
kers is conducive to the early screening, diagnosis, and treat-
ment of ccRCC.

As a member of the Nudix hydrolase superfamily,
NUDT1 is 8,924 bp long and is located on chromosome 7

TABLE 1: Clinicopathological features of patients with ccRCC.

Clinical characteristics No. of cases Percentage (%)

Gender
Female 191 35.57
Male 346 64.43

Age (years)
≤65 352 65.55
>65 185 34.45

Grade
G1 14 2.65
G2 230 43.48
G3 207 39.13
G4 78 14.74

Clinical stage
Ⅰ 269 50.37
Ⅱ 57 10.68
Ⅲ 125 23.41
Ⅳ 83 15.54

T stage
T1 275 51.21
T2 69 12.85
T3 182 33.89
T4 11 2.05

N stage
N0 240 93.39
N1 17 6.61

M stage
M0 426 84.36
M1 79 15.64

Applied Bionics and Biomechanics 5



(2,242,222–2,251,145, in the GRCh38.p7-build of the human
genome) [25]. The discovery of NUDT1 first aroused the
interest of carcinogenesis investigators owing to its role in
maintaining genomic stability, which is often compromised
during cancer development. NUDT1 is capable of hydrolyz-
ing the oxidized dNTPs and NTP, such as 8-oxo-dGTP and

2-OH-dATP, to their monophosphate form and prevent their
incorporation into the nucleus and mitochondrial DNA,
thereby limiting the ROS-induced cell damage [26, 27]. It
indicates that NUDT1 plays an indispensable role in surviving
the oxidative stress in cancer cells. However, NUDT1may not
be always indispensable for cancer cell survival under
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oxidative conditions. Several researchers have found that
NUDT1 deficiency in certain cancer cell lines caused by small
RNA interference or genome editing does not result in any
adverse effect on these cells [28, 29]. Therefore, more

researches were necessary to explore how NUDT1 affects
the occurrence and development in oncogenesis.

In our current research, we explored the expression
of NUDT1 as a prognostic biomarker for ccRCC. We
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FIGURE 3: Evaluation of NUDT1 expression on survival of patients with ccRCC: (a) Kaplan–Meier analysis of overall survival based on
NUDT1 expression; (b) Kaplan–Meier analysis of progression-free survival based on NUDT1 expression; (c) the areas under the ROC curve
about 1, 3, and 5 years.

TABLE 2: Multivariate Cox regression analysis of NUDT1 and clinical characteristics on prognosis of patients.

Variable HR 95% CI P-value

NUDT1 1.437 1.065–1.939 0.018
Age 1.033 1.018–1.048 <0.001
Gender 0.924 0.673–1.269 0.624
Grade 1.458 1.161–1.832 0.001
Stage 1.621 1.396–1.882 <0.001
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systematically analyzed the prognostic significance of
NUDT1 in ccRCC patients. A previous study showed that
NUDT1 expression was correlated with the clinicopatholog-
ical features, degree of vascular invasion, OS, and disease-free
survival (DFS) in hepatocellular carcinoma (HCC) patients
[30]. We used data on ccRCC patients obtained from TCGA
to assess the prognostic value of NUDT1. Our study shows
that the expression of NUDT1 is related to the prognosis of
ccRCC. The expression of NUDT1 was significantly upregu-
lated in ccRCC and correlated with adverse clinicopatholog-
ical features such as gender, T stage, N stage, M stage, clinical
stage, and pathological grade. The K–M curves reveal
higher NUDT1 expression levels correlated with short OS
and PFS in ccRCC patients. Cox proportional hazards
regression model indicates that NUDT1 expression in
tumor cells is an independent prognostic indicator of
ccRCC. In the coexpression analysis, we found some genes
that were positively correlated with NUDT1 expression,
such as BCL2L12, POLR2J, PPP1R14B, SNRPD2, PSMG3,
and POP7. BCL2L12 is an antiapoptosis factor, and it was
discovered and cloned as a member of BCL2 family in 2001.
The prognostic significance of BCL2L12 mRNA expression
has already been assessed in several cancer types [31, 32].

