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Abstract

Protection often involves the capacity to prospectively plan the actions needed to mitigate
harm. The computational architecture of decisions involving protection remains unclear, as
well as whether these decisions differ from other beneficial prospective actions such as
reward acquisition. Here we compare protection acquisition to reward acquisition and pun-
ishment avoidance to examine overlapping and distinct features across the three action
types. Protection acquisition is positively valenced similar to reward. For both protection and
reward, the more the actor gains, the more benefit. However, reward and protection occur in
different contexts, with protection existing in aversive contexts. Punishment avoidance also
occurs in aversive contexts, but differs from protection because punishment is negatively
valenced and motivates avoidance. Across three independent studies (Total N =600) we
applied computational modeling to examine model-based reinforcement learning for protec-
tion, reward, and punishment in humans. Decisions motivated by acquiring protection
evoked a higher degree of model-based control than acquiring reward or avoiding punish-
ment, with no significant differences in learning rate. The context-valence asymmetry char-
acteristic of protection increased deployment of flexible decision strategies, suggesting
model-based control depends on the context in which outcomes are encountered as well as
the valence of the outcome.

Author summary

Acquiring protection is a ubiquitous way humans achieve safety. Humans make future-
oriented decisions to acquire safety when they anticipate the possibility of future danger.
These prospective safety decisions likely engage model-based control systems, which facil-
itate goal-oriented decision making by creating a mental map of the external environ-
ment. Inability to effectively use model-based control may reveal new insights into how
safety decisions go awry in psychopathology. However, computational decision frame-
works that can identify contributions of model-based control have yet to be applied to
safety. Clinical science instead dominates and investigates decisions to seek out safety as a
maladaptive response to threat. Focusing on maladaptive safety prevents a full

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010805 December 19, 2022

1/23


https://orcid.org/0000-0002-0946-6662
https://doi.org/10.1371/journal.pcbi.1010805
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010805&domain=pdf&date_stamp=2023-01-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010805&domain=pdf&date_stamp=2023-01-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010805&domain=pdf&date_stamp=2023-01-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010805&domain=pdf&date_stamp=2023-01-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010805&domain=pdf&date_stamp=2023-01-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010805&domain=pdf&date_stamp=2023-01-03
https://doi.org/10.1371/journal.pcbi.1010805
https://doi.org/10.1371/journal.pcbi.1010805
https://doi.org/10.1371/journal.pcbi.1010805
http://creativecommons.org/licenses/by/4.0/
https://osf.io/4j3qz/

PLOS COMPUTATIONAL BIOLOGY Model-based prioritization for acquiring protection

TWCF0366. TW is supported by a Professor
Anthony Mellows Fellowship. The funders had no
role in study design, data collection and analysis,
decision to publish, or preparation of the
manuscript.

Competing interests: The authors have declared
that no competing interests exist.

understanding of how humans make decisions motivated by adaptive goals. The current
studies apply computational models of decision control systems to understand how
humans make adaptive decisions to acquire protection compared with acquiring reward
and avoiding threat. Safety-motivated decisions elicited increased model-based control
compared to reward- or threat-motivated decisions. These findings demonstrate that
safety is not simply reward seeking or threat avoidance in a different form, but instead
safety elicits distinct contributions of decision control systems important for goal-directed
behavior.

Introduction

Humans have a remarkable capacity to foresee and avoid harm through protective strategies
[1]. Acquiring protection through prospective decisions is a predominant way humans achieve
safety: we build fences to keep out dangerous animals, buy weapons to defend against conspe-
cifics, and wear protective clothing to shield from natural elements. These protective behaviors
likely utilize model-based decision control systems, which support goal-directed action. How-
ever, to our knowledge, no prior work has examined how computational control systems sup-
port adaptive protection acquisition. Extant literature on decision making focuses on purely
appetitive or aversive domains such as reward acquisition and punishment avoidance. When
considering safety, the focus is either on safety as threat cessation or on maladaptive safety
decisions. These approaches fail to consider how humans adaptively acquire safety, which is a
ubiquitous decision process important for survival. We address this gap by comparing protec-
tion acquisition with reward acquisition and punishment avoidance using a novel set of tasks
designed to test contributions of model-based and model-free control systems to decision
making.

