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Abstract

We present a new collection of processing techniques, collectively "factorized Kramers–Kronig 

and error correction" (fKK-EC), for (a) Raman signal extraction, (b) denoising, and (c) phase- and 

scale-error correction in coherent anti-Stokes Raman scattering (CARS) hyperspectral imaging 

and spectroscopy. These new methods are orders-of-magnitude faster than conventional methods 

and are capable of real-time performance, owing to the unique core concept: performing all 

processing on a small basis vector set and using matrix/vector multiplication afterwards for direct 

and fast transformation of the entire dataset. Experimentally, we demonstrate that a 703026 spectra 

image of chicken cartilage can be processed in 70 s (≈0.1 ms / spectrum), which is ≈ 70 times 

faster than with the conventional workflow (≈7.0 ms / spectrum). Additionally, we discuss how 

this method may be used for machine learning (ML) by re-using the transformed basis vector sets 

with new data. Using this ML paradigm, the same tissue image was processed (post-training) in ≈ 
33 s, which is a speed-up of ≈ 150 times when compared with the conventional workflow.

1. Introduction

Though long promised, coherent anti-Stokes Raman scattering (CARS) spectroscopic 

microscopy (microspectroscopy) has only recently demonstrated broadband hyperspectral 

biological imaging at acquisition rates far in excess of what traditional Raman 

microspectroscopy can provide [1-6]. With an imaging speed as fast as 50000 spectra 

per second [7], a new fundamental challenge arises: high throughput extraction of Raman 

vibrational information from the raw CARS spectra.

CARS spectra are quintessentially a coherent mixture of photons generated through 

vibrationally resonant (Raman) and nonresonant (electronic) processes. The electronic 

contribution is typically referred to as the "nonresonant background" (NRB) and is the root 

cause of CARS spectral distortion. Thus, a significant effort was made in the early years 
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of CARS microscopy development to reduce the NRB via optical means [8-11]. The NRB, 

however, behaves as a stable homodyne amplifier for the Raman-generated signal; thus, 

reducing the NRB also reduces the Raman components of the signal. So important is the 

NRB’s role in signal amplification [12], that without it CARS may show little to no benefit 

over spontaneous Raman spectroscopy for biological imaging [13].

Unlike additive fluorescent background signals in Raman spectroscopy, the NRB is coherent 

with the co-generated Raman-resonant CARS components. Beneficially, the NRB may 

amplify weak signals above the noise floor. Due to this coherent mixing that induces 

distortions in the spectral shapes, however, the NRB cannot be simply subtracted from 

the CARS spectra. There is, though, a fixed phase relationship between the Raman- and 

NRB-components. This inherent property led to the realization that computational methods 

could be used to extract the Raman portion of the CARS spectra using so-called "phase-

retrieval methods": the Kramers–Kronig relation (KK) [14] or the maximum entropy method 

[15]. These early works assumed that the NRB was either known a priori or the NRB 

of a surrogate material (e.g. coverslip glass, water, salt [16]) was appropriate. Later, it 

was demonstrated that using surrogate materials for NRB approximations led to amplitude 

and phase errors that were linked analytically [17]. These errors could be corrected using 

"phase-error" correction (PEC) and "scale-error" correction (SEC) methods [17], which 

also reveals the relationship between the actual NRB and the surrogate. Importantly, this 

relationship demonstrated that CARS is unique among imaging techniques: it is inherently 

self-referencing. The spectral ratio of the Raman component to the actual NRB is an 

inherent property of a molecular system; thus, this ratio is maintained even in the case 

of sample scatter or absorption – just the signal-to-noise ratio (SNR) is affected. This 

enables one-to-one comparison of spectra between samples and even different CARS 

architectures (with different laser systems and wavelengths) [17]. Other coherent Raman 

methods, most notably stimulated Raman scattering (SRS) microscopy/spectroscopy [18], 

do not co-generate an NRB and do not have this internal referencing ability. Thus, SRS 

spectra are undistorted and useful for chemical identification, but the spectral amplitudes are 

not necessarily directly comparable with other results, potentially challenging quantitative 

analysis.

To extract robust, quantitative Raman component spectral data from the CARS spectra and 

to support the rapidly increasing data rates and volumes, we have developed a series of 

new methods collectively referred to as "factorized Kramers–Kronig and error correction" 

(fKK-EC). The new, unique principle of fKK-EC is that raw CARS spectral data can be 

factorized/decomposed into a small set of basis vectors on which the necessary processing 

steps will actually be performed. In this work, we use singular value decomposition (SVD) 

for its robust, accurate decomposition of matrices, although it is possible to use others 

as well. Previously, SVD has been used for denoising [1,17,19], but the remainder of 

operations were performed on the individual spectra. Additionally, matrix factorization, such 

as non-negative matrix factorization (NMF) / multivariate curve resolution (MCR) have been 

applied to post-processed data for analysis [19,20].

