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Abstract

We investigated the imaging performance of a fast convergent ordered-subsets algorithm with 

subiteration-dependent preconditioners (SDPs) for positron emission tomography (PET) image 

reconstruction. In particular, we considered the use of SDP with the block sequential regularized 

expectation maximization (BSREM) approach with the relative difference prior (RDP) regularizer 

due to its prior clinical adaptation by vendors. Because the RDP regularization promotes 

smoothness in the reconstructed image, the directions of the gradients in smooth areas more 

accurately point toward the objective function’s minimizer than those in variable areas. Motivated 

by this observation, two SDPs have been designed to increase iteration step-sizes in the smooth 
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areas and reduce iteration step-sizes in the variable areas relative to a conventional expectation 

maximization preconditioner. The momentum technique used for convergence acceleration can 

be viewed as a special case of SDP. We have proved the global convergence of SDP-BSREM 

algorithms by assuming certain characteristics of the preconditioner. By means of numerical 

experiments using both simulated and clinical PET data, we have shown that the SDP-BSREM 

algorithms substantially improve the convergence rate, as compared to conventional BSREM and 

a vendor’s implementation as Q.Clear. Specifically, SDP-BSREM algorithms converge 35%−50% 

faster in reaching the same objective function value than conventional BSREM and commercial 

Q.Clear algorithms. Moreover, we showed in phantoms with hot, cold and background regions that 

the SDP-BSREM algorithms approached the values of a highly converged reference image faster 

than conventional BSREM and commercial Q.Clear algorithms.

Index Terms—

Image reconstruction; ordered-subsets; positron emission tomography; preconditioner; relative 
difference prior

INTRODUCTION

Positron emission tomography (PET) data are inherently count limited due to health 

consideration, basic physical processes, and patient tolerance. Moreover, these data must 

be reconstructed into images within a few minutes of acquisition. This creates a challenging 

situation in which vendors strive to produce high quality images in a clinically viable time 

frame. In this study, we introduce a method for accelerating the reconstruction of high 

quality PET images.

Over last 20 years, the non-penalized maximum-likelihood (ML) statistical approaches 

have become a preferred model for the reconstruction of PET [1], [2]. However, when 

iterated to full convergence, ML methods produce extremely noisy images, and are sensitive 

to small statistical perturbations in the data. Hence, these methods are seldom run to 

full convergence and iterations are stopped before fitting noise becomes unacceptable 

at the expense of excessive blur in the reconstructed images. It has been demonstrated 

that applications of penalized likelihood (PL) models that include a data fidelity term 

(Kullback-Leibler divergence) and a regularization term leads to improved quantification 

and better noise suppression, as compared to non-penalized reconstructions [3]. To reduce 

the computational expense, ordered-subsets expectation maximization (OSEM) algorithms 

proposed by Hudson and Larkin are widely used in unregularized PET image reconstruction 

[4]. However, OSEM is unsuitable for regularized image reconstruction leading to the 

development of relaxation [5], [6] and the block sequential regularized expectation 

maximization (BSREM) algorithm [7].

Initially, quadratic penalties were explored [8], [9], but they had resulted in over-smoothed 

edges and loss of details in the reconstructed images. Later, a number of other penalties were 

developed to address these problems but they often had undesirable properties including 

nonsmooth [10], [11], non-covex [12], or requiring additional hyper-parameters [13]. An 

example of such an approach is the total variation penalty that is able to preserve sharp 
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boundaries between low-variability regions [10], [14]. Thus, ability to deal with non-smooth 

priors became an urgent issue, However, only a few reconstruction algorithms have been 

able to combine the Poisson noise model and non-smooth priors [15]–[17].

In an alternative approach, Nuyts et al. [18] introduced the relative difference prior (RDP) 

that preserved high spatial frequencies in reconstructed images while still being smooth 

and convex. This RDP was adopted by General Electric (GE) Healthcare as the penalty 

term in their PL PET reconstruction model. The penalty term is controlled by a single 

user-defined parameter called beta. The GE Healthcare introduced a modified BSREM 

algorithm [8] to solve the PL model in their commercial clinical software, called Q.Clear, 

that is currently available on GE PET/CT scanners [3]. Other interesting methods, suitable 

for optimization with smooth penalties, include the optimization transfer descent algorithm 

(OTDA) [19], [20] and the preconditioned limited-memory Broyden-Fletcher-Goldfarb-

Shanno with boundary constraints algorithm (L-BFGS-B-PC) [9]. While these algorithms 

converge very rapidly, they represent a substantial departure from the BSREM algorithm 

complicating their implementation.

The choice of preconditioners in the algorithm is well known to strongly affect the 

convergence rate [9], [16], [21], [22]. The widely used preconditioners have been designed 

based on the EM matrix [16], [21]–[23] or the Hessian matrix [9]. As part of the 

BSREM convergence proof, Ahn and Fessler [8] presented the subiteration-independent 

preconditioner, which can be viewed as a uniform operator of the image for all subiteration. 

However, a subiteration-independent preconditioner is overly restrictive and may result 

in a slower convergence rate. We believe that a well-designed subiteration-dependent 

preconditioner (SDP) will accelerate the algorithm convergence.

In the present study, we propose a subiteration-dependent preconditioned BSREM (SDP-

BSREM) for the RDP regularized PET image reconstruction. We prove that it is convergent 

under certain assumptions imposed on the preconditioner. According to the smoothness-

promoting property of the RDP regularization in the reconstructed image, the directions 

of the gradients in smooth areas more accurately point toward the objective function’s 

minimizer than those in variable areas. Inspired by this observation, we propose two SDPs 

satisfying the assumptions needed for the convergence proof. We note that the momentum 

technique is a special case of SDP. We have used the numerical gradient of the image to 

measure its smoothness. These two SDPs achieve larger step-sizes in the smooth areas of 

the image and smaller step-sizes in the variable areas of the image. The proposed algorithms 

have been compared with BSREM for simulations and with the Q.Clear method with data 

acquired from a GE PET/CT. In simulations, two numerical phantoms were used. In the 

clinical comparisons, data from a whole-body PET patient and an American College of 

Radiology (ACR) quality assurance phantom (Esser Flangeless PET phantom) were used 

both with and without time-of-flight data.

This paper is organized in five sections. In section II, we first describe the RDP regularized 

PET image reconstruction model and the modified BSREM algorithm and then develop our 

new SDP-BSREM algorithm. In section III, proofs for convergence of SDP-BSREM are 

provided with and without an interior assumption and four SDPs satisfying the convergence 
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conditions are presented as well. Comprehensive comparisons of the results obtained for 

simulated and clinical data obtained by means of our proposed SDP-BSREM methods 

versus BSREM and Q.Clear are provided in section IV. The conclusions are presented in 

section V. Two appendices with additional details are also provided.

II. METHODOLOGY

In this section, we develop the SDP-BSREM algorithm for solving the RDP regularized PET 

image reconstruction model.

A. RDP Regularized PET Image Reconstruction Model

We denote by ℝ+ the set of all nonnegative real numbers, by ℝ+ +  the set of all positive 

real numbers, by ℕ the set of positive integers, and by ℕ0: = ℕ ∪ 0 . For p, q ∈ ℕ, we let 

A ∈ ℝ+
p × q denote the PET system matrix whose entries are the probability of detection of 

the positron annihilation gamma photon pairs emitted from a particular voxel containing 

PET radiotracer, and let γ ∈ ℝ+ +
p  denote the mean value of the background events produced 

by random and scatter coincidences. The relation of the radiotracer distribution f ∈ ℝ+
q

within a patient with the projection data g ∈ ℝ+
p  acquired by a PET scanner is described by 

the Poisson model

g = Poisson(Af + γ), (1)

where Poisson(x) denotes a Poisson-distributed random vector with mean x.

Model (1) may be solved by minimizing the fidelity term

F (f): = Af, 1p − ln(Af + γ), g , (2)

where 1p ∈ ℝp denotes the vector with all components 1, ln x: = lnx1, lnx2, …, lnxn
⊤ is 

the logarithmic function at a vector x ∈ ℝ+ +
n  and xi is the i-th component of x, and 

x, y : = ∑i = 1
n xiyi denotes the inner product of x, y ∈ ℝn. It is well-known that model 

(2) is ill-posed [24] and its solutions may result in over-fitting in reconstructed images. 