Computational reinforcement learning frameworks are powerful methods for characteriz-
ing decision making that have yet to be applied to protection. Existing literature provides
strong evidence that reward- and punishment-motivated decisions are underpinned by
model-based and model-free control systems [2,3]. With model-free control, positively rein-
forced actions are repeated when similar stimuli are subsequently presented. The resulting
habit-like actions are stimulus-triggered responses based on accumulated trial and error learn-
ing rather than goal-directed responses. The model-based system, in contrast, builds a map of
the environment and uses that map to prospectively determine the best course of action. The
model-free system is computationally efficient whereas the model-based system is computa-
tionally intensive but highly flexible [4]. Individuals tend to use a mix of strategies with differ-
ences dependent on task demands [5], development [6], and psychiatric symptomology [7].

Identifying the extent to which individuals engage in model-based control for protection
acquisition is an important step in understanding how humans make adaptive safety-related
decisions. Effectively mapping protection contingencies through model-based control is pos-
ited to create a positive feedback loop: prospectively acquiring protection extends the capacity
for evaluating and integrating knowledge about the environment when later circumstances
limit time to engage the model-based system [8]. Over-reliance on model-free systems, by con-
trast, may underlie pathological as opposed to adaptive protection-seeking, which is character-
ized by repeating safety behaviors that are disproportionate to the threat faced [9]. Learned
helplessness can also manifest as model-free prioritization in cases where increased model-
based control does not result in more advantageous outcomes [10]. An unresolved question
centers on whether of the unique features of protection shift the degree to which the model-
based system or the model-free control system dominate.
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Protective decisions are distinct but retain superficial similarities to both reward- and pun-
ishment-motivated decisions. Protection is positively-valenced, similar to reward but unlike
punishment. Protection exists in a negative context, similar to punishment but unlike reward
(Fig 1A). Additionally, protection is distinct in the degree to which valence and behavior are
aligned, which has consequences for learning [11-13], Negatively-valenced stimuli like pun-
ishment typically elicit avoidance behaviors, whereas positively-valenced stimuli like reward
elicit approach behaviors [14]. In this study, subjects were incentivized to actively seek out the
maximum protection available as opposed to avoid the highest punishment. This aligns with
traditional definitions of approach motivation as the energization of behavior toward a posi-
tive stimulus [15]. Prior studies of decision control typically exploit the conventional coupling
of valence and context (i.e., positively-valenced outcomes in an appetitive context or
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Fig 1. Study structure. (a) Protection acquisition shares positive valence features with appetitive reward and negative context features with aversive
punishment. The context-valence asymmetry of protection acquisition was hypothesized to be reflected in distinct engagement of decision control systems
compared with stimuli in consistently appetitive or aversive domains. All studies included the (b) protection acquisition task variant and a comparison task
variant: (c) reward acquisition in Study 1, (d) direct reward acquisition in Study 2, and (e) punishment avoidance in Study 3. Study 1 compared protection and
reward (b versus c) using abbreviated task versions comprised of 100 non-practice trials. Study 2 compared protection and direct reward (b versus d) using
longer task versions comprised of 200 non-practice trials. Study 3 compared protection and punishment (b versus e) using the longer task versions comprised
of 200 non-practice trials. Deterministic transition structures are depicted with blue and orange arrows and indicate that the same first-stage state always leads
to the same second-stage state. At the start of each trial, subjects saw the stakes amplifier, which showed “x1” for low-stake trials or “x5” for high-stake trials.
Low-stakes results ranged from 0-9 units whereas high-stakes results ranged from 0-45 units. The stakes amplifier was applied to the punishment/reward
available on that trial as well as the final result received. Next, subjects saw one of two pairs of first-stage dwellings (e.g., trees or houses). After subjects chose
between the left and right dwelling depicted, they transitioned to the second-stage creature (e.g., gnomes or elves). Second-stage creatures delivered outcomes
in the form of shields (protection), sacks (reward), coins (direct reward), or flames (punishment). At the second-stage, subjects received outcomes ranging
between 0-9 according to a drifting outcome rate. Outcomes changed slowly over the course of the task according to independent Gaussian random walks (o =
2) with reflecting bounds at 0 and 9 to encourage learning throughout. Outcomes were multiplied by stakes and presented as final results applied to the
maximum reward/penalty available on each trial. For example, in panel (b), subjects visited the low-payoff second-stage gnome. This gnome delivered two
shields. When two shields were delivered on a low-stakes trial, which had the threat of 9 dragon flames, the end result was 7 flames (9 minus 2). When two
shields were delivered on a high-stakes trial, which had a threat of 45 dragon flames (9 flames multiplied by the stakes amplifier of 5), the end result was 35
flames (45 minus 10, 10 is calculated from 2 shields multiplied by the stakes amplifier of 5).

https://doi.org/10.1371/journal.pcbi.1010805.g001
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negatively-valenced outcomes in an aversive context). This perspective does not sufficiently
identify how decision control systems contribute to acquiring protection because protection
decisions involve asymmetric valence and context.

