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Abstract

Inevitable exposure to high-LET ionizing radiation (IR) present in galactic cosmic radiation 

(GCR) could enhance gastrointestinal (GI) cancer incidence among astronauts undertaking deep 

space exploration and GI-cancer mortality has been predicted to far exceed NASA’s limit of 

< 3% REID (Radiation exposure-induced death) from cancer. Therefore, the development of 

countermeasure agents against high-LET radiation-induced GI cancer is needed to safeguard 

astronauts during and after an outer space mission. The cyclooxygenase-2/prostaglandin E2 

(COX2/PGE2) mediated activation of pro-inflammatory and oncogenic signaling has been 

reported to play an important role in persistent inflammation and GI-tumorigenesis after high-

LET radiation exposure. Therefore, aspirin, a well-known inhibitor of the COX/PGE2 pathway, 

was evaluated as a potential countermeasure against 28Si-induced PGE2 and tumorigenesis in 

Apc1638N/+, a murine model of human GI-cancer. Animals were fed either standard or aspirin 

supplemented diet (75, 150, or 300 mg/day of human equivalent dose) starting at the age of 

4 weeks and continued till the end of the study, while mice were exposed to 28Si-ions (300 

MeV/n; 69 keV/μm) at the age of 8 weeks. Serum PGE2 level, GI tumor size (>2mm2), number, 

and cluster (>5 adjoining tumors) were analyzed at 150 days post-exposure. Aspirin led to a 

significant reduction in PGE2 in a dose-dependent manner but did not reduce 28Si-induced GI 

tumorigenesis even at the highest (300 mg/day) dose. In summary, this study suggests that aspirin 

could reduce high-LET IR-induced pro-inflammatory PGE2 levels, however, lacks the ability to 

reduce high-LET IR-induced GI tumorigenesis in Apc1638N/+ mice.
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1. Introduction

Exposure to ionizing radiation (IR) is associated with a significantly greater risk of 

gastrointestinal (GI) tumorigenesis, therefore inevitable cosmic radiation exposure in the 

range of 0.1 to 0.2 Gy/y during outer-space exploration is a primary health concern for 

astronauts (Cragle et al., 1988; Preston et al., 2007; Boice et al., 2006; Dupree-Ellis et 
al., 2000; Cucinotta et al., 2017; Sakata et al., 2019). In contrast to low energy transfer 

(LET) radiation (γ or x-rays), exposure to densely ionizing high-LET heavy-ions present 

in the galactic cosmic radiation (GCR) poses greater cancer risk with relative biological 

effectiveness (RBE) in the range of 3.7 to 8 for GI-tumorigenesis (Shuryak et al., 2017). 

Furthermore, human cancer risk prediction have also indicated a higher GI-cancer risk 

that far exceeds the current NASA limit of < 3% risk of exposure-induced death (REID) 

from cancers (Cucinotta et al., 2017; Shuryak et al., 2017). Although using appropriate 

radiation shielding is the best protective approach, current space craft shielding provides 

only modest protection from high-LET radiation (Naito et al., 2020; Giraudo et al., 2018). 

Therefore, there is an unmet need to develop safe and effective countermeasure agents 

against high-LET radiation-induced GI-tumorigenesis.

Molecular mechanisms implicated in high-LET ionizing radiation (IR)-induced GI-

tumorigenesis includes chronic oxidative stress, persistent DNA damage, accelerated aging 

phenotype, and increased senescence-inflammatory response (SIR) (Datta et al., 2012; 

Cheema et al., 2014; Datta et al., 2016; Suman et al., 2018; Kumar et al., 2018b; Kumar 

et al., 2019; Suman et al., 2020). SIR signaling is known to increase inflammation and 

tumorigenesis in many tissues, including the GI tract (Ruhland et al., 2016; Frey et al., 
2018; Kumar et al., 2018b). Notably, higher levels of pro-inflammatory SIR factor, PGE2 

(prostaglandin E2), and its precursor enzyme cyclooxygenase-2 (COX2) has been observed 

in mouse GI mucosa after high-LET radiation exposure (Cheema et al., 2014) and higher 

PGE2 is also known to increase GI-cancer incidence in humans (Eberhart et al., 1994; 

Kargman et al., 1995; Sano et al., 1995).