Regularization is often used to avoid the over-fitting problem. A commonly used regularized 

PET image reconstruction model has the following form:

argmin
f ∈ ℝ+

q
Φ(f),

(3)

where

Φ(f): = F (f) + βR(f), (4)

with β ∈ ℝ+ being the regularization parameter and R(f) representing the regularization 

term. In this study, we will consider the RDP [18] regularization term that is given by
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R(f): = ∑
j = 1

q
∑

k ∈ Nj

fj − fk
2

fj + fk + γR fj − fk + ϵ , (5)

where γR ∈ ℝ+ controls the degree of edge preservation, and Nj is the neighborhood of pixel 

j.

In model (5), a small constant ϵ > 0 is added to the denominator to avoid singularities when 

both fj and fk are equal to zero. By its definition, RDP is a function of both differences 

of neighboring pixels and their sums. The inclusion of the sums term makes RDP differ 

from conventional regularization terms and causes the regularizer to be activity-dependent. 

We note that the function Φ(f) is twice differentiable since both F (f) and R(f) are twice 

differentiable [16], [18]. The inclusion of a small constant ϵ in the denominator of RDP 

provides the objective function Φ with two useful properties (the proofs are provided in 

appendix A): (i) it is strictly convex under an assumption that A⊤g is a nonzero vector; and 

(ii) it has a Lipschitz continuous gradient on ℝ+
q .

B. Modified BSREM Algorithm

A modified BSREM [8] was adopted by GE Healthcare as the optimizer in the Q.Clear 

method [3] for solving the model (3). Here we describe and review the modified BSREM.

Minimization problem (3) is often solved by the gradient descent method. However, 

computing the whole gradient ∇Φ is computationally expensive. To alleviate this issue, 

the ordered-subsets (OS) algorithm was developed to accelerate its convergence [4]–[7]. 

For n ∈ ℕ, let ℕn: = 1, 2, …, n . For M ∈ ℕ, let ℐ: = Ii: i ∈ ℕM  be a collection of disjoint 

subsets of ℕp such that ∪i = 1
M Ii = ℕp. The partition ℐ is chosen as in [8]. According to the 

partition ℐ, we partition the system matrix A into M row sub-matrices Ai, and g and γ into 

M sub-vectors gi and γi, respectively, for i ∈ ℕM. We use |Ω| to denote the cardinality of set 

Ω. For i ∈ ℕM, we define

Φi(f): = Aif, 1 Ii − ln Aif + γi , gi + β
M R(f) . (6)

It follows that Φ(f) = ∑i = 1
M Φi f . An OS algorithm computes only one ∇Φi at each 

subiteration step.

A subiteration-independent preconditioned OS algorithm was proposed in [8]. The 

preconditioner is designed by using an upper bound of the solution set of minimization 

problem (3). It was proved in [8] that for any projection data g, there exists a constant U > 0 

such that the solution set S* of minimization problem (3) is contained in the bounded set

ℬ: = f :f ∈ ℝ+
q , 0 ⩽ fj ⩽ U, j ∈ ℕq . (7)
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That is, S* ⊂ ℬ. For f ∈ ℬ, a subiteration-independent diagonal preconditioner S(f) is 

defined as

S(f)jj: =
fj/pj  if 0 ≤ fj < U /2,
U − fj / pj  if U /2 ≤ fj ≤ U,

(8)

where pj are defined by

pj: =
A⊤1p j/M  if  A⊤1p j > 0,

1/M  if  A⊤1p j = 0,
 for j ∈ ℕq . (9)

Note that the preconditioner S is uniform for all iterations.

For a small t ∈ (0, U) and f ∈ ℝq, an operator Pt:ℝq ℬ is defined by

Pt(f)j: =
t  if fj ⩽ 0,
U − t  if fj ⩾ U,
fj  otherwise.

(10)

Using operator Pt, the modified BSREM algorithm [8] may be described as for k ∈ ℕ0, 

i ∈ ℕM,

fk, i = fk, i − 1 − λkS fk, i − 1 ∇Φi fk, i − 1 ,

fk, i = Pt fk, i ,
(11)

with fk, 0: = fk, fk + 1: = fk, M, where λk > 0 is the relaxation parameter. For simplicity of 

notation, we will refer to the modified form of BSREM simply as BSREM.

C. BSREM with Subiteration-Dependent Preconditioners

In this subsection we propose subiteration-dependent preconditioners (SDPs). To motivate 

them, we review the momentum approach. The momentum is an acceleration technique 

widely used in optimization [25]–[27]. The Nesterov momentum [25] has been combined 

with OS by Kim et al. [28] for CT image reconstruction. Recently, Lin et al. [22] 

successfully applied a different form of momentum to PET image reconstruction. However, 

no explicit convergence proof has been provided for the OS combined momentum methods. 

Instead, Kim et al. proved that the expectation of the successive steps converged, while Lin 

et al. proved convergence for the non-OS method. The momentum technique used in [22] 

can be described as follows: for k ∈ ℕ0, i ∈ ℕM,

fk, i = max fk, i − 1 − λkS fk, i − 1 ∇Φi fk, i − 1 , 0 ,

fk, i = 1 − αk, i fk, i − 1 + αk, if
k, i,

(12)
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where αk,i > 1 is the momentum sequence. Under an assumption that fk, i are non-negative, 

one can obtain

fk, i = fk, i − 1 − λkαk, iS fk, i − 1 ∇Φi fk, i − 1 . (13)

By letting Sk,i(f) := αk,iS(f), we may reinterpret Sk,i as an SDP and (13) as a BSREM 

algorithm with Sk,i. Inspired by this, we introduce SDPs by setting Sk,i(f) := diag(αk,i)S(f), 
where αk,i is a positive vector sequence and diag(y) denotes the diagonal matrix with the 

diagonal entries being the components of the vector y. Using the same notation as for 

BSREM above, we have arrived at the SDP-BSREM algorithm for solving model (3) given 

in Table I.

Bearing in mind the momentum concept defined in [22], it is clear that the iteration sequence 

provided in (13) is a special case of our proposed SDP-BSREM algorithm with αk,i := 

αk,i1q. For this reason, we expect that our proposed SDP-BSREM algorithm setting will 

allow us to choose an SDP to yield the convergence acceleration. We will evaluate its 

performance by means of numerical experiments to be presented in section IV.

III. CONVERGENCE OF SDP-BSREM ALGORITHM

In this section we present convergence properties of the SDP-BSREM algorithm. We also 

describe four specific SDPs that satisfy the convergence condition. To this end, we assume 

that the objective function Φ satisfies the hypothesis:

i. Φ has a unique minimizer on ℬ;

ii. Φ is convex and twice differentiable on ℬ;

iii. ∇Φi are Lipschitz continuous on ℬ for all i ∈ ℕM.

The use of SDPs results in scaled subset gradients with their sum inconsistent with 

the scaled full gradient. It complicates the convergence proof and requires additional 

assumptions on the preconditioner to make the inconsistencies asymptotically approach 

zero. For a general SDP, our proposed SDP-BSREM algorithm may not converge [8]. 

Nevertheless, by imposing certain assumptions on Sk,i, convergence to the desired optimum 

point can be ensured. For a SDP Sk,i(f) = diag(αk,i)S(f) with S(f) defined in (8), the required 

additional assumptions are as follows:

iv. The relaxation sequence satisfies ∑k = 0
∞ λk = ∞ and ∑k = 0

∞ λk
2 < ∞;

v. There exists a positive vector α such that limk ∞αk, i = α for all i ∈ ℕM;

vi. The vector series ∑k = 0
∞ λk α − αk, i  converge for all i ∈ ℕM.

Note that condition (iv) was imposed in [8], [29] for convergence proofs for relaxed OS 

algorithms. Conditions (v) and (vi) were imposed to overcome difficulties caused by the use 

of different preconditioners in different subiterations.
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We now state a lemma regarding the Lipschitz continuity properties of SDPs. The proof is 

included in Appendix B.