The fKK-EC is composed of three parts that will be described theoretically in more detail 

below: phase retrieval via a factorized KK relation (fKK), factorized PEC (fPEC), and 
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factorized SEC (fSEC). These three parts operate on the basis vectors; thus, the image data 

is not reconstituted between each step. This limited operation on a small number of basis 

vectors is economical in terms of speed and memory usage without losing the spectral 

information, compared with the previous methods. Furthermore, basis vector sets can be 

re-used on new data; thus, the fKK-EC method can be used like a machine learning method, 

ML:fKK-EC, for short. In this paradigm, the full fKK-EC is performed (“trained") on a 

portion of data (e.g., the first image), and subsequent images are able to be processed (in 

full) via matrix multiplication. This factorized method enables new data to be processed on-

the-fly in real-time during acquisition: denoised, phase-retrieved, and phase- and scale-error 

corrected. Like all ML methods, this process does require that the training data reflect what 

will be contained in upcoming data – though this is readily testable as will be discussed.

2. Theory

2.1. Background: conventional post-processing for a single CARS spectrum

CARS is a third-order nonlinear scattering phenomenon in which two photons ("pump" and 

"Stokes") excite a Raman vibrational mode from which a third photon ("probe") inelastically 

scatters [2]. Furthermore, this process does not happen in isolation and other nonlinear 

processes, such as degenerate four-wave mixing, may occur, leading to the generation of 

a so-called nonresonant background (NRB). So ubiquitous is the NRB that theoretical 

treatments of the CARS mechanism automatically incorporate the NRB, and the term 

"CARS signal" implies a coincident NRB. Thus, in this manner the CARS signal, ICARS, 

may be described as [1]:

ICARS(ω) ∝ ES(ω) ⋆ Ep(ω) χ(3)(ω) ∗ Epr(ω) 2 ≈ Cst(ω) 2 χ(3)(ω) 2, (1)

where Ep, ES, and Epr are the frequency-domain (ω) pump, Stokes, and probe fields, 

respectively; χ(3) is the third-order nonlinear susceptibility, which is a summation of 

resonant (χr; Raman vibrational) and nonresonant (χnr; electronic) components, and Cst
is the system response function that incorporates such properties as laser source profiles, 

optical filter transmission profiles, and detector response. In the right-hand part of Eq. (1), 

the tilde above χ(3) is used to indicate that the nonlinear susceptibility is convolved with the 

probe [17,19] (similarly for Cst); though, in the remainder of this manuscript, it will not be 

explicitly used. ‘★’ and ‘*’ are the cross-correlation and convolution operators, respectively.

The overarching goal of phase retrieval methods is to extract Im{χ(3)(ω)} from ICARS(ω), 

which is the equivalent material property probed by traditional Raman spectroscopy [21]. If 

Cst(ω) and INRB(ω) are quantitatively measurable/known, this goal would be achievable [14]. 

However, this has not thus far been demonstrated. A more capable solution that also leads 

to the aforementioned self-referencing of CARS, is to calculate KCARS(ω) ≜ χ(3)(ω) ∕ χnr(ω). 
Using the KK formalism and assuming, for the moment, that the INRB(ω) of the sample 

itself is measurable [17]:
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KCARS(ω) = χ(3)(ω)
χnr(ω) = ICARS(ω)

INRB(ω)
ACARS(ω)

exp iH 1
2 ln ICARS(ω)

INRB(ω)
ϕCARS(ω)

, (2)

where H is the Hilbert transform. To approximate the NRB, one uses a surrogate/reference 

material with nonlinear susceptibility χref(ω), which leads to a CARS signal, Iref(ω). 

One can model this relationship between the actual NRB and the surrogate as Iref(ω) = 

Ξξ(ω)INRB(ω), where ξ(ω) is a frequency-dependent function and Ξ is a constant. Both are 

real valued. It should be noted that these terms encompass differences in both the material 

properties as well as any optical system response changes (e.g., related to Cst). Applying this 

new scenario to Eq. (2):

K(ω) = χ(3)(ω)
χref(ω) = ICARS(ω)

Iref(ω)
A(ω)

exp iH 1
2 ln ICARS(ω)

Iref(ω)
ϕ(ω)

= ACARS(ω) 1
Ξξ(ω)

Aerr(ω)

exp iϕCARS(ω) + iH 1
2 ln 1

Ξξ(ω)
ϕerr(ω)

.

(3)

From this equation one will notice that the use of a reference material has led to a 

multiplicative amplitude error and an additive phase error [17], which are themselves 

related by a KK relation. Thus, simple subtractive baseline detrending of Im{K(ω)} is 

not appropriate. There is a solution: PEC. Under the assumption of a slowly-varying ξ(ω), 

one may find the phase error using detrending methods, such as asymmetric least squares 

(ALS) [22,23], and remove it and the associated amplitude error (within a constant Ξ): 

Aerr(ω) = 1 ∕ Ξξ(ω) = exp −H{ϕerr(ω)} ∕ Ξ. PEC does not account for and remove Ξ as the 

Hilbert transform of a constant is 0 (i.e., H{ln Ξξ(ω)} = H{ln ξ(ω)}. Finding the constant Ξ 
is the role of SEC [17]. This may be calculated from the real part of K(ω) after PEC:

1
Ξ = Re K(ω) exp H{ϕerr(ω)} exp [ − iϕerr(ω)] , (4)

where ‘⟨⋯⟩’ indicates the mean over the frequency. Due to computational distortion of the 

numerical Hilbert transform, one usually does not simply use the mean but rather a trendline 

[17].