Aspirin (acetylsalicylic acid or ASA) is a well-studied drug with long-history of human 

use that effectively reduces PGE2 levels via inhibition of COX (both COX-1 and 2) 

enzymes and its chemo-preventive potential against GI-cancer has been noted in both human 

epidemiological and animal studies (Drew et al., 2016). Low-dose daily aspirin use in 

long-term human clinical trials was found to be safe and effective in reducing chronic 

systemic inflammation and mortality due to GI cancer (Ishikawa et al., 2014; Morris et al., 
2009). Moreover, the association between increasing dose and duration of aspirin use with a 

reduction in human GI-cancer incidence has also been observed (Bosetti et al., 2020). In this 

study, we evaluated the GI-cancer preventive effects of human equivalent doses of aspirin 

(75, 150, and 300 mg/day) against high-LET radiation in Apc1638N/+, a well-characterized 
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murine model of human GI-cancer. These mice develop 3–5 tumors throughout the GI tract 

and mimic sporadic human colorectal cancers where the loss of functional Apc is prevalent 

in ~80% of the tumors (Bakker et al., 2013; Suman et al., 2017). The overall purpose 

of this study was to evaluate the dose-dependent effects of dietary aspirin on high-LET 

radiation-induced GI-tumorigenesis and serum PGE2 levels in Apc1638N/+ mice.

2. Materials and Methods

2.1 Mouse colony, study groups and radiation exposure

Mice were bred and genotyped, as reported earlier (Suman et al., 2017) and male Apc1638N/+ 

mice (n=20/group) were randomly assigned to the experimental groups, as described in 

Table-1. Aspirin supplemented diet in applicable groups was initiated at 4 weeks of age 

and continued till the end of the study (Fig. 1). At seven weeks of age, all experimental 

mice including the control group were shipped to Brookhaven National Laboratory (BNL) 

and after one week of acclimation, mice were exposed to 28Si-ion (10 or 50 cGy dose; 

69 keV/μm; 300 MeV/n) at the NASA Space Radiation Laboratory (NSRL) in BNL, 

as described previously (Suman et al., 2017). All animals were group-housed in a well-

ventilated cage with easy access to standard or aspirin supplemented diet and water. 

Humidity (~50%), temperature (22 °C), and 12-h dark-light cycle were kept consistent and 

the health of all animals was regularly observed as per our approved institutional animal 

protocol at GU and NSRL/BNL.

2.2 Aspirin dose calculation and administration regimen

The physician recommended human dose of aspirin range from 75 to 325 mg/day, where 

75 mg represents the low-dose aspirin and the 325 mg represents adult aspirin dose. We 

calculated mouse aspirin dose equivalent to human aspirin dose based on established dose 

calculation guidelines (Reagan-Shaw et al., 2008; Bachmanov et al., 2002). Briefly, to 

calculate human equivalent dose in mouse, we used mean human daily dose for 60 kg adult 

i.e., 1.25 mg/kg/day and mouse and human Km factor of 3 and 37, respectively. Finally, 

we used 61.5 mg, 123 mg, or 246 mg of aspirin per kg of diet so that mice will have the 

human equivalent of daily 75, 150, or 300 mg aspirin. Aspirin formulated diet was obtained 

from ENVIGO (www.envigo.com) in a color-coded form for each different aspirin dose. No 

difference in food consumption and body weight among control and aspirin diet groups were 

noted during the course of the study.

2.3 Serum prostaglandin E2 (PGE2) measurements

Animals were euthanized using an asphyxiation chamber attached to a carbon dioxide 

cylinder with a flow rate of 30 to 70 % chamber volume per minute. Blood was collected 

through cardiac puncture, and BD Microtainer SST™ serum separator tubes were used 

to isolate serum, as per the manufacture’s recommendation. Finally, serum samples were 

aliquoted and flash-frozen in liquid nitrogen and later stored at −80 °C until PGE2 ELISA 

assay. Serum samples (n=6/group) were diluted (1:10) in assay buffer and relative changes 

in PGE2 levels were measured using a competitive ELISA kit, as per manufacturer’s 

instructions (Cat # ab133021, Abcam, Cambridge, MA, USA). Optical density (O.D.) was 

recorded at 405 nm with a multi-well plate reader (Molecular Devices, CA, USA) and was 
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normalized using blank samples. Finally, the percentage change in PGE2 levels over control 

samples was calculated. This ELISA assay has the sensitivity to detect 13.4 pg/ml of PGE2 

and is recommended for detection of species independent PGE2 levels in the range of 39.1 

to 2500 pg/ml.