Protective decisions are also largely absent from traditional conceptualizations of safety,
which consider the cessation of punishment but do not consider circumstances in which pun-
ishment is reduced through the conferral of positive protective stimuli [1]. Thus, it remains an
open question whether the decision control systems for protection differ from reward, with
which it shares a positive valence, or from punishment, with which it shares a negative context.
It is possible that the context-valence asymmetry of protection has no effect on the computa-
tional decision structure when compared with these traditional stimuli. In prior work, reward
acquisition and punishment avoidance elicit similar weighting of model-based control, sug-
gesting that there may be some common substrate for reinforcement learning irrespective of
stimulus properties [11,16]. However, reward and punishment are valence-context congruent.
This valence-context symmetry[17] could favor model-free control as a result of less complex
contingency learning [5,13]. Support for this hypothesis is evident in predictable environments
where reward learning engages goal-directed control early on, but cedes to habitual control as
an efficiency [18]. By contrast, amplification of prospective model-based control can aid devel-
opment of accurate and flexible action policies [11], which may facilitate response to hierar-
chically-organized motivational demands (approach toward protection with a broader goal to
avoid punishment). Thus, the valence-context asymmetry of protection may bias toward
greater prospective model-based control than both comparison stimuli. Alternatively, it is pos-
sible that valence-context asymmetry increases perceived difficulty resulting in increased
model-free contributions as a form of learned helplessness [10].

In the current set of three preregistered studies (N = 600 total), we applied computational
modeling to characterize learning for positively-valenced stimuli in disparate contexts (pro-
tection and reward; Study 1 and 2) and learning for disparately-valenced stimuli in the same
context (protection and punishment; Study 3). We developed five modified versions of a
widely-used two-step reinforcement learning task examining protection acquisition (positive
valence, aversive context), reward acquisition (positive valence, positive context), and pun-
ishment avoidance (negative valence, aversive context) (Fig 1A) [19]. Protection was equated
to reward in that both were appetitive stimuli, but the relevance of acquiring each differed by
context such that protection reduced negative outcomes (bonus reduction) whereas reward
increased positive outcomes (bonus increase). Punishment was negatively valenced such that
it was an aversive stimulus to be avoided and increased negative outcomes (bonus reduc-
tion). We hypothesized that the context-valence asymmetry for protection would increase
model-based contributions compared to reward (Study 1 and 2) in line with prior work
showing that even unrelated aversive contexts can interfere with learning for positive out-
comes [20]. We hypothesized that model-based contributions for protection would also be
higher compared to punishment avoidance given the potential for combined contributions
of appetitive and aversive motivations for protection (Study 3). We examined effects of
incentives (high versus low stakes) to determine whether differences in model-based control
were modulated by incentive [19,21]. We hypothesized that incentive sensitivity would be
higher for reward given lower value thresholds for protection and punishment. Lastly, we
examined metacognitive and predictive bias on each task to determine how difference in
subjective confidence and task performance monitoring related to model-based control and
anxiety. We hypothesized increased model-based control would be associated with reduced
metacognitive bias (improved correspondence between confidence and performance) across
all stimuli.
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Results