Lemma 1: If conditions (iii) and (v) are satisfied, then Sk, i(f)∇Φi(f) are uniformly bounded 

and Lipschitz continuous on ℬ with Lipschitz constants bounded above by a uniform 

constant, for all k ∈ ℕ0, i ∈ ℕM.

The inclusion of the operator Pt in the SDP-BSREM algorithm complicates the convergence 

proof. Here, we present our approach in dealing with this difficulty. Let intℬ denote the 

interior of ℬ. We prove the convergence of SDP-BSREM in two steps. We first prove it with 

the interior assumption fk, i ∈ intℬ for all k ∈ ℕ0, i ∈ ℕM, and then prove it by showing that 

the interior assumption holds true under certain conditions.

We now proceed the first step. If fk, i ∈ intℬ for all k ∈ ℕ0, i ∈ ℕM, then 

fk, i = Pt fk, i = fk, i and the iteration scheme can be formulated as

fk, i = fk − λk∑
l = 1

i
Sk, l fk, l − 1 ∇Φt fk, l − 1 . (14)

We first establish a technical lemma.

Lemma 2: Suppose conditions (iii) and (v) are satisfied. If limk ∞λk = 0, and fk, i ∈ intℬ, 

for all k ∈ ℕ0, i ∈ ℕM, then limk ∞ fk, i − fk = 0, for all i ∈ ℕM.

Proof: By Lemma 1, Sk, i(f)∇Φi(f), k ∈ ℕ0, i ∈ ℕM, are uniformly bounded on ℬ. This 

combined with limk ∞λk = 0 and (14) yields the desired result. ■

Let δk, i: = α − αk, i, δk: = maxi ∈ ℕM, j ∈ ℕq δj
k, i . We state a technical lemma whose proof is 

included in Appendix B.

Lemma 3: Suppose conditions (iii)-(vi) are satisfied and fk, i ∈ intℬ for all k ∈ ℕ0, i ∈ ℕM. 

If fj
k, i − 1 ∈ (0, U /2) for all i ∈ ℕM, then

fj
k − fj

k + 1 = λkfj
k αj

pj

∂Φ fk

∂fj
+ O δk + O λk . (15)

If fj
k, i − 1 ∈ U /2, U  for all i ∈ ℕM, then

fj
k − fj

k + 1 = λk U − fj
k αj

pj

∂Φ fk

∂fj
+ O δk + O λk . (16)
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We recall that a cluster point of a sequence fk is defined as the limit of a convergent 

subsequence of fk and state a lemma whose proof is included in Appendix B.

Lemma 4: If conditions (i)-(vi) are satisfied and fk, i ∈ intℬ for all k ∈ ℕ0, i ∈ ℕM, then (a) 

Φ fk  converges in ℝ, (b) there exists a cluster point f∗ of fk with S(f∗)∇Φ(f∗) = 0, and (c) 

such a cluster point f∗ described in (b) is a global minimizer of Φ over ℬ.

We are ready to prove convergence of fk and fk,i with the interior assumption.

Proposition 5: If conditions (i)-(vi) are satisfied and fk, i ∈ intℬ for all k ∈ ℕ0, i ∈ ℕM, then 

both fk and fk,i converge to the global minimizer of Φ on ℬ.

Proof: According to Lemma 4 (c), f∗ is a global minimizer of Φ over ℬ. Suppose there 

exists another cluster point f∗∗ ≠ f∗. By Lemma 4 (a), Φ(fk) converges in ℝ, which implies 

that Φ(f∗) = Φ(f∗∗). Then f∗∗ is also a minimizer of Φ(f), which is a contradiction since 

Φ(f) has a unique minimizer on ℬ. Then we obtain limk ∞fk = argminf ∈ ℬΦ(f). The 

convergence of fk,i follows from Lemma 2 and the convergence of fk. ■

We have shown that condition fk, i ∈ intℬ for all k ∈ ℕ0, i ∈ ℕM is sufficient for the 

convergence of SDP-BSREM algorithm. Next, we prove the convergence of SDP-BSREM 

without the interior assumption. The proof of convergence is completed by proving 

fk, i ∈ intℬ for all i ∈ ℕM and k > K for some K > 0. We now state a lemma to prove 

it.

Lemma 6: Suppose condition (iii) is satisfied. If αk,i is bounded and limk ∞λk = 0, then 

fk, i ∈ intℬ for all i ∈ ℕM and k > K for some K > 0.

Proof: It suffices to prove that fj
k, i ∈ (0, U) for all i ∈ ℕM, j ∈ ℕq, k > K, for some K > 

0. By condition (iii), ∂ / ∂fj Φi(f) is bounded over ℬ for all i ∈ ℕM, j ∈ ℕq. Combining 

this with the boundedness of αk,i, there exists c1 > 0 such that αj
k, i/pj ∂ / ∂fj Φi(f) ⩽ c1, 

for all i ∈ ℕM, j ∈ ℕq, k ∈ ℕ0, and all f ∈ ℬ. Because limk ∞λk = 0, there exists K > 0 

such that λk < 1/c1 for all k > K, so that λkαj
k, i/pj ∂ / ∂fj Φi fk, i − 1 < 1. Hence, for k > 

K, i ∈ ℕM, if fj
k, i − 1 ∈ (0, U /2), the preconditioner Sk, i fk, i − 1

jj = αj
k, ifj

k, i − 1/pj gives rise 

to fj
k, i = fj

k, i − 1 1 − λkαj
k, i/pj ∂ / ∂fj Φi fk, i − 1 , from which we can show that fj

k, i ∈ (0, U). 

Likewise, if fj
k, i − 1 ∈ U /2, U , the preconditioner S fk, i − 1

jj = αj
k, i U − fj

k, i − 1 /pj gives 

that U − fj
k, i = U − fj

k, i − 1 1 + λkαj
k, i/pj ∂ / ∂fj Φi fk, i − 1 , from which we can show that 

fj
k, i ∈ (0, U). ■

We now arrive at the following theorem for the convergence of SDP-BSREM algorithm 

without an interior assumption.
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Theorem 7: If conditions (i)-(vi) are satisfied, then fk,i converges to the global minimizer of 

Φ on ℬ.

Proof: We have that limk ∞λk = 0 and αk,i is bounded from conditions (iv) and (v) 

respectively. Thus, by Lemma 6, there exists K > 0 such that fk, i ∈ intℬ for all k > K, 

i ∈ ℕM. Then the proof follows from Proposition 5. ■

We next propose four specific SDPs which satisfy the convergence conditions (iv)-(vi). For 

Sk,i(f) = diag(αk,i)S(f), let αk, i: = αk, iνk, i, where αk,i is a scalar sequence and νk,i is a vector 

sequence to be determined. Other, potentially better, choices of αk,i are left as future work.

In this case, inspired by momentum techniques [22], [25], we consider the following two 

choices of αk,i. This first one is derived from Nesterov momentum [25]:

αk, i: = 1 + tk, i − 1 /tk, i + 1, (17)

Where tk, i + 1: = 1 + 1 + 4tk, i
2 /2, t0, 1: = 1 and tk + 1, 1: = tk, M + 1, k ∈ ℕ0, i ∈ ℕM. The 

second one has the following form:

αk, i: = ϱ(kM + i − 1) + δ2 / kM + i − 1 + δ1 , (18)

for k ∈ ℕ0, i ∈ ℕM, where ϱ, δ1 and δ2 are positive parameters. We notice that this αk,i is an 

extension of the momentum proposed in [22].

The motivation for the design of νk,i is presented as follows. The use of different step-

sizes for different regions in the image can accelerate the convergence of the algorithm. 

The diagonal nonnegative definite preconditioner plays an important role in rescaling the 

step-sizes of the algorithm. Hence, a good preconditioner can significantly accelerate the 

convergence of the algorithm. We propose a type of preconditioner that is related to the 

regularization term that promotes smoothness in the reconstructed image. Our goal is to 

find the minimizer of the objective function which consists of the fidelity term and the 

regularization term. The fidelity term estimates the fitting quality of the reconstructed 

image to the data and the regularization term defined in (5) promotes smoothness in the 

reconstructed image. Smaller fidelity term makes the reconstructed image more consistent 

with the data and smaller regularization term leads to a smoother reconstructed image.