In summary, using the KK relation, PEC, and SEC, one can calculate KCARS(ω) from K(ω) 

as:

KCARS(ω) =
K(ω) exp H{ϕerr(ω)} exp [ − iϕerr(ω)]

Re K(ω) exp H{ϕerr(ω)} exp [ − iϕerr(ω)]
. (5)
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Thus, without directly measuring the NRB, one can find the ratio χr(ω)/χnr(ω) at every 

pixel because every pixel is self-referenced to its own nonresonant component. The full 

conventional workflow is illustrated in Fig. 1(a). This ratio is maintained even in the 

presence of absorption and scatter as both the Raman and NRB components are equally 

affected; though, the SNR deteriorates.

2.2. SVD factorization, denoising, and fKK

The proposed fKK-EC enables high-throughput and real-time Raman signal extraction 

from spectroscopic CARS data via factorization, which dramatically reduces the number 

of vectors for which each processing step is applied. For example, rather than independently 

applying to one million spectra in a one-megapixel image, the processing may be applied to 

100 basis vectors. A flow chart that describes the fKK-EC workflow is shown in Fig. 1(b).

The first step in this process is factorization of the input data. In this work, SVD decomposes 

a matrix A into three matrices as A = USVH. The H-superscript indicates the Hermitian 

transpose; U and V are unitary matrices whose columns are the left- and right singular 

vectors, respectively; and S is a diagonal matrix whose entries are known as singular values 

(we will denote the vector containing just the singular values as s). In this work, we 

explicitly assume that the dataset is oriented so that row-number (m) corresponds to spatial 

components (see Fig. 1(a) and column-number (n) to frequency. Thus U is composed of 

spatial basis vectors while V, spectral basis vectors. Further, A is real; thus, the Hermitian 

transpose (H) is a transpose (T) as will be indicated in the remaining derivations. The SVD 

[1,17,19,24,25] is widely used for denoising by removing noise-dominant singular vectors 

that [ideally] only contribute to noise. This is accomplished by either setting singular values 

corresponding to noise-related singular vectors to 0, or equivalently creating new U, S, and 

V matrices that exclude the non-desired singular values and vectors, which leads to reduced 

data volumes. We have implemented the latter in our simulations and experiments. Note that 

in the remaining derivations we do not explicitly denote whether U, S, or V were altered for 

denoising; though, all derivations remain valid. Also note, that in the conventional workflow, 

SVD is an optional denoising method (see Fig. 1(a), whereas in the fKK-EC workflow, SVD 

is the necessary factorization step (See Fig. 1(b), which can also provide denoising.

For the fKK, one would conceptually apply the KK relation to the spectral basis vectors 

in V. However, this is not appropriate because of the log-function in the KK (Eq. (2) and 

the orthonormal nature of SVD singular vectors (positive- and negative-values). Rather we 

apply the SVD to 1
2 ln [ICARS

[m] (ω) ∕ Iref(ω)] = am(ω), where the m-superscript denotes the mth 

spectrum, which leads to the am-vector. For the following derivation, we assume that we 

have M spectra, and the ω vector is N-frequency increments long. Thus, A may be written 

as:

A = [a1(ω), a2(ω), … , aM(ω)]T ∈ ℝM × N = USVT . (6)

Assuming a “reduced" SVD implementation, we have more spectra than the length of 

the frequency vector ω (i.e., M > N); thus, U ∈ ℝM, N, s ∈ ℝN; diag(s) = S ∈ ℝN, N, and 
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V ∈ ℝN, N. As the U- and S-elements act as constant weighting terms to the right singular 

vectors (V’s columns) and the Hilbert transform is a linear operator [26], this is equivalent to 

only applying the transform to the right singular vectors:

H{A} =

H{A1, :(ω)}
H{A2, :(ω)}

⋮
H{AM, :(ω)}

=

H{U1, 1S1, 1v1(ω) + U1, 2S2, 2v2(ω) + ⋯ + U1, NSN, NvN(ω)}
H{U2, 1S1, 1v1(ω) + U2, 2S2, 2v2(ω) + ⋯ + U2, NSN, NvN(ω)}

⋮
H{UM, 1S1, 1v1(ω) + UM, 2S2, 2v2(ω) + ⋯ + UM, NSN, NvN(ω)}

=

U1, 1S1, 1H{v1(ω)} + U1, 2S2, 2H{v2(ω)} + ⋯ + U1, NSN, NH{vN(ω)}
U2, 1S1, 1H{v1(ω)} + U2, 2S2, 2H{v2(ω)} + ⋯ + U2, NSN, NH{vN(ω)}

⋮
H{UM, 1S1, 1v1(ω)} + UM, 2S2, 2H{v2(ω)} + ⋯ + UM, NSN, NH{vN(ω)}

= USH{VT} .

(7)

The total fKK process without PEC or SEC may be described as:

KfKK(ω) = exp (A) exp iUSH{VT} . (8)

As an addendum to this derivation, we will discuss considerations under the case of mixed 

Poisson-Gaussian noise (heteroscedastic noise generally). In previous work [17], denoising 

was improved via the use of an Anscombe transformation prior to SVD. As Poisson noise 

is not additive [27], SVD is often impaired in separating signal and noise. The Anscombe 

transform aims to convert a signal with mixed noise into a signal with unit variance. Though 

advantageous, this nonlinear transform is not compatible with the current fKK derivation. 