BCL2L12 plays an important role in carcinogenesis by
neutralizing effector caspase activity downstream of mito-
chondrial dysfunction and apoptosome activity to inhibit
apoptosis [33]. POLR2J is a subunit of human nuclear
RNA polymerase II [34]. By bioinformatics analysis,
Wang et al. found that POLR2J, as a DNA repair gene,
may be associated with poor prognosis of uveal melanoma
(UM) patients [35]. A study shows that PPP1R14B is highly
expressed in glioma and leads to bad outcome for patients
[36]. It has been reported that SNRPD2 was overexpressed
in HCC compared with adjacent normal tissues, and the
expression level of SNRPD2 was significantly correlated
with the pathologic stage of HCC [37]. As a chaperone
protein, PSGM3 can affect the stability of the protein by
assisting the assembly of proteasome. Ma et al.’s findings
suggest that the interaction between Anaplasma phagocyto-
philum APTA and PSMG3 affects proteasome activity and
ubiquitination process, activates the ubiquitin–proteasome
system (UPS) pathway, and then couples with autophagy
pathway, resulting in the antiapoptotic effect of APTA [38].
A recent study showed that POP7 can promote the progres-
sion of breast cancer by regulating the stability and expression
of ILF3 mRNA [39]. In addition, the GO and KEGG function
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enrichment analysis of 1,886 DEGs significantly correlated
with NUDT1 demonstrated that the DEGs were mainly
related to humoral immune response, immunoglobulin com-
plex, and receptor ligand activity. KEGG pathway analysis
showed that the DEGs were primarily associated to neuroac-
tive ligand-receptor interaction, cytokine–cytokine receptor
interaction, and protein digestion and absorption pathway.

Another important aspect of this study is that NUDT1
expression is correlated with diverse immune infiltration

levels in ccRCC. Our results demonstrate that there is a sig-
nificantly positive correlations between NUDT1 expression
level and infiltration level of Tregs cell, CD8+ T cells, follicular
helper T cells, and M0 macrophages. At the same time, the
expression level of NUDT1 is negatively linked with the infil-
trating levels of M1 macrophages, M2 macrophages, resting
mast cells, resting memory CD4+ T cells, and monocytes in
ccRCC. Previous studies have shown that Treg cells are
immune suppressor T cells, which can inhibit antitumor
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FIGURE 6: GO/KEGG enrichment analysis of DEGs between high- and low-NUDT1 expression: (a–c) GO enrichment analysis; (d, e) KEGG
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immune response by inhibiting CD8+ T cells, natural killer
cells (NK cells), B cells, and antigen-presenting cells (APC)
[40]. In a variety of cancers including melanoma, high-level
Treg cells infiltration is related to tumor recurrence, progres-
sion, and metastasis [41]. According to our analysis, the upre-
gulation of Treg cells in NUDT1 high-expression group
may be an important factor leading to adverse OS in patients
with ccRCC. In addition, some studies have shown that the

reduction of immune infiltration in TME, especially CD4+

T cells and M1 macrophages, may lead to poor prognosis of
cancer patients [42, 43]. Based on the analysis of immune
infiltration, we infer that the high-expression group of
NUDT1 is related to the decreased infiltration of monocytes
and M1 macrophages, which leads to adverse outcomes in
ccRCC patients. In addition, the correlation between NUDT1
expression and immune checkpoint marker implicates the role
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FIGURE 8: Correlation analysis between NUDT1 and immune checkpoints: (a) the correlation analysis of immune checkpoints based on
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TABLE 3: Gene sets enriched in the NUDT1 expression.

Name NES P-value FDR

KEGG_OLFACTORY_TRANSDUCTION 1.494 0.001 0.176
KEGG_CITRATE_CYCLE_TCA_CYCLE −1.916 0.007 0.228
KEGG_PROPANOATE_METABOLISM −2.247 0.007 0.228
KEGG_PYRUVATE_METABOLISM −1.945 0.009 0.228
KEGG_LYSINE_DEGRADATION −1.662 0.009 0.228
KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION −2.091 0.009 0.228
KEGG_INOSITOL_PHOSPHATE_METABOLISM −1.645 0.010 0.228
KEGG_ENDOMETRIAL_CANCER −1.697 0.011 0.228
KEGG_RIBOSOME 1.429 0.013 0.228
KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY −1.830 0.013 0.228
KEGG_BUTANOATE_METABOLISM −1.655 0.014 0.230
KEGG_DRUG_METABOLISM_CYTOCHROME_P450 1.421 0.016 0.236

Note: Gene sets with P-value< 0.05 and FDR< 0.25 were considered significant. NES, normalized enrichment score; FDR, false discovery rate.
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FIGURE 9: The results of functional analysis based on NUDT1: (a) GO enrichment analysis; (b) KEGG enrichment analysis.
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of NUDT1 in regulating tumor immunology in ccRCC. These
novel findings have made substantial progress in identifying
the important role of ccRCC in immune infiltration. Collec-
tively, in the present study, we observed that the overexpression
of NUDT1 was obviously linked to the poor prognosis in
ccRCC patients. Furthermore, we found that NUDT1 expres-
sion had a positive association with immune infiltrates and
immune checkpoints. These results suggest that NUDT1 plays
a vital role in immune infiltration and immune escape in
ccRCC, which has not been reported in previous studies.

6. Conclusion

NUDT1 plays a key role in the prognosis and immune cell
infiltration of ccRCC patients, indicating its potential use as a
prognostic biomarker and therapeutic target.
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