2.4 Tumor quantification

GI tumor number, size (>2 mm2), and clusters (>5 adjoining tumors) were quantified, as 

described previously (Suman et al., 2017). Briefly, after euthanasia small and large intestines 

were surgically obtained, cleaned with phosphate-buffered saline, and opened longitudinally 

to expose the GI tumors. Finally, tumors were observed and counted by individuals blinded 

to the experimental groups using Leica MZ6 dissecting microscope scope.

2.5 Statistics and data analysis

All statistical analyses were performed in GraphPad Prism v6.0a (La Jolla, CA). Initially, 

data normality was analyzed using Shapiro-Wilk test and p<0.05 indicated a non-normal 

distribution. Therefore, non-parametric one-way ANOVA (Kruskal-Wallis test) followed by 

post-hoc Dunn’s multiple comparison test was performed to detect any significant difference 

between the groups. All values presented as a bar graph for each group show means and 

error bars are presented as SEM. Statistically significant differences among groups were 

considered when the p-value was ≤ 0.05.

3. Results

3.1 High-LET radiation exposure causes a dose-dependent increase in GI-tumorigenesis

Exposure to both 10 cGy and 50 cGy 28Si-ions led to significantly higher GI tumorigenesis 

at 150 days post-exposure, relative to the control group (Fig. 2). A dose-dependent increase 

in intestinal and colonic tumors were observed, where 10 cGy (intestinal tumor 5.9 ± 0.28; 

colon tumor 0.18 ± 0.08; p<0.05) and 50 cGy (intestinal tumor 7.95 ± 0.47; colon tumor 

0.23 ± 0.11; p<0.05) led to a statistically significant increase in intestinal (Fig. 2A) and 

colonic tumor counts (Fig. 2B), relative to control (intestinal tumor 3.85 ± 0.28; and no 

colon tumor). Moreover, a statistically significant increase in mean tumor cluster (Fig. 2C) 

and mean count of large tumors (Fig. 2D) were observed among control (cluster 0.045 ± 

0.045, large tumor 1.63 ± 0.21), 10 cGy (cluster 0.11 ± 0.07, large tumor 2.73 ± 0.24; 

p<0.05 relative to control) and 50 cGy (cluster 0.30 ± 0.12, large tumor 4.23 ± 0.58; p<0.05 

relative to control) animals. The highest GI tumorigenesis was observed after 50 cGy of 
28Si-ion, where mean tumor count (Fig. 2A) and intestinal clusters (Fig. 2D) both were 

significantly higher than the 10 cGy dose.

3.2 Effect of dietary aspirin on serum prostaglandin levels

Dietary aspirin use was associated with marked reductions in serum level of PGE2 at 

all tested doses and the highest effect was observed with the 300 mg daily dose. A dose-

dependent reduction (% to control) in serum PGE2 was observed at 75 mg/day (88.48 

± 1.84; p<0.05); 150 mg/day (75.49 ± 1.52; p<0.05) and 300 mg/day (69.44 ± 2.55; 

p<0.05) aspirin doses (Fig. 3A), while a dose-dependent increase in high-LET IR-induced 

serum PGE2 was observed in 28Si-ion exposed mice, compared to the control group (Fig. 
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3B). A significant reduction in radiation-induced serum PGE2 levels was also observed in 

all ASA treated groups, however, the 150 and 300 mg human equivalent ASA dose was 

highly effective in reducing 28Si-induced PGE2 levels, relative to 75 mg dose (Fig. 3C–D). 

Therefore, our results clearly showed that aspirin is effective in reducing basal as well as 

high-LET radiation-induced PGE2 levels.

3.3 Aspirin administration has no effect on GI-tumorigenesis in Apc1638N/+ mice

The intestinal tumor count in Apc1638N/+ mice (3.85 ± 0.28) was not altered in the ASA-

treated group and no statistical difference was observed between 75 mg/day (4.15 ± 0.26), 

150 mg/day (4.2 ± 0.32), and 300 mg/day (4.25 ± 0.23) aspirin groups (Fig. 4A). The 

mean colonic tumor count (Fig. 4B) and the number of intestinal tumor clusters (Fig. 4C) 

were rare in all experimental groups. Similar to tumorigenesis, no significant difference 

was observed in count of large (>2mm2) size tumors between control (1.63 ± 0.21) and 

aspirin 75 mg/day (1.48 ± 0.25), 150 mg/day (1.72 ± 0.25) and 300 mg/day (1.62 ± 0.30) 

aspirin groups (Fig. 4D). Altogether, our results show no effect of dietary aspirin on GI 

tumorigenesis in the 75–300 mg dose range.