Thus, to improve denoising, there are 2 options: (1) denoise before the fKK using the 

Anscombe transformation and SVD (then reconstruction), or (2) apply a scaling term f(ω) 

to A(ω), which is the same for each spectrum. In simulations and experiments below, we 

apply the latter. The scaling term we selected was inspired by the purpose of the Anscombe 

transformation: normalizing variance. Suppose we have a homogeneous sample and have 

recorded numerous spectra containing both additive white gaussian noise and shot (Poisson) 

noise, the standard deviation (σA(ω)) of the previously defined A may be approximated as 

[28]:
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σA(ω) ≈ σCARS(ω)
2〈ICARS〉(ω) ≈ α〈ICARS〉(ω) + σg2

2〈ICARS〉(ω) ≜ 1
f(ω) , (9)

where ⟨⋯⟩ indicates the mean spectrum, α is a Poisson noise multiplier, and σg is the 

standard deviation of the additive white Gaussian noise. We have assumed that the Iref(ω) 

used is effectively noiseless as the reference spectra is often an averaged and/or denoised 

version of repeated measurements of a surrogate material. Applying this scaling term, the 

fKK would be re-written as:

Am, : = f(ω)1
2 ln

ICARS
[m] (ω)
Iref(ω) for all m (10)

KfKK(ω) = exp A
f(ω) exp iUSH VT

f(ω) , (11)

where Am,: is the mth spectrum (row) in A.

In the remainder of this manuscript, we will include f(ω) in the derivations; though, this 

factor can be set to one in the case of pure additive white Gaussian noise. Mathematical 

notation note: we are explicitly writing f(ω) to emphasize that it is a single spectrum, and 

when it divides a matrix, it is applied along the spectral axis (e.g., each row of A or VT).

2.3. Factorized PEC (fPEC)

PEC is the process of finding the phase error caused by using a surrogate reference material 

as an approximation for the sample NRB. In the factorized context:

Φerr = D USH VT

f(ω) ≈ USΦPEC
T , (12)

where D is a detrending operator, and ΦPEC is a basis set describing phase error. We do not 

want to detrend every spectrum as described in the proceeding equation and the orthonormal 

V singular vectors are not readily usable for baseline detrending as they often have positive 

and negative values with no clear baseline. Rather we will take the approach of sub-sampling 

U (to form Uss), calculate Φerr, and regress to approximate ΦPEC. This dramatically reduces 

the computational burden compared to using the full U. Our current practice, inspired by 

vertex component analysis (VCA) [29], is to sub-sample U by keeping the rows of U that 

have the highest and lowest values for each column:, and optionally a sub-sample between. 

For the maximum and minimum:

qmax = argmaxi{U: , i} for each i (13)

qmin = argmini{U: , i} for each i (14)
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Uss = Uq, : , (15)

where the ‘:’ indicates all row or column entries, and q = qmin ∪ qmax indicates the union 

row indices. q can also contain a sub-sample between the max- and min-values for each 

column U. From this:

Φerr = D UssSH VT

f(ω) ≈ UssS
X

ΦPEC
T

(16)

ΦPEC
T = X−1Φerr ΦPEC

T = XTX + λI −1XTΦerr, (17)

where λ is a non-negative scalar regularization weight and I is an identity matrix. The 

left-hand statement in Eq. (17) is an ordinary least-squares regression using a [pseudo]-

inverse. In practice, however, this result is unstable owing to significant multicollinearity in 

the singular vectors. These collinearities cause erroneously large ΦPEC entries, especially 

those corresponding to the smallest singular values. One solution to this problem is ridge 

regression (also known as Tikhonov regularization) as shown on the right side of Eq. (17).

The action of the combined fKK and fPEC without fSEC can be described as:

KfKK−fPEC(ω) = exp US VT

f(ω) + H{ΦPEC} exp iUS H VT

f(ω) − ΦPEC , (18)

noting that the amplitude and phase terms are still related by a Hilbert transform.

2.4. Factorized SEC (fSEC)

In the conventional form of the SEC, the PEC-corrected spectra are divided by the mean of 

the real part as described in Eq. (5). An alternative and equivalent approach is to calculate 

the mean of the natural log of the magnitude of the PEC-corrected spectra:

1
2 ln ICARS(ω)

INRB(ω)Ξ = 1
2 ln ICARS(ω)

INRB(ω) − 1
2 ln Ξ = ln 1

Ξ . (19)

It should be noted that the mean of the first expression in the previous equation can be 

solved analytically, for example, using partial fraction decomposition, assuming that χr(ω) 

= Σm Am/(Ωm − ω − iΓm), Am, Ωm, and Γm are real and positive-valued, and χnr is constant 

and positive, real-valued.

The left-hand expression in Eq. (19) for the dataset is equivalent to the magnitude of the 

term inside the exponential function in Eq. (18) as:

US VT

f(ω) + H{ΦPEC} = ln 1
Ξ , (20)

Camp et al. Page 8

Opt Express. Author manuscript; available in PMC 2023 January 03.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



where Ξ ∈ ℝM is a vector of constants.