Suppose f∗ is a minimizer of the objective function Φ and the iteration scheme of 

the algorithm converges to f∗. Let Is and Iv be the smooth and variable areas of f∗, 

respectively. Suppose ∇IsΦ and ∇IvΦ are the subsets of ∇Φ defined in the areas Is and 

Iv, respectively. Then for the smooth areas Is, the descent directions of the fidelity term and 

the regularization term are consistent whereas for the variable areas Iv, the descent directions 

of the fidelity term and the regularization term are inconsistent. Thus the direction of ∇IsΦ

more accurately points toward the minimizer than the direction of ∇IvΦ. Therefore, we 
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conclude that the directions of ∇IsΦ fk, i  and ∇IsΦ fk, i + 1  are more consistent than the 

directions of ∇IvΦ fk, i  and ∇IvΦ fk, i + 1 . We illustrate this conjecture (the subset gradient 

is used in practice) via numerical experiments (see Fig. 2). The preconditioner is designed 

to achieve larger iteration step-sizes in the smooth areas Is and smaller iteration step-sizes 

in the variable areas Iv. The numerical gradient (the gradient function in Matlab) of f∗ 

is applied to measure the smoothness degree of the image f∗. Then larger and smaller step-

sizes will be used in the areas having smaller and larger numerical gradients, respectively.

Suppose f ∈ ℝ+
q1q2 × 1 is a 2D image with size q1 × q2. Let mat f ∈ ℝ+

q1 × q2 be the 

matrix form of f. Using the gradient function in Matlab, we compute the gradients 

of mat(f) along the x and y directions, namely, gradx(mat(f)) and grady(mat(f)). Let 

grad f : = gradx mat f 2 + grady mat f 2, where the square and square root operations 

are element-wise. For PET patients data, the minimizer f∗ is unknown and we use fk,i 

to approximate f∗. Based on the consideration that areas with larger numerical gradients 

should have smaller step-sizes, we first let μk, i: = max 0.01, grad fk, i /mean fk, i , where 

mean(f): = ∑j = 1
q fj/q is used to normalize the fk,i. Instead of directly letting νk,i be the 

1/µk,i, we define a projection operator to avoid too large or too small step-sizes. For two 

positive numbers νm < νM, and f ∈ ℝ+
q , a projection operator Pνm

νM :ℝq ℝq is defined by 

Pνm
νM f j: = min νM, max fj, νm .

Let Jk, i: = kM + i, k ∈ ℕ0, i ∈ ℕM. For 0 < ν1 < ν2, and 0 ⩽ J0 ⩽ J1: = k1M + i1, the νk, i is 

determined by

νk, i: =

1q  if Jk, i ⩽ J0,

Pν1
ν2 mean μk, i /μk, i  if J0 < Jk, i ⩽ J1,

νk1, i1  if Jk, i > J1 .

(19)

For the first J0 subiterations, the νk,i is set to the identity vector since the approximation 

of fk,i to f∗ is poor. The approximation becomes better as the iteration continues, hence 

different step-sizes for different regions of the image are used for J0 < Jk,i ≤ J1. After J1-th 

subiteration νk,i is then fixed due to improved approximation. The preconditioners Sk,i(f) 
= S(f)diag(αk,iνk,i) are denoted by P1 and P2 depending on αk,i defined in (17) and (18) 

respectively. The momentum-like preconditioners Sk,i(f) = S(f)diag(αk,i1q) are denoted by 

M1 and M2 depending on αk,i defined in (17) and (18) respectively. Then we have the 

following theorem. The proof can be found in the appendix B.

Theorem 8: The SDP-BSREM algorithm with Φ defined in (4), and with relaxation 

λk: = λ0/(ak + 1), λ0, a > 0, and preconditioner P1, P2, M1, or M2 is convergent.
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IV. NUMERICAL RESULTS

In this section, we present results of evaluations of the SDP-BSREM algorithms 

performance obtained by means of numerical experiments using both simulated and clinical 

PET data, in comparison with BSREM and with the clinical version of BSREM (Q.Clear, 

GE).

A. Simulation Setup

The algorithms were implemented using a 2D PET simulation model developed in the 

Matlab environment [22], [30]. The projection matrix, based on a single detector ring of a 

GE D710 PET/CT, was built using a ray-driven model with 32 parallel rays per detector 

pair. Cylindrical detector ring, consisting of 576 detectors whose width are 4 mm, was 

applied. The field of view (FOV) was set to 300 mm and 288 projection angles were used 

to reconstruct a 256×256 image with pixel size 1.17 mm×1.17mm. The true count projection 

data were obtained by forward projecting the phantom convolved in image space with an 

idealized point spread function (PSF). The PSF was a shift-invariant Gaussian function with 

full width at half maximum (FWHM) equal to 6.59 mm [31]. Uniform water attenuation, 

with attenuation coefficient 0.096 cm−1, was simulated using the PET image as support. 

Scatter was simulated by adding highly smoothed and scaled projection of the phantom 

to the attenuated image sinograms. The scaling factor was equal to the estimated scatter 

fraction SF := S/(T + S), where T and S are true and scatter counts respectively [32]. 

Random counts were simulated by adding a uniform distribution to the true and scatter count 

distributions scaled by a random fraction RF := R/(T +S +R), where R is the random count 

[32]. The total count was defined as TC := T +S+R. In the simulations, it was TC = 6.8×106 

for high count data and TC = 6.8×105 for low count data. In both cases SF = RF = 0.25. The 

individual noise realizations were generated by adding the Poisson noise to the total count 

distribution. The same system matrix was used to simulate the data and to reconstruct them.

To investigate the convergence acceleration and its impact on reconstructed images fidelity, 

two figures-of-merit were computed: the objective function Φ fk  and the normalized root 

mean square difference (NRMSD). The region of interest (ROI) based NRMSD is defined 

by ∑j ∈ Ω fj
k − fj

∞ 2/ ∑j ∈ Ω fj
∞ 2

, where f∞ is the converged image at 1000 iterations 

by BSREM algorithm with 24 subsets in simulations, and Ω is the ROI. In the simulations 

the global NRMSD is obtained by setting the ROI as the whole image.

Two 256×256 numerical 2D phantoms shown in Fig. 1 were used in simulations. The brain 

phantom [30] was obtained from a high quality clinical PET image. The uniform phantom 

consists of 4 uniform hot spheres and 2 uniform cold spheres with distinct radii: 4, 6, 8 

(cold), 10 (cold), 12, 14 pixels. The contrast ratio for the cold and hot spheres are 0 : 1 and 

1 : 10, respectively. All simulations were performed in a 64-bit Windows 10 OS laptop with 

Intel Core i7–8550U Processor at 1.80 GHz, 16 GB of DDR4 memory and 512 GB SATA 

SSD.

The parameter t in Pt was set to 10−4. The constant ϵ was set to 10−12. The regularization 

parameter β in model (3) was set to 0.1 and 0.8 for high and low count data respectively. 
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In RDP regularization term, the parameter γR was set to 2 and 8-point neighborhood was 

considered. The initialization f0 was set to 1q to examine the setting of νk,i. We used 

the relaxation sequence defined by λ0/(ak + 1), a > 0. In all simulation experiments, for 

simplicity, we empirically set λ0 = 1, J0 = 3, J2 = 1000 and δ1 = δ2. Other parameter values, 

shown in Table II, were chosen based on the performance of objective function value.