3.4 Dietary aspirin does not confer protection against high-LET radiation-induced GI-
tumorigenesis in Apc1638N/+ mice

Aspirin administration did not show a significant reduction in high-LET IR-induced 

radiogenic GI tumorigenesis as well as on the number of tumor clusters and size (Fig. 5). In 

control, IR-exposed, aspirin only, and aspirin + IR-exposed groups the distribution of tumors 

throughout GI-tract was similar. The mean number of radiogenic GI tumors at 10 cGy (5.90 

± 0.28) was not significantly affected in aspirin-treated mice i.e. 75 mg/day (5.75±0.31), 

150 mg/day (5.95±0.34), and 300 mg/day (5.30±0.29) (Fig. 5A–C). In addition, the mean 

number of radiogenic GI tumors at 50 cGy (7.95 ± 0.47) was also not affected among 

aspirin-treated mice i.e., 75 mg (7.35±0.55), 150 mg (7.05±0.58), and 300 mg (7.40±0.43) 

(Fig. 5D–F). Similar to tumor count, no statistical difference was observed in the number 

of large tumors and clusters between 28Si exposed and aspirin + 28Si exposed groups at 

all aspirin doses (Fig. A-F). Altogether, we demonstrate no significant effect of aspirin on 

high LET IR-induced GI tumorigenesis in male Apc1638N/+mice at the 75–300 mg/day dose 

range.

4. Discussion

Anti-inflammatory and GI-cancer preventive effects of aspirin are attributed to its COX 

inhibitory activity (Stolfi et al., 2013; Wang & DuBois, 2013; Sostres et al., 2014), whereas 

high-LET radiation-induced persistent inflammation and higher GI-cancer incidence are in 

part ascribed to higher intestinal COX2 expression and accumulation of its pro-inflammatory 

product PGE2 (Cheema et al., 2014; Kumar et al., 2018b). This study demonstrates that 

aspirin was able to reduce radiation-induced serum PGE2. However, aspirin had no effects 

on either on background or on IR-induced GI-tumorigenesis.

Aspirin dose and duration of its use are often associated with its efficacy and side effects 

in humans (Ishikawa et al., 2014; Morris et al., 2009; Bosetti et al., 2020). We used a 
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spectrum of human equivalent doses of aspirin i.e., low (75 mg/day), intermediate (150 mg/

day), and high (300 mg/day) to test its efficacy against spontaneous as well as 28Si-induced 

GI-tumorigenesis. Aspirin did not alter 28Si-induced tumor count, cluster, or size in the 

irradiated animals; however, this study is limited to continuous aspirin dosing and one time-

point. In concurrence, other reports on aspirin’s effect on GI-tumorigenesis in Apc1638N/+ 

mice also displayed no appreciable prevention from GI-tumorigenesis (Williamson et al., 
1999). The aspirin’s GI-cancer prevention studies using other similar mouse models of CRC 

i.e. ApcMin/+ mice and also in human clinical trials have also shown mixed results (Reuter 

et al., 2002; Chiu et al., 2000; Barnes & Lee, 1998; McNeil et al., 2021; Drew et al., 2020; 

Burn et al., 2020; Qiao et al., 2018). Since the duration of aspirin use for effective GI-cancer 

prevention is also not established in mouse or human studies (Bosetti et al., 2020) therefore 

further studies might be required to optimize aspirin timing and duration to achieve desired 

chemoprevention.