In each pre-registered study, a balance between model-free and model-based control was
assessed using two variants of a two-step reinforcement learning task. Each study included a
protection acquisition variant and either a reward acquisition (Studies 1 and 2) or punishment
avoidance comparison (Study 3). During each task, subjects made sequential decisions that
navigated them through two “stages” defined by different stimuli. Subjects were told at the out-
set that they were traveling through a fictious forest. On each trial, subjects were first presented
with an indication of whether the trial was a high-stakes or low-stakes trial. High-stakes trials
were 5x more valuable than low-stakes trials, as indicated by 1 or 5 flames (protection and
punishment variants) or 1 or 5 coins (reward variants). The stakes manipulation was designed
to test whether model-based control was modulated by incentive and only included a single
low- and high-stakes value (1 and 5, respectively). After the stakes depiction, subjects were
shown one of two first-stage states. Each first-stage state included 2 dwellings and subjects
chose one dwelling to visit (left or right). In the protection variant dwellings were trees, and in
the reward and punishment variants dwellings were houses. First-stage dwellings were ran-
domly presented in 2 equivalent states such that dwellings remained in their pairs throughout
but the position of each dwelling (left versus right) was counterbalanced across trials. In total,
4 total dwellings were available for each task variant. In each of the first-stage states, one dwell-
ing led to one creature and the second dwelling led to a different creature (2 total creatures),
creating an implicit equivalence across first-stage states. Dwelling-creature pairings remained
constant (deterministic transitions). Each second-stage creature was associated with a fluctuat-
ing outcome probability. Across all protection task variants, the second-stage outcomes were
protection stimuli that reduced losses (shields to protect against the dragon flames). In the
Study 1 reward task variant, the second-stage outcomes were reward stimuli that increased
gains (sacks to carry the fairy coins out of the forest). In the Study 2 direct reward task variant,
the second-stage outcomes were directly delivered as reward stimuli (fairy coins) that
increased overall gains. In the Study 3 punishment task variant, the second-stage outcomes
were directly delivered as punishment stimuli (dragon flames) that increased overall losses.
Second-stage probabilities changed slowly over time, requiring continuous learning in order
select the appropriate first-stage state that led to the second-stage creature that provided the
most optimized outcome. At the final frame, second-stage outcomes (shields, sacks, coins,
flames) were multiplied by the initial stakes to compute an overall point result for that trial,
which affected the subject’s bonus payment.

To quantify the computational mechanisms underpinning behavior, we fit four computa-
tional models to subjects’ choice data during the task (see “Methods” for a full description of
all models). The parameter of primary interest was the balance between model-free and
model-based control between task variants. At an individual level, this balance can be quanti-
fied by a hybrid model, which combines the decision values of two algorithms according to a
weighting factor (w). A learning rate (&) parameter was also estimated for integrating out-
comes to update choice behavior. Additional model-parameters included a single eligibility
trace (1), stickiness () and inverse-temperature (ff) parameter. Watanabe-Akaike Information
Criterion (WAIC) scores were used as a complexity-sensitive index of model fit to determine
the best model for each study. WAIC estimates expected out-of-sample-prediction error using
a bias-corrected adjustment of within-sample error, similar to Akaike Information Criterion
(AIC) and Deviance Information Criterion (DIC)[22]. In contrast to AIC and DIC, WAIC
averages over the posterior distribution rather than conditioning on a point estimate, which is
why WAIC was selected as the index of model fit.
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To interrogate the computational modeling analyses, we used mixed-effects logistic regres-
sions. We present computational results first, followed by mixed-effects regression results con-
sistent with prior work[19] and because the computational results are of primary focus here.
Regression was used to examine choice behavior as a function of the outcome on the previous
trial and similarity in first-stage state. Choice behavior was measured as the probability of
repeating a visit to the same second-stage state (“stay probability”). The interaction between
first-stage state and previous outcome indicates a model-free component whereas a main effect
of previous outcome indicates a model-based component [23]. For the model-free strategy,
outcomes received following one first-stage state should not affect subsequent choices from a
different first-stage state because an explicit task structure is not mapped (thus the equivalence
between first-stage states is not learned). The model-free learner only shows increased stay
probability when the current first-stage state is the same as the first-stage state from the previ-
ous trial, and this is reflected as an interaction between previous outcome and first-stage state.
The model-based learner, in contrast, uses the task structure to plan towards the second-stage
outcomes, allowing it to generalize knowledge learned from both first-stage states. Thus, out-
comes at the second stage equally affect first-stage preferences, regardless of whether the cur-
rent trial starts with the same first-stage state as the previous trial.

Study 1: Comparing protection acquisition to reward acquisition

In Study 1, two-hundred subjects (M. = 27.99(6.87), range,,. = 18-40 years, 98 females, 102
males) completed the protection acquisition and reward acquisition task variants (Fig 1B and
1C). The aim in both variants was to earn the maximum possible second-stage outcome
thereby optimizing the final result. Second-stage outcomes for the protection acquisition vari-
ant were shields that served as protective stimuli to reduce punishment in the form of dragon
flames. Second-stage outcomes for the reward acquisition variant were sacks that served as
reward stimuli to increase reward in the form of fairy coins (Fig 1C). The number of second-
stage outcomes earned ultimately affected the final result, which was points that contributed to
subjects’ bonus payments.