For the fSEC, we want to avoid calculating the mean for each spectrum and to operate on 

the PEC-corrected right singular vector. Thus, we will incorporate an fSEC correction matrix 

VSEC
T  into the previous expression:

US VT

f(ω) + H{ΦPEC} − VSEC
T = ln 1 = 0 . (21)

A solution for this matrix is the subtraction of the mean of the PEC-corrected right 

singular vector: VSEC
T = 〈VT ∕ f(ω) + H{ΦPEC}〉. Thus, if the mean of each corrected right 

singular vector is zero, the mean of the magnitude will also be zero. As we previously 

mentioned, due to numerical errors in the Hilbert transform, rather than a strict mean, we 

use a trendline function, which was previously implemented as a large-window, small-order 

Savitzky–Golay filter [17]. Thus:

VSEC
T = M VT

f(ω) + H{ΦPEC} , (22)

where M is a trendline (or mean function).

2.5. Reconstruction and the full fKK-EC

Using the previous descriptions of the fKK, fPEC, and fSEC, we can assemble the full fKK-

EC workflow and reconstruct an approximate KCARS (akin to Eq. (5) for the conventional 

implementation). Applying Eqs. (8), 18, and 22:

KCARS ≅ exp US VT

f(ω) + H{ΦPEC} − VSEC
T exp iUS H VT

f(ω) − ΦPEC , (23)

again noting that U, S, and V may be reduced in size from the original SVD for the purposes 

of denoising.

2.6. Machine learning (ML) paradigm ML:fKK-EC

As previously described, the fKK-EC methods enable high-throughput analysis at 

significantly higher rates than the coventional workflow. Another significant benefit of the 

fKK-EC methods is that they can be trained as a machine learning (ML) model, i.e., the 

fKK, fPEC, and fSEC are fully applied to a sub-set of data, and new data is simply projected 

onto the derived basis vectors (as schematically described in Fig. 1(c). That is to say that 

new data can be transformed into denoised-Raman-retrieved (fKK, fPEC, fSEC) without 

explicitly applying these methods, but rather with simple matrix multiplication. We will call 

this workflow "ML:fKK-EC".

Hypothetically, we are going to collect many images of a sample. We will apply the full 

fKK-EC method to the first (or first few) images (i.e., "training"). This provides us with: 
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f(ω), U, S, V, ΦPEC, and VSEC
T . One assumes that upcoming images will comprise the 

same or similar chemical content but in differing concentrations and mixture profiles. In the 

ML:fKK-EC method, we will not re-derive the SVD, but rather regress a new left singular 

vector matrix Unew (which describes the spatial mixtures of SVT). From Eq. (7) for the new 

data, Anew that incorporates f(ω) as well, and solving for Unew applying ridge regression:

Anew = UnewSVT (24)

Unew = Anew SVT

X

−1
Unew = Anew XTX + λI −1XT . (25)

Now, one can simply apply the Unew to Eq. (23).

Of importance is the selection of the training data. As in all “supervised" machine learning 

methods, the training set has to include a certain variety and depth of training data [30]. In 

the ML:fKK-EC, the training set needs to contain enough variety in chemical components 

so that the spectral basis set (V) can reconstruct new spectra in future images. Various 

strategies for this could exist: coarsely image a large area and use that for training, apply 

expert knowledge to select a few small images for training, use the first image for training 

and retrain later — it is sample and application specific. Fortunately, it is facile to test 

whether the trained basis set is adequate for new data by comparing Anew as measured and 

as reconstructed applying Eq. (25) to Eq. (24). The precise comparison could be performed 

programmatically such as through calculating the residual sum-of-squares (RSS) or by 

manual inspection. If the original basis set is inadequate, one could simply append the 

unsupported spectrum (or spectra) to the original training set and recalculate the SVD, i.e., 

it does not necessitate retraining on an additional huge swath of data. Other strategies and 

on-going work in this context will be provided in the Discussion section.

The ML:fKK-EC method, as will be demonstrated in simulation and experiment below, is 

extremely fast. Firstly, the time-consumption of the individual steps is limited to a training 

dataset that is much smaller than the full dataset. Secondly, new data does not need to be 

subjected to the fKK, fPEC, or fSEC, but rather is converted through a series of matrix 

multiplications: solving for Eq. (25) and applying to Eq. (23), where all the other matrices 

were calculated during training. For example, on the broadband CARS (BCARS) system 

used to collect data for this paper, spectra require ≈ 5 ms to record, but applying the 

ML:fKK-EC to a new spectrum requires 10’s of microseconds; thus, it can be applied to new 

data as it is acquired, as opposed to after all data is acquired. This advancement in CARS 

microscopy affords many new opportunities not previously available, such as on-the-fly 

evaluation of imaging quality and rapid identification of regions-of-interest and chemical 

constituents.
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3. Materials and methods

3.1. Broadband CARS (BCARS) imaging platform and software

Images were collected on an in-house-developed BCARS microscope that is described 

in detail elsewhere [1]. In brief, the picosecond probe laser (≈ 3.2 ps, 771 nm, 40 

MHz repetition rate; Toptica, FemtoFiber pro NIR) and femtosecond supercontinuum (≈ 
16 fs, 850 nm to 1350 nm, 40 MHz repetition rate; Toptica, FemtoFiber pro UCP) 

were 13 mW and 7.1 mW on-sample, respectively, after the water-immersion microscope 

objective (Olympus, UPlanSApo 60XW IR). The anti-Stokes photons were collected 

(Olympus, LUCPlanFL N 40X), filtered via short-pass filters (Semrock) and focused 

onto a charge-coupled device (CCD)-equipped (Andor, DU970N-FI) spectrograph (Acton, 

SpectroPro2300i). The CCD integration time was set to 3.5 ms, which corresponds to ≈ 
5 ms per pixel owing to data transfer time, stage movement, and CCD cleaning time. 