B. Simulation Results

1) Comparison of Gradient Consistency: To measure the directional consistency 

of two vectors, we computed the angle between them. The angle between vectors v1 

and v2 is defined as θ v1, v2 : = arccos v1, v2 / v1 2 v2 2 . We define the smooth areas 

sequence by Is
k, i: = j ∈ ℕq:grad fk, i

j < 0.01 ⋅ mean fk, i , and the variable areas sequence 

by Iv
k, i: = j ∈ ℕq:grad fk, i

j > 0.2 ⋅ mean fk, i . In order to estimate the consistency 

of ∇Isk, iΦi − 1 fk, i − 1  and ∇Isk, iΦi fk, i , we computed the angle between them. For 

smooth areas, we define the angle sequence by θk, i: = θ ∇Isk, iΦi − 1 fk, i − 1 , ∇Isk, iΦi fk, i , 

and the average angle in each iteration by θk: = ∑i = 1
M θk, i/M, where Φ0: = ΦM. 

Similarly, for variable areas, we computed θk, i: = θ ∇Ivk, iΦi − 1 fk, i − 1 , ∇Ivk, iΦi fk, i  and 

θk: = 1
M ∑i = 1

M θk, i. In Fig. 2, we observed that for SDP-P1 and SDP-P2, the angle and 

average angle in smooth areas were smaller than those in the areas with more variability. 

This is consistent with our conjecture that the directions of gradients in the smooth areas 

more accurately point toward the minimizer than those in the variable areas. Hence, larger 

step-sizes in the smooth areas and smaller step-sizes in the variable areas are reasonable.

2) Comparison of Preconditioners: In order to reveal the improvement due to the 

application of a preconditioner, as compared to the use of a momentum, we compared 

SDP-BSREM algorithm with four different preconditioners: P1, P2, M1, and M2, where 

M1 and M2 are surrogates of momenta. The parameter a in SDP-M1(12) and SDP-M1(24) 

was set to 1/50 and 1/6, respectively. And the parameters a, ϱ, δ1 in SDP-M2(12) and 

SDP-M2(24) were set to 1/15, 3, 1 and 1/5, 2.6, 0.5, respectively. In Fig. 3, one can observe 

that SDP-P1 and SDP-P2 outperform SDP-M1 and SDP-M2, in reaching the same objective 

function value, by 25–30% and 25%, respectively.

3) Comparison of SDP-BSREM with BSREM: In this sub-section, we analyzed the 

performance of SDP-BSREM algorithms compared to the BSREM algorithm. First, we 

showed the global NRMSD for all the algorithms, with 12 and 24 subsets, in Fig. 4, using 

the brain phantom. It showed that all algorithms converged to the same solution for both 

low and high count data. Further, this figure showed that SDP-P1 and SDP-P2 outperformed 

BSREM with respect to global NRMSD. To analyze convergence acceleration, we showed 

the objective function values of each algorithm in Fig. 5. In this figure, one can observe 

that both proposed algorithms, SDP-P1 and SDP-P2, outperform the BSREM algorithm, in 

reaching the same objective function value, by roughly a factor of two for all cases: 12 and 

24 subsets for both low and high count data using the brain phantom.
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Next, we examined the local convergence performance of SDP-BSREM algorithms by ROI 

based NRMSD in 8 different ROIs with different contrast ratios in the reconstructions of the 

uniform phantom. High count data and 24 subset were used in this experiments. In Fig. 6, 

we observed that the proposed SDP-P1 and SDP-P2 algorithms converged fast than BSREM 

algorithm in all 8 ROIs.

C. Clinical Results—The reconstructions were performed with our SDP-BSREM 

algorithm with P2 preconditioner and with commercial Q.Clear by means of the GE toolbox 

[33] with the penalty weight (β) set to the default value of 350. Because the 2D-projectors 

used in the simulations and 3D-projectors used in clinical data reconstructions were scaled 

differently, the penalty values used in respective reconstructions differed substantially.

To mimic the GE’s clinical implementation of Q.Clear, 25 and 8 iterations were used for 

non-TOF and TOF data, respectively, with 24 subsets in the experiments. For the same 

reason we initialized both the non-TOF and TOF reconstructions using OSEM with 2 

iterations and 24 subsets. The reconstructions with TOF data were further initialized using 3 

iterations with 24 subsets of non-TOF algorithm. This gives a more clinically realistic view 

of the performance, but at the cost of being able to isolate TOF performance.

The parameter values are shown in Table III. For simplicity, since good initializations were 

used, we set J0 = 0 and J1 = 1000. The other algorithmic parameters were found via an 

iterative golden search procedure using a single bed position (centered on the Derenzo 

region) from an ACR PET phantom [35] with similar count characteristics as the patient’s 

data. Using this phantom each parameter was sequentially optimized with 5% tolerance and 

then used in search for the next parameter until parameter values ceased to change (∼3 

iterations).

In Fig. 8 we show convergence, via the objective function value as a function of 

iteration for non-TOF/TOF data, for an 18F-FDG whole-body PET clinical patient (shown 

in Fig. 7a). This data was obtained from 8 bed positions acquired on a GE D710 

PET/CT. The nominal administered activity and post-administration acquisition were 444 

MBq and 1-hour, respectively, with 3-minute dwell times and 25% overlap, resulting in 

[4.1/3.4/4.2/4.5/4.6/3.8/3.1/2.6] × 107 total counts, where the bolded numbers are from the 

bed positions 4 and 6 shown in Fig. 8.

We observed that our SDP-BSREM method outperformed the Q.Clear algorithm, in 

reaching the same objective function value, by 40–50% and 35–50% for non-TOF and TOF 

data, respectively. We note that both the clinical 3D projection and penalty operator have 

much greater computational complexity than the convergence acceleration scheme described 

in section III. Hence, the increased computational cost required for the use of the SDP is 

negligible.

To evaluate the local convergence, TOF data from a quarterly ACR quality assurance test 

was used. Following ACR guidelines [34] the activity corresponded to a nominal 444 MBq 

(12 mCi) of 18F-FDG administration used at MSKCC. The upper proton of this phantom 

contains 8 regions (3 cold, 4 hot, and background) with nominal contrast ratios of 0:1 
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and 2.5:1 for the cold and hot cylinders, respectively. ROI were defined using the cylinder 

boundaries from registered CT images. Using the methodology described by Kim et al. [36], 

for each ROI we measured the NRMSD, where thef∞ in NRMSD is the converged image at 

300 iterations by Q.Clear without subsets. These reconstructions used the same parameters 

as those used in the whole body patient reconstructions (i.e., J0 = 0, J1 = 1000 and Table III). 

The results are shown in Fig. 9. For each ROI, the SDP-BSREM method converged to f∞ 

faster than Q.Clear.

V. CONCLUSION

In this paper, we have presented the SDP-BSREM algorithms with two SDPs and their 

global convergence theorems. The two SDPs were designed based on the smoothness-

promoting property in the reconstructed images of the regularization term. We tested these 

algorithms using both simulated and clinical PET data. Using two simulated phantoms, our 

numerical studies showed that, for solving the RDP regularized PET image reconstruction 

model, our proposed algorithms converged more quickly than BSREM. Similarly, when 

using clinical patient and phantom PET data, our proposed algorithm SDP-P2 outperformed 

Q.Clear. We plan to test the SDP-BSREM algorithm on more varied data sets acquired under 

a wide range of conditions seen in the clinic
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APPENDIX A

This appendix includes the proof of strict convexity and Lipschitz continuous gradient of the 

objective function Φ.

Proposition 9: If A⊤g ≠ 0, then the objective function Φ(f) in (4) is strictly convex on ℝ+
q .

Proof: From (2), the gradient of fidelity term F is given by ∇F = A⊤ 1p − g/(Af + γ) . Then 

the Hessian matrix of F can be computed as follows:

∇2F (f) = A⊤GA (20)

with G a diagonal matrix and G = diag(g/(Af + γ)2). The first-order partial derivative of the 

RDP term R(f) is given by
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∂R
∂fj

= 2 ∑
k ∈ Nj

fj − fk γR fj − fk + fj + 3fk + 2ϵ
fj + fk + γR fj − fk + ϵ 2 . (21)

Then we have the second-order partial derivative of R as follows:

∂2R
∂fj∂fk

=

∑
l ∈ Nj

4 2fl + ϵ 2

fj + fl + γR fj − fl + ϵ 3  if k = j,

− 4 4fjfk + 2ϵ fj + fk + ϵ2

fj + fk + γR fj − fk + ϵ 3  if k ∈ Nj,

0  otherwise. 