In another Apc-based GI-cancer model i.e., ApcMin/+ mice up to 50% chemoprevention was 

achieved but with a bolus aspirin dose (Barnes & Lee, 1998), which is many-fold higher 

than the adult human dose. However, in ApcMin/+ mice it was noted that in-utero aspirin 

use is more effective compared to aspirin use after weaning (Perkins et al., 2003; Rohwer 

et al., 2020). Unlike ApcMin/+, the mutation in Apc1638N/+ is localized outside the β-catenin 

interaction domain therefore WT and truncated protein forms could suppress oncogenic 

β-catenin, therefore might reflect mutation-specific differential aspirin responses. Moreover, 

GI-mucosal physiology of Apc1638N/+ mice is very similar to WT mice as WT Apc allele 

is often maintained even in the GI-polyps derived from Apc1638N/+ mice, and loss of the 

WT allele is not detected until the development of frank tumors (Haigis et al. 2002; Wang 

et al. 2002). Additionally, ~50% decrease in WT APC protein expression in Apc1638N/+ 

mice, indicates a primary role of Apc haploinsufficiency as a plausible mechanism of 

tumorigenesis in this model (Wang et al. 2002), rather than inactivating mutation.

A significant reduction in serum levels of PGE2 was noted at all tested aspirin dose. 

In concurrence, aspirin mediated effective reductions in mucosal as well as serum PGE2 

levels with reduced sign of systemic inflammation have been observed both in mouse and 

human studies (Morris et al., 1985; Cryer et al., 1990; Montrose et al., 2015; Liu et al., 
2013; Boutaud et al., 2016; Kumar et al., 2018a). PGE2 is known to exert pleiotropic 

effect on many of the hallmarks of cancer (Greenhough et al., 2009) including activation 

of the β-Catenin signaling and mechanisms involved in tumor promotion, maintenance and 

progression (Buchanan & DuBois, 2006). Studies using Ptgs-2 (gene coding for COX-2) 

knock-out mice have indicated resistance to colorectal carcinogenesis (Chulada et al., 2000), 

while Ptgs-2 transgenic mice have revealed that COX-2/PGE 2 pathway activation alone 

is insufficient to induce tumorigenesis (Oshima et al., 1996). Therefore, activation of COX/

PGE2 pathway in the tumor promotion process is more defined rather than its role in tumor 

initiation process.

Greater expression of PGE2 have shown a good correlation with larger tumor size in both 

human and mouse model studies (Kettunen et al., 2003; Yang et al., 1998). While no 

correlation for aspirin use and tumor size is available for comparison, and we did not 

observe any significant reduction in tumor size in aspirin treated mice. Aspirin mediated 
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reductions in COX/PGE2 is important anti-cancer mechanism, however mechanisms 

independent of COX/PGE2 might also be important in 28Si-induced GI-tumorigenesis; as 

no appreciable effect of aspirin on 28Si-induced GI-tumorigenesis and size was noted in 

Apc1638N/+ mice. While higher COX2/PGE2 level was observed after high-LET IR (Cheema 

et al., 2014), but other pro-inflammatory/proliferative factors (IGF1, IL-8 and IL-6) (Kumar 

et al., 2018b; Kumar et al., 2019; Suman et al., 2016a) have also been found to accumulate 

in GI-tissues after high-LET IR exposure and might function as alternate signaling to 

drive high-LET IR-induced GI-tumorigenesis, rendering aspirin mediated reductions in 

PGE2 levels ineffective. Therefore, we postulate that aspirin at levels used in this study 

is reducing COX-related inflammation but other pro-inflammatory and pro-proliferative 

responses independent of COX/PGE2 are also being elicited after high-LET exposure to 

promote GI-tumorigenesis in Apc1638N/+ mice. However, further studies in the WT or Apc 
gene independent model of GI-cancer using various aspirin doses and duration against 

high-LET radiation are required for validation and to rule out any genotype-specific bias that 

may prevail in this study.

5. Conclusions

In summary, this study suggests that aspirin has no preventive effect against high-LET 

radiation-induced GI tumorigenesis in Apc1638N/+ mice. Although an effective reduction 

in serum PGE2 level was noted in aspirin treated group, however, deemed insufficient 

to reduce high-LET radiation-induced tumorigenesis due to its limited role in the tumor 

initiation process (Oshima et al., 1996). A multitude of molecular alterations caused 

by high-LET IR exposure such as, increase in chronic oxidative stress, persistent DNA 

damage and accumulation of pro-oncogenic SIR factors (Datta et al., 2012; Cheema et al., 
2014; Datta et al., 2016; Suman et al., 2018; Kumar et al., 2018b; Kumar et al., 2019; 

Suman et al., 2020) might undermine aspirin’s efficacy in preventing radiation-induced 

GI tumorigenesis. However, reductions in 28Si-induced PGE2 levels with aspirin use is 

encouraging and warrants further experimentation to optimize aspirin’s preventive efficacy 

in a drug combination setting to simultaneously target alternate tumorigenic pathways 

induced after high-LET IR exposure.
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GCR Galactic cosmic radiation

NSAID Non-steroidal anti-inflammatory drug

Apc Adenomatous polyposis coli gene
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Highlights

• High-LET ionizing radiation (IR) causes a dose-dependent increase in GI-

tumorigenesis.