The sample is mounted onto a two-stage system: one for high-speed, high-resolution 

XYZ-imaging (Physik Instrumente, P-545) and a long-travel XY-stage (Physik Instrumente, 

M-545.2PO). The maximum size of a single XY-image is 200 μm x 200 μm (limited by the 

high resolution stage); thus, movement with the long-travel stage and stitching is necessary 

for larger images.

The BCARS system was controlled by custom LabView software written in-house. Data 

files were processed in Python using NumPy, SciPy, scikit-learn, and the open-source 

CRIkit2 software package for Python (https://github.com/CCampJr/CRIkit2). Processing 

was performed on a Dell Precision 7730 laptop with a 6-core i7-8850H processor at 2.6 GHz 

and 64 GB of RAM.

3.2. Chicken tissue preparation

Chicken legs were procured from a local grocer. Hyaline cartilage tissue was harvested from 

the knee joint above the tibia using a scalpel. The resected tissue varied in thickness from 

approximately 20 μm to 40 μm, as measured by BCARS imaging ("XZ" images).

3.3. Simulation software

The simulations were written in Python and performed from within a Jupyter Notebook. The 

NumPy, SciPy, scikit-learn, Pandas, Seaborn, and CRIKit2 software packages for Python 

were used for processing and visualization. Simulation software will be furnished upon 

request and will be available in a forthcoming open-source software package for Python. 

The simulations were performed on the same laptop as the image processing described 

above.

4. Results

Below we present simulations and experiments to demonstrate the enhanced performance 

(throughput) of fKK-EC and the comparability of its results with the conventional workflow. 

Additionally, within the experimental results, we demonstrate the application and results 

from the ML:fKK-EC.
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4.1. Simulation

We simulated a noiseless 3-chemical mixture with the concentration map shown in Fig. 2(a) 

and a ternary plot of concentrations shown in Fig. 2(b). Chemical 1, 2, and 3 are displayed 

in red, green, and blue, respectively. The base dataset is 74 pixels x 246 pixels (18204 

total spectra). To analyze the fKK-EC performance versus number of spectra, this dataset is 

side-scaled by a factor of 0.5, 1, 2, 3, and 4; for a total of 4551, 18204, 72816, 163836, and 

291264 spectra, respectively. Synthetic Raman spectra were generated using a summation 

of complex Lorentzian functions with number of peaks, amplitude, central frequency, 

and width being selected stochastically. Further, the real-valued χnr(ω)’s were quadratic 

polynomials with randomly generated non-negative coefficients, and χref(ω) from a linear 

polynomial. This approach was not chosen because of its physical realism, but rather to 

challenge the method — especially the detrending algorithm. The random number generator 

seed was fixed across experiments so that the same random spectra were generated. The 

simulated CARS spectra (and NRB) are shown in Fig. 2(c). The chemical spectra contain 

22, 25, and 10 peaks, respectively. The spectral range of simulation was −500 cm−1 to 2500 

cm−1 sampled 810 times; though, Raman peaks could only be assigned between 500 cm−1 to 

1700 cm−1. The stimulation profile Cst(ω) in Eq. (1) was set to a constant for simplicity.

Figure 2(d) shows the speed enhancement of the factorized methods relative to the 

conventional workflow. For all methods, the number of kept singular values/vectors was 

determined by the singular values larger than (max A × max(M, N) × ϵ), where M and 

N are the row and column dimensions of the SVD-input matrix A, and ϵ is the "machine 

epsilon" for the given data type. This is the same cutoff used to estimate rank in NumPy and 

MATLAB software. For comparison, the time per spectrum for the conventional workflow 

was approximately: ≤100 μs for SVD and selecting basis vectors, ≤140 μs for the KK, 

≤3.2 ms for the PEC, and ≤140 μs for the SEC; for a total of ≤3.6 ms / spectrum. In each 

conventional-method simulation run, 6 basis vectors were kept per the previously described 

cutoff threshold. In all factorized-method simulation runs 35 to 50 singular vectors were 

kept, depending on the image size. For the fKK-EC, the enhancement was ≥40 for all but 

the smallest dataset. For the 291264 spectra simulation, for example, the total time was <25 

seconds for all 3 replicate simulations (86 μs / spectrum). The most significant difference 

is the time to perform phase retrieval, with the conventional KK requiring ≈ 40 s and the 

new fKK ≈ 4.3 ms — an over 9000× improvement. The fPEC was over 1250× faster than 

the PEC, and the fSEC was over 3150× faster than the SEC. For the factorized workflow, 

the reconstruction step only added 3.3 s. Figure 2(e) gives a graphical representation of the 

fraction of total computational time for each method. Of course it should be noted that for 

the ML:fKK-EC, the training fraction will reduce as more non-training data is processed.