(22)

For any 0 ≠ x ∈ ℝq, ignoring the zero entries of ∇2R, we obtain

x⊤∇2Rx = ∑
j = 1

q
∂2R
∂fj

2 xj2 + ∑
j = 1

q
∑

k ∈ Nj

∂2R
∂fj∂fk

xjxk . (23)

By (22) and (23), we have

x⊤∇2Rx = ∑
j = 1

q
∑

k ∈ Nj

2 2fk + ϵ xj − 2fj + ϵ xk
2

fj + fk + γR fj − fk + ϵ 3 . (24)

We can see that x⊤∇2Rx   ⩾ 0 and for any x ≠ 0, x⊤∇2Rx = 0 if and only if there 

exists a nonzero constant c, such that x = c(2f + ϵ). For any x = c(2f + ϵ) ≠ 

0, we have x⊤∇2Fx = c2 G1/2A(2f + ϵ) 2
, thus x⊤∇2Fx > 0 by using A⊤g ≠ 0. Since 

∇2Φ(f) = ∇2F (f) + β ∇2R(f), one can obtain that x⊤∇2Φx > 0 for all x ≠ 0. Then Φ is 

strictly convex on ℝ+
q . ■

Proposition 10: The objective function Φ(f) in (4) has a Lipschitz continuous gradient on 

ℝ+
q .

Proof: From (20), one can obtain that ∇2F 2 ⩽ A 2
2 g ∞/γmin where γmin > 0 is the 

minimum entry of γ. For any x ∈ ℝq with x 2 = 1 and f ∈ ℝ+
q , let ℎ(f): = x⊤∇2R(f)x. 

From (24), we know that h(f) is continuous on ℝ+
q  and lim f 2 ∞ℎ(f) = 0. Thus 

there exists C1 > 0 such that ℎ(f) ⩽ C1 for any x with x 2 = 1. Then we have 

∇2R 2 ⩽ C1 which, when combined with the boundedness of ∇2F 2, implies that 
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∇2Φ 2 ⩽ A 2
2 g ∞/γmin + C1. Using Lemma 1.2.2 in [37], one can obtain that ∇Φ(f) is 

Lipschitz continuous with constant C : = A 2
2 g ∞ / γmin + C1 on ℝ+

q . ■

APPENDIX B

This appendix includes proofs of Lemma 1, Lemma 3, Lemma 4, and Theorem 7. Here is 

the proof of Lemma 1.

Proof: We present only a proof of the Lipschitz continuity and the uniform boundedness 

can be shown in a similar manner. For any f, f ∈ ℬ, we consider the quantities 

Δ: = Sk, i(f)∇Φi(f) − Sk, i(f)∇Φi(f), Δ1: = ∇Φi(f) − ∇Φi(f) and Δ2: = Sk, i(f) − Sk, i(f).

By the triangle inequality and the Cauchy–Schwarz inequality, we have that

Δ 2 ⩽ Sk, i(f) 2 Δ1 2 + ∇Φi(f) 2 Δ2 2 . (25)

According to condition (v), αk,i is bounded. This together with the definition of S(f) implies 

that Sk,i(f) := diag(αk,i)S(f) is bounded for all k ∈ ℕ0, i ∈ ℕM and f ∈ ℬ. By condition (iii), 

there exists c2 > 0 such that for all k ∈ ℕ0, i ∈ ℕM

Sk, i(f) 2 Δ1 2 ⩽ c2 f − f 2 . (26)

We next prove that Sk,i(f) are Lipschitz continuous on ℬ with Lipschitz constants 

bounded above by a constant. For any f, f ∈ ℬ, if both fj, fj are in [0, U/2) or 

in [U/2, U ], then Sk, i f jj − Sk, i(f)jj = αj
k, i/pj ⋅ fj − fj . If fj and fj are not in the 

same interval, without lose of generality, assuming fj ∈ 0, U /2 , fj ∈ U /2, U , then 

fj − U − fj ⩽ fj − fj . Therefore, one can get Sk, i f jj − Sk, i f jj ⩽ αj
k, i/pj ⋅ fj − fj . 

Thus, Δ2 2 ⩽ αk, i 2/p0 f − f 2, where p0: = min pj: j ∈ ℕq . Since αk,i and ∇Φi(f) are 

bounded and p0 > 0 there exists a constant c3 > 0 such that for all k ∈ ℕ0, i ∈ ℕM,

∇Φi(f) Δ2 2 ⩽ c3 f − f 2 . (27)

Let L := c2 + c3. It follows from (25), (26) and (27) that Δ2 2 ⩽ L f − f 2. That is, 

Sk, i(f)∇Φi(f) are Lipschitz continuous with Lipschitz constants bounded above by L for all 

k ∈ ℕ0, i ∈ ℕM. ■

The proof of Lemma 3 is presented as follows.

Proof: Let bk, i: = diag α − δk, i ∇Φi fk, i − 1  for k ∈ ℕ0, i ∈ ℕM. For fj
k, i − 1 ∈ (0, U /2), 

i ∈ ℕM, we have that Sk, i fk, i − 1
jj = αj − δj

k, i fj
k, i/pj. By assumption, 
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fk, i = Pt fk, i = fk, i. The definition of fk,i yields fj
k, i = fj

k, i − 1 1 − λk/pjbj
k, i

, which 

implies fj
k + 1 = fj

kΠi = 1
M 1 − λk/pjbj

k, i
. By the boundedness of bj

k, i/pj, we have 

fj
k + 1 = fj

k 1 − λk/pj∑i = 1
M bj

k, i + O λk
2 . We next estimate ∑i = 1

M bk, i. By definition, 

bk, i = diag(α)∇Φi fk, i − 1 − diag δk, i ∇Φi fk, i − 1 . To estimate the first term of the last 

equation, we write ∇Φi fk, i − 1 = Δk, i + ∇Φi fk , where Δk, i: = ∇Φi fk, i − 1 − ∇Φi fk . It 

follows that ∑i = 1
M ∇Φi fk, i − 1 = ∑i = 1

M Δk, i + ∇Φi fk . By condition (iii), there exists c4 > 

0 such that Δk, i
2 ⩽ c4 fk, i − 1 − fk

2. Since fk, i ∈ intℬ by (14) and Lemma 1, there exists 

a constant c5 > 0 such that

fk, i − 1 − fk
2 ⩽ c5Mλk . (28)

Hence Δk, i
2 = O λk  and this gives that ∑i = 1

M ∇Φi fk, i − 1 = ∇Φ fk + O λk . Moreover, 

by condition (iii), we have that ∑i = 1
M diag δk, i ∇Φi fk, i − 1

2 = O δk . Therefore, 

∑i = 1
M bk, i = diag(α)∇Φ fk + O λk + O δk . Thus we obtain (15).

Equation (16) may be shown in a similar manner. Indeed, for fj
k, i − 1 ∈ U /2, U , 

i ∈ ℕM, we have that Sk, i fk, i − 1
jj = αj

k, i U − fj
k, i /pj. The definition of fk,i yields that 

U − fj
k + 1 = U − fj

k Πi = 1
M 1 + λk/pjbj

k, i . This equation with similar arguments leads to 

(16). ■

The proof of Lemma 4 is presented as follows.

Proof: We first prove part (a). Let H(f) denote the Hessian matrix of Φ(f), ‘⊙’ denote 

the component-wise multiplication of two vectors, and hk: = fk + 1 − fk. By the Taylor 

expansion, we have that

Φ fk + 1 = Φ fk + ∇Φ fk ⊤hk + Rk, (29)

where Rk: = hk ⊤H fk + θ ⊙ hk hk, for some vector θ ∈ ℝ+
q  with θj ∈ (0, 1) for all j ∈ ℕq. 

We now estimate Rk. By condition (iii), ∇Φ(f) is Lipschitz continuous. Hence H(f) is 

bounded on ℬ. Then we have Rk = O hk
2
2

. We next evaluate the term hk. For notation 

simplicity, we let ek, i: = Sk, i fk ∇Φi fk − Sk, i fk, i − 1 ∇Φi fk, i − 1 , and ek: = ∑i = 1
M ek, i. 