• Dietary aspirin reduces serum PGE2 levels in a dose-dependent manner.

• Dietary aspirin reduces high-LET IR-induced serum PGE2 levels.

• Dietary aspirin has no preventive effect against high-LET IR-induced GI-

tumorigenesis.
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Figure 1. 
Schematic summary of the experimental approach to test chemo-preventive efficacy of 

dietary aspirin on high-LET radiation-induced GI-tumorigenesis.
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Figure 2. 
High-LET IR-induced GI-tumorigenesis in Apc1638N/+ mice. A) Mean intestinal tumor per 

mouse. B) Mean colonic tumor/mouse. C) Mean tumor clusters/mouse. D) Mean large size 

tumor/mouse in control, and 28Si-ion (10 and 50 cGy) irradiated animals. Bars represent 

mean ± SEM and * indicates p<0.05 compared to control whereas ** indicates p<0.05 

between irradiated groups.
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Figure 3. 
Effects of dietary aspirin (ASA) on serum prostaglandin E2 (PGE2) levels in Apc1638N/+ 

mice (n=6/group). A) Percentage change in PGE2 after human daily dose equivalent of 75 

mg, 150 mg, and 300 mg ASA. B) Percentage change in PGE2 after whole body 28Si-ion 

exposure. C) Percentage change in PGE2 in 10 cGy 28Si-ion exposed mice and effect of 

dietary ASA. D) Percentage change in PGE2 in 50 cGy 28Si-ion exposed mice and effect 

of dietary ASA. Bars represent mean ± SEM and * indicates p<0.05 compared to control 

whereas ** indicates p<0.05 between irradiated groups.
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Figure 4. 
Effect of dietary aspirin (ASA) on GI tumorigenesis in Apc1638N/+ mice (n=20/group). 

A) Intestinal tumor count/mouse. B) Colonic tumor count/mouse. C) Mean tumor clusters/

mouse. D) Mean large size tumor/mouse in control, ASA 75, 150, and 300 groups. Bars 

represent mean ± SEM and n.s. indicates no statistically significant difference among 

experimental groups.
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Figure 5. 
Effect of aspirin on high-LET IR-induced GI tumorigenesis in Apc1638N/+ mice (n=20/

group). A) Intestinal tumor count/mouse in control, ASA 75 mg, 28Si-ion (10 cGy), and 

ASA 75 + 28Si-ion exposed groups. B) Intestinal tumor number/mouse in control, ASA 

150 mg, 28Si-ion (10 cGy), and ASA 150 + 28Si-ion exposed groups. C) Intestinal tumor 

number/mouse in control, ASA 300 mg, 28Si-ion (10 cGy), and ASA 300 + 28Si-ion exposed 

groups. D) Intestinal tumor number/mouse in control, ASA 75 mg, 28Si-ion (50 cGy), and 

ASA 75 + 28Si-ion exposed groups. B) Intestinal tumor number/mouse in control, ASA 

150 mg, 28Si-ion (50 cGy), and ASA 150 + 50 cGy 28Si-ion exposed groups. C) Intestinal 

tumor number/mouse in control, ASA 300 mg, 28Si-ion (50 cGy), and ASA 300 + 28Si-ion 

exposed groups. All bars represent mean ± SEM and n.s. indicates no statistically significant 

difference.
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Table 1

Description of experimental groups. Mice were randomly assigned to 12 groups with either standard diet, three 

aspirin groups, or two IR groups as noted below.

IR\Diet Standard diet Aspirin 75 mg/day Aspirin 150 mg/day Aspirin 300 mg/day

Sham Control ASA 75 ASA 150 ASA 300

28Si 10 cGy 10 cGy ASA 75 + 10 cGy ASA 150 + 10 cGy ASA 300 + 10 cGy

28Si 50 cGy 50 cGy ASA 75 + 50 cGy ASA 150 + 50 cGy ASA 300 + 50 cGy
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