We also compared the spectra obtained by the fKK-EC method with that of the conventional 

method. To that end, we calculated the residual sum-of-squares (RSS) between the extracted 

Raman-to-NRB ratio spectra (KCARS in Eq. (5) or Eq. (23) and the known Im{χ/χnr} 

at each pixel. The mean RSS, ⟨RSS⟩, is shown in Fig. 2(f). For reference, the RSS if 

KCARS(ω) = 0 (“Null RSS") is also shown. One can see that the fKK-EC and conventional 

workflow return similar results, with the fKK-EC being slightly better (lower). Whether 

this is intrinsic or due to imperfect hyperparameter tunings for each processing step (e.g., 
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ALS parameters) will be investigated in the future as the current goal was to demonstrate 

approximately equivalent results. Figures 2(g)-2(i) compare the spectra retrieved by the 

conventional method and the new fKK-EC (versus the ideal) at the pixels with the maximum 

concentration of each simulated chemical species. In each instance, the fKK-EC spectrum 

returns a result closer to the ideal than the conventional method. It was determined that all 

errors were due to the phase error-correcting steps: the ALS could closely but not perfectly 

retrieve the phase error. Under a separate simulation using constant-valued NRB’s, the ideal, 

conventional workflow, and fKK-EC all agreed (⟨RSS⟩ <10−14).

Next, we performed the same comparisons using the ML:fKK-EC implementation. The 

training portion of the dataset is identified in Fig. 2(a), and it is performed independently 

for each dataset size. Figure 2(d) shows the speed enhancement of ML:fKK-EC versus the 

conventional workflow, both including ("+train") and excluding ("−train") the time used 

for the training portion. Thus, for a trained ML:fKK-EC system, we calculate an ≈ 150× 

speedup, which was <30 μs per spectrum for all dataset sizes. Thus, this could be performed 

in real-time as the data is acquired. Figure 2(e) shows the computational fraction of each 

step, and Fig. 2(f) shows that the machine learning implementation provides equivalent RSS 

to the non-ML fKK-EC method. Finally, Figs. 2(j)-2(l) compare the retrieved spectra from 

the ML:fKK-EC and non-ML version: the results are indistinguishable.

4.2. Experimental: chicken cartilage tissue imaging

Next, we analyzed a stitched series of BCARS images (9) of hyaline cartilage excised from 

chicken knee tissue. The individual original images are 300 pixels x 300 pixels, with ≈ 3 % 

overlap (per side) with neighboring images. The stitched image is 846 pixels by 831 pixels 

(703026 pixels total). Figure 3(a) shows a pseudocolor image from the fKK-EC process, 

colorizing DNA, collagen, and lipids. The DNA was highlighted utilizing the peak at 720 

cm−1. To maximize contrast between DNA and other chemical components, we used the 

side of this peak 713 cm−1, subtracting a linear interpolated baseline between (691 to 738) 

cm−1. Tentatively, we assign this peak to the nucleotide adenine [31]. We did not see a 

strong peak at 785 cm−1, which corresponds, in part, to phosphodiester stretch of the DNA 

backbone; thus, we hypothesize, that DNA-nucleases may have degraded the DNA as this 

is not fresh chicken tissue, but rather grocery store procured. The collagen was highlighted 

by 855 cm−1 (proline ring C-C-stretch [32]) peak relative to the trough at 900 cm−1. Lipids 

were highlighted using the intensity at 2837 cm−1 (CH2-symmetric stretch [33]).

Spectra retrieved using the conventional method and the fKK-EC are shown in Fig. 3(b) with 

the locations identified in Fig. 3(a). The spectra are qualitatively the same. Differences were 

identified as a result of the different response of the SVD to raw BCARS spectra versus that 

of the log-CARS-to-Reference dataset. Retrieving such similarly denoised and processed 

spectra was ≈ 70× faster using the fKK-EC methods (average of 3 repeats ± 1 standard 

deviation: conventional method ≈ 4973 s ± 26 s total [≈ 7.0 ms / spectrum]; fKK-EC ≈ 70 

s ± 3.0 s total [≈ 99 μs / spectrum]). It should be noted that for the conventional processing, 

computer memory limitations precluded the processing of the entire image at once; thus, 

the speed was estimated by performing the KK, PEC, and SEC on 10000 spectra of the 
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image and scaling up the time. The SVD/denoising was performed on the whole image. The 

fKK-EC and ML:fKK-EC were performed on the entire image.

Next we processed the same image using the ML:fKK-EC, using 1 of the 9 images as the 

training image (see Fig. 4(a)). The training image contained 78114 spectra. This image 

was selected for training as even under brightfield observation it appeared to contain 

collagen, lipid droplets, and nuclei: three components expected from our knowledge of 

hyaline cartilage. Other images would have served as well. Again the retrieved spectra, 

see Fig. 4(b), show qualitatively similar results to the conventional workflow with slight 

noise and baseline differences. Excluding the training time (< 10 s), this method was 

approximately 150× faster than the conventional workflow, requiring ≈ 47 μs / spectrum to 

process the entire image. Though these images could have been analyzed in real-time, they 

were processed after acquisition.