By Lemma 1, we have ek, i 2 ⩽ L fk, i − 1 − fk
2. This combined with (28) implies that 

ek, i 2 = O λk , and thus ek 2 = O λk . By assumption, fk, i ∈ intℬ, from (14), we obtain 

that
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hk = − λk∑
i = 1

M
Sk, i fk ∇Φi fk + λkek . (30)

Let dk: = S fk ∑i = 1
M diag δk, i ∇Φi fk , and Jk: = ∇Φ fk ⊤diag(α)S fk ∇Φ fk . Then 

dk
2 = O δk  by condition (v) and Lemma 1, and Jk ⩾ 0 by the positive semi-definiteness of 

diag(α)S(fk). Since Sk,i(fk) = diag(α − δk,i)S(fk), then we have

∑
i = 1

M
Sk, i fk ∇Φi fk = diag(α)S fk ∇Φ fk − dk . (31)

Combining this with (30), we have

hk = − λkdiag(α)S fk ∇Φ fk + λk dk + ek . (32)

By the boundedness of diag(α)S(f)∇Φ(f) and the norm of ek and dk, we have hk
2 = O λk

and hence, Rk = O λk
2 . This combined with (29), (32) and the boundedness of ∇Φ(f) yields 

that

Φ fk + 1 = Φ fk − λkJk + O λkδk + O λk
2 . (33)

For s ∈ ℕ, summing both sides of (33) for k from 0 to s, we obtain that

Φ fs + 1 = Φ f0 + ∑k = 0
s −λkJk + O λkδk + O λk

2 . (34)

We now prove the convergence of the right hand side of (34). By condition (vi), ∑k = 0
∞ λkδk, i

is convergent, and hence ∑k = 0
∞ λkδk is convergent. Notice the facts we have in hand: (i) 

∑k = 0
∞ λk

2 < ∞(by condition (iv)); (ii) the convergence of ∑k = 0
∞ λkδk, it remains to show that 

∑k = 0
∞ λkJk is convergent. In view of the facts (i), (ii) and the boundedness of Φ (f) on ℬ, 

the partial sum ∑k = 0
s λkJk is bounded, which combined with its monotonicity λkJk ⩾ 0

implies its convergence.

We next prove part (b). Since for each k, Jk ≥ 0, there exists a subsequence Jkn

such that limn ∞Jkn = 0. In fact, assume to the contrary that there exists ϵ0 > 0 and 

K0 ∈ ℕ+ such that Jk ⩾ ϵ0, for all k > K0. Because ∑k = 0
∞ λk = ∞, by condition (iv), 

and λk > 0, we would have ∑k = 0
s λkJk ⩾ ϵ0∑k = 0

s λk ∞, as s ∞, a contradiction. 

Moreover, since fkn is bounded, there exists a convergent subsequence fkn′  having the limit 
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f∗ ∈ ℬ. Thus, ∇Φ f* ⊤diag(α)S f* ∇Φ f* = limn ∞Jkn′ = 0. Letting rj: = ∂ / ∂fj Φ f*

and sj: = S f* jj, the last equation yields ∑j = 1
q αjsjrj2 = 0. Since sj ⩾ 0 and αj > 0, we 

have for all j ∈ ℕq that αjsjrj2 ⩾ 0, which implies that sjrj = 0 for all j ∈ ℕq. That is, 

S f* ∇Φ f* = 0.

Finally, we show part (c). According to [38, Page 203], it suffices to prove that for each 

j ∈ ℕq, (i) if 0 < fj* < U, then rj = 0; (ii) if fj* = 0 then rj ⩾ 0; and if fj* = U, then rj ⩽ 0. Case 

(i) clearly follows from part (b), from which we have sjrj = 0 for all j ∈ ℕq. By the definition 

(8) of S(f), sj > 0 for 0 < fj* < U, and thus, rj = 0.

It remains to prove case (ii). To this end, we Let J1: = j′ ∈ ℕq:fj′* = 0, rj′ < 0 , 

J2: = j″ ∈ ℕq:fj″* = U, rj″ > 0 , J: = J1 ∪ J2 and show J = 0. Assume to the contrary 

that J ≠ 0. Then, either J1 ≠ 0 or J2 ≠ 0. Assume J1 ≠ 0, then for any j′ ∈ J1, 

since ∇Φ(f) is continuous at f∗, there exists δ ∈ (0, U/4) such that for all 

f ∈ ℬδ: = f ∈ ℬ: f − f* 2 < δ , there holds ∂ / ∂fj′ Φ(f) < 0. By Lemma 2, there exists 

K1 ∈ ℕ such that for k > K1, fk, i − 1 − fk
2 < δ. Then for k > K1, if fk ∈ ℬδ, we have 

fk, i − 1 − f* 2 < 2δ < U /2, and hence, fj′
k, i − 1 ∈ (0, U /2) for all i ∈ ℕM, j′ ∈ J1. In this 

case, Sk, i fk, i − 1
j′j′ = αj′

k, ifj′
k, i/pj′ for all i ∈ ℕM, and hence Lemma 3 ensures that (15) 

holds. Since ∂ / ∂fj′ Φ fk < 0 for fk ∈ ℬδ and λk, δk 0 as k ∞, then there exists K2 

> K1 such that if k > K2 and fk ∈ ℬδ, we have fj′
k + 1 > fj′

k  for any j′ ∈ J1. Therefore, 

for k > K2, if fk ∈ ℬδ, then we have fj′
k + 1 > fj′

k , for any j′ ∈ J1. Similarly, if J2 ≠ 0, for 

any j″ ∈ J2, there exists K3 > K2 such that for k > K3, if fk ∈ ℬδ, then (16) ensures that 

fj″
k + 1 > fj″

k .

Since limn ∞fkn′ = f*, there exists K4 > K3 such that if kn′ > K4, fkn′ ∈ ℬδ Suppose 

kn0′ > K4 for some n0. Let tn: = max k:K4 < k < kn + n0′ , fk ∉ ℬδ . If for some n, fk ∈ ℬδ

for all K4 < k < kn + n0′ , set tn := K4, and hence tn ⩾ K4. Clearly, we have fk ∈ ℬδ if 

tn + 1 ⩽ k ⩽ kn + n0′ . Moreover, tn is a monotone increasing sequence. Then, either (a)

limn ∞tn = t0 ⩾ K4, (b)limn ∞tn = + ∞. If it is the case (a), then fk ∈ ℬδ for all k > 

t0. Thus, for m > l > t0 that fj′
m > fj′

l > 0 for j′ ∈ J1. This contradicts the fact that fj′* = 0

for j′ ∈ J1. Hence, it must be the case (b). Since fk ∈ ℬδ for tn + 1 ⩽ k ⩽ kn + n0′ , we 

have that fj′
kn + n0′

⩾ fj′
tn + 1 > 0 for j′ ∈ J1 and fj″

kn + n0′
⩽ fj″

tn + 1 < U for j″ ∈ J2. It follows 

that limn ∞fj′
tnJ + 1 = 0 for j′ ∈ J1 and limn ∞fj″

tn + 1 = U for j″ ∈ J2. Then, Lemma 2 

ensures that limn ∞fj′
tn = 0 for j′ ∈ J1 and limn ∞fj″

tn = U for j″ ∈ J2. Thus, we can find 

a convergent subsequence ftnl of ftn such that liml ∞ftnl = f * *  with fj′* * = 0 for j′ ∈ J1
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and fj″* * = U for j″ ∈ J2. Since ftn ∉ ℬδ, we observe that f * * ∉ ℬδ, which ensures 

that f * * ≠ f*. By part (a), Φ fk  is convergent, which implies that Φ f * * = Φ f* . 