Task engagement

Subjects were engaged and performed well, as shown by higher than median available out-
comes earned (S1A Fig). Average number of points earned per trial (reward rate) was calcu-
lated for each subject and mean corrected by the average outcome available to them via
individually generated point distributions. Corrected reward rate was higher on the protection
task variant and did not differ as a function of stakes within each task variant (S1B Fig). Sub-
jects made first-stage decisions in less than 1 second, and first-stage reaction time (RT) was sig-
nificantly faster for the protection variant (S1C Fig).

Computational models

The best fitting model was Model 3, which included separate model-based weighting (w) and
learning rate (cr) parameters for each task variant, as well as eligibility trace (1), stickiness

() and inverse-temperature () parameters (S1 Table). Subjects had higher average w on

the protection variant (M = .72, SD = .14) compared to the reward variant (M = .14, SD = .22),
1(199) = 17.43, p < .001, 95% CI [.27, .34] (Fig 2A). ¢ did not significantly differ by task variant
(protection M = .47, SD = .33; reward M = .43, SD = .32; (199) = 1.59, p = .11, 95% CI [-.01,
.08]) (Fig 2B). w and o were positively correlated, protection 7(199) = .26, p < .001; reward
r(199) = .33, p < .001.
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study and task variant. Higher w and o were significantly associated with higher corrected reward rate for all task variants. e.
Mixed-effects model parameters testing contributions of the first-stage state, prior trial outcome, and interaction between first-
stage state and prior trial outcome on stay probabilities. Effects from both model-free and model-based contributions were
observed. MF = model-free control; MB = model-based control. f-h. Mixed-effects models testing model-based (different first-
stage state) and model-free (same first-stage state) contributions to stay probabilities (likelihood of repeating the same second-
stage state). Increased model-based contributions were revealed on the protection task variants compared with all other task
variants.

https://doi.org/10.1371/journal.pcbi.1010805.9002

To confirm a higher degree of model-based decision making led to better performance, we
examined associations between corrected reward rate and w, controlling for task order and vari-
ant. Higher w-value led to better performance, (Fig 2C). Higher o was also associated with better
performance (Fig 2D). No moderation by task variant was observed. Accounting for correlation
between w and o did not change effect on corrected reward rate, w Est = .30, SE = .08, t = 3.86,
p < .001,95% CI [.15, 46], & Est = .59, SE = .05, t = 13.22, p < .001, 95% CI [.51, .68].

Mixed-effects models

A significant main effect of previous outcome on staying behavior was observed, indicating
contributions from model-based control, Est = .23, SE = .005, z = 50.96, p < .001, 95% CI [.22,
.24] (Fig 2E). An interaction between first-stage state and previous outcome was also signifi-
cant, indicating contributions from a model-free component, Est = .13, SE = .009, z = 14.11,

p <.001,95% CI [.11, .15]. Lastly, a three-way interaction with task variant was observed con-
firming reinforcement learning results that subjects were more model-based on the protection
task variant. In other words, prior outcome had a stronger effect on stay behavior for the pro-
tection variant compared to the reward variant when the first-stage states differed from the
previous trial, but not when the first-stage state was the same, Est = -.11, SE = .02, Z = -6.23,

p <.001, 95% CI [-.15, -.08] (Fig 2F).

Reinforcement learning models did not reveal a meaningful stakes effect (Model 4 fit was
not significantly better than Model 3). Stakes also did not moderate stay behavior with either
the model-based or model-free mixed-effects components (S2A Fig). These results were con-
sistent for each task variant individually. Because this null effect of stakes differed from prior
work using a similar task and our task included fewer trials compared with prior work [21], we
explored whether the effect of stakes varied as a function of task duration. Task duration inter-
acted with stakes and previous outcome, such that there was no effect of stakes at the start of
the task but high-stakes trials had an increase in likelihood of stay behavior at the end of the
task, Est =-.001, SE = .0003, Z = -2.10, p = .036, 95% CI [-.001, -.00004] (S2B Fig).

Study 2: Comparing protection acquisition to direct reward