5. Discussion and conclusion

Traditionally, the acquisition of CARS spectra was slow, requiring at least tens of 

milliseconds per spectrum, and most CARS hyperspectral imagery was for a small data 

size (up to 256 pixels x 256 pixels). Therefore, the speed of individual spectrum-based 

processing methods was sufficient for the old type of CARS hyperspectral imaging. 

However, now that the advanced CARS imaging can collect much larger images at a 

much faster speed, new hyperspectral image processing methods are needed. An additional 

complication, owing to the inherent distortion of raw CARS spectra, is that the quality 

and results of an imaging experiment cannot be ascertained until after processing. This, of 

course, has been a big incentive to use alternative modalities, such as SRS. But as previously 

described, those alternative modalities do not have the self-referencing ability of CARS, 

which may be a boon for quantitative analysis. Thus, the aim of this work is the development 

of high throughput, robust self-referenced Raman signal extraction from CARS spectra with 

real-time capability.

Though this work demonstrates that the factorization approaches are supremely efficient and 

capable of being used in a machine learning paradigm, there are still many improvements 

possible and areas of inquiry for these methods. From a physics/chemistry perspective, we 

are actively modeling and investigating the nature of the NRB and differences between 

NRBs of different materials. Further, we are examining the degree to which the real-valued 

χnr assumption is valid in light of multiphoton resonances often found in biomolecules. 

This information would not only improve quantitative analysis, but as related to this work, 

it could enable the creation of optimal detrending functions for PEC and SEC (whether 

factorized version or not).

There are also many computational lines of inquiry. For example, we are exploring random 

sampling ("randomized") SVD as a factorization method [34], which can approximate the 

SVD over large datasets orders-of-magnitude faster than traditional SVD. This development 

could enable real-time processing during all acquisitions (via the ML:fKK-EC) by initially 

training with few spectra and retraining when it is calculated that the current basis vectors 

do not adequately support new data. To bolster this, we are examing methods to update 

Camp et al. Page 14

Opt Express. Author manuscript; available in PMC 2023 January 03.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



the basis vector set without re-running SVD. Additionally, we are exploring alternative 

factorization approaches that could enable the ML:fKK-EC to more broadly process 

chemical components that were not contained within the training data. Similarly, we are 

working to develop a universal basis set that could be re-used without training on the current 

sample. We are also exploring "active learning" methods to take advantage of real-time 

processing that could identify and explore regions of interest during an acquisition.

In conclusion, this work presents the development of a series of new methods for extracting 

the self-referenced Raman signatures from raw CARS spectra. These new methods, in 

aggregate, are orders-of-magnitude faster than the conventional implementations and are 

amenable to high-throughput and even real-time processing with appropriate training data. 

This advancement facilitates on-the-fly visualization and analysis and would further support 

such opportunities as in vivo imaging and ad hoc selection of regions-of-interest.
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Fig. 1. 
(a) Workflow for the conventional denoising, KK, PEC, and SEC, where m is the total 

number of spatial pixels (“flattened") and n is the number of frequency channels. (b) 

Workflow for the fKK-EC where the processing steps are performed on basis vectors rather 

than the underlying spectra. (c) Workflow for the ML:fKK-EC in which only the training 

data is processed via the fKK-EC and regression is used to transform new data.
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Fig. 2. 
(a) Concentration map of simulated dataset composed of three chemical constituents, 

colored as red (Chem 1), green (Chem 2), and blue (Chem 3). (b) Ternary plot showing 

the concentration of the simulation. (c) CARS (solid lines) and NRB (dashed) spectra of 

the three pure constituents. The spectra of a reference surrogate is shown in black. (d) 

Processing speed enhancement of fKK-EC and ML:fKK-EC with respect to conventional 

processing. Each trace shows the mean enhancement over three runs with the shading 

showing ±1 standard deviation. (e) Fraction of computing time of each step. Note: only 

fKK-EC and ML:fKK-EC have a reconstruction (Reconst.) step. Also, only the ML:fKK-

EC has a regression (Regress.) step. (f) Mean RSS showing the factorized methods show 

relatively similar, if not improved, RSS values from the conventional workflow. (g)–(i) 

Comparison of single-pixel spectra processed using the conventional methods and the 

fKK-EC. (j)–(l) Comparison of single-pixel spectra processed using the fKK-EC and the 

ML:fKK-EC.
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Fig. 3. 
(a) Pseudocolor image derived from fKK-EC processed CARS image, highlighting DNA 

(yellow), collagen (cyan), and lipids (red). Inset shows zoomed-in region. Scale bar is 100 

μm. (b) Single pixel spectra for locations identified by arrows in (a). (c) Comparison of 

spectrum processing time between conventional and fKK-EC workflow.

Camp et al. Page 19

Opt Express. Author manuscript; available in PMC 2023 January 03.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Fig. 4. 
Pseudocolor image derived from ML:fKK-EC processed CARS image, highlighting DNA 

(yellow), collagen (cyan), and lipids (red). The dashed-white box indicates the sub-image 

used for training. Scale bar is 100 μm. Arrows identify single-pixels used for spectral 

comparison in (b) between conventional and ML:fKK-EC workflow, which shows close 

agreement. (b) Single pixel spectra for locations identified by arrows in (a). (c) Comparison 

of spectrum processing time between conventional and ML:fKK-EC workflow.
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