Let D: = f ∈ ℬ:fj′ = 0 for j′ ∈ J1 and fj″ = U for j″ ∈ J2 . Thus, f*, f * * ∈ D. It can be 

verified for any f ∈ D that f − f*, ∇Φ f* ⩾ 0. By [38, Page 203], f∗ is a minimizer of 

Φ over D. Hence, Φ has two different minimizers f∗ and f∗∗ over the convex set D. This 

contradicts the assumption that Φ has a unique minimizer on ℬ. Thus, we have that J = 0. 

■

Here is the proof of Theorem 8.

Proof: From Proposition 9 and Proposition 10, we have that Φ satisfies conditions (i)-(iii). 

One can directly obtain that the relaxation sequence λk satisfies condition (iv).

By Theorem 7, to prove the convergence of SDP-BSREM algorithm with λk and Sk,i, it 

is sufficient to show that λk and Sk,i satisfy conditions (v) and (vi). To do this, for the 

subiteration-dependent preconditioner Sk, i(f) = diag αk, iνk, i S(f), one need to show that 

limk ∞αk, i = α > 0 for all i ∈ ℕM,and ∑k = 0
∞ λk α − αk, i  converges for all i ∈ ℕM since νk,i 

is a positive vector sequence and νk, i = νk1, M for k > k1 and i ∈ ℕM.

For αk,i defined in (17), the sequence tk,i is increasing. By 

induction, we have that tk, i > kM + i /2. Further, it can be shown 

that limk ∞tk, i/k = M /2, and thus limk ∞tk, i/tk, i + 1 = 1 for all i ∈ ℕM. 

Then we can obtain limk ∞αk, i = 1 + limk ∞ tk, i − 1 /tk, i + 1 = 2 > 0. By 

computing 2 − αk, i = 1/ 2tk, i + 1 1 + 4tk, i
2 + 4tk, i + 3/ 2tk, i + 1 , we have that 

limk ∞k 2 − αk, i = 3/M. Thus the series ∑k = 0
∞ λk 2 − αk, i  converges since 

∑k = 0
∞ 1/k2 < ∞. Therefore, for preconditioners P1 or M1 and relaxation λk, conditions (v) 

and (vi) are satisfied.

For αk,i defined in (18), we have that αk,i is monotone and limk ∞αk, i = ϱ > 0. It can 

be shown that limk ∞k ϱ − αk, i = ϱδ1 − δ2 /M. Hence for precondition P2 or M2 and 

relaxation λk, conditions (v) and (vi) are satisfied. ■
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Fig. 1. 
Numerical phantom used in simulations. a) Brain phantom. b) Uniform phantom: uniform 

background (1 ROI with radius 25 pixels is shown) with 6 uniform spheres of different radii 

(2 cold spheres and 4 hot spheres).
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Fig. 2. 
Angle (left) and average angle (right) between the gradients of the successive subiterations 

vs. iterations projected in the smooth areas and variable areas in the reconstructed images, 

respectively, for the brain phantom with high count data. Top row: SDP-P1 (24). Bottom 

row: SDP-P2(24).
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Fig. 3. 
Comparison of performance of preconditioners investigated in this study. Objective function 

vs. elapsed CPU time in reconstructions performed with SDP-BSREM algorithm with four 

preconditioners: M1, M2, P1, and P2, and with 12 subsets (left) and 24 subsets (right), 

respectively, for the brain phantom with high count data. Preconditioners P1 and P2 were 

generalized from M1 and M2, respectively.
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Fig. 4. 
Global NRMSD vs. Iterations in reconstructions performed with different algorithms: 

BSREM(12), SDP-P1(12), SDP-P2(12), BSREM(24), SDP-P1(24), SDP-P2(24) for the 

brain phantom with low (top row) and high (bottom row) count data, respectively.
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Fig. 5. 
Comparison of performance of SDP-BSREM vs. BSREM algorithm. Objective function 

vs. elapsed CPU time in reconstructions performed with BSREM, SDP-P1, and SDP-P2, 

with 12 (left) and 24 (right) subsets for the brain phantom with low (top row) and high 

(bottom low) count data, respectively. The dash lines represent the objective function values 

of BSREM at 20 seconds CPU time.
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Fig. 6. 
Comparison of local convergence performance of SDP-BSREM vs. BSREM algorithms 

for the uniform phantom with high count data. ROI based normalized root mean square 

difference (NRMSD) vs. iterations is shown. The eight ROIs are the 4 hot spheres, 2 cold 

spheres, 1 background spheres, and the region consisting of all the former 7 ROIs, named 

“all ROIs”.
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Fig. 7. 
Clinical PET patient and ACR phantom. a) Clinical PET patient: Coronal maximum 

intensity projection (MIP) of a clinical whole-body 18F-FDG PET patient image acquired 

on a GE D710 PET/CT and reconstructed using the Q.Clear clinical method [3]. b) Clinical 

ACR quality assurance phantom showing the regions of interest for cold/hot cylinders, 0:1 

and 2.5:1 activity concentration ratios, respectively, and background [34].
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Fig. 8. 
Comparison of performance of SDP-BSREM vs. Q.Clear (β = 350) algorithms. A whole-

body 18F-FDG clinical PET patient scan was used. Eight patient bed positions separated 

by dashed lines are shown in the coronal maximum intensity projection (MIP) image. The 

objective function vs. iterations is shown for PET scanner patient bed positions 4 and 6 (red 

arrows) for nonTOF (left) and TOF data (right). The dashed lines represent the objective 

function values at the final Q.Clear iterations.
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Fig. 9. 
Local convergence is assessed using the 8 regions of interest from an ACR quality assurance 

test with TOF data [34]. These regions of interest can be seen in Fig. 7b. Each subplot 

represents one of the eight regions, which are from left to right and top to bottom: 

background, cold Teflon/air/water, and hot 8/12/16/25 mm cylinders, respectively.
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TABLE I

SDP-BSREM ALGORITHM

Preparation: f0, M, T , Pt is defined in (10)
for   k = 0, 1, 2, …, T

fk, 0 = fk

for   i = 1, 2, …, M

fk, i = fk, i − 1 − λkSk, i fk, i − 1 ∇Φi fk, i − 1

fk, i = Pt fk, i

end
fk + 1 = fk, M

end
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TABLE II

ALGORITHMIC PARAMETERS FOR 2D SIMULATION RECONSTRUCTION

Parameters Brain phantom Uniform phantom

BSREM(12) high count: a = 1/400
low count: a = 1/18 -

SDP-P1(12)

high count: a = 1/13,
ν1 = 1.6, ν2 = 2.4
low count: a = 0.5,
ν1 = 1.6, ν2 = 2.4

-

SDP-P2(12)

high count: a = 1/5, ϱ = 5,
δ1 = 5, ν1 = 0.8, ν2 = 2.2

low count: a = 1.3, ϱ = 7.5,
δ1 = 5, ν1 = 1.3, ν2 = 2.1

-

BSREM(24) high count: a = 1/35
low count: a = 1/5

high count:
a = 1/35

SDP-P1(24)

high count: a = 0.35,
ν1 = 1.6, ν2 = 2.4
low count: a = 1.3,
ν1 = 1.4, ν2 = 2.5

high count: a = 0.5,
ν1 = 1.8, ν2 = 2.5

SDP-P2(24)

high count: a = 0.45, ϱ = 4,
δ1 = 3, ν1 = 0.8, ν2 = 1.8

low count: a = 1.4, ϱ = 2.2,
δ1 = 1, ν1 = 1.3, ν2 = 2.4

high count: a = 0.7,
ϱ = 3, δ1 = 7,

ν1 = 1.4, ν2 = 2.3
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TABLE III

ALGORITHMIC PARAMETERS FOR 3D PATIENT RECONSTRUCTION

Algorithm Parameters

Q.Clear(nonTOF) λ0 = 2, a = 1/5

Q.Clear(TOF) λ0 = 1.2, a = 1/5

SDP-P2(nonTOF)
λ0 = 1.6, a = 1/4, ϱ = 2.2,

δ1 = 0.1, δ2 = 1.6, ν1 = 0.6, ν2 = 1.25

SDP-P2(TOF)
λ0 = 1.1, a = 1/3, ϱ = 2.4,

δ1 = 0.6, δ2 = 1.6, ν1 = 0.6, ν2 = 1.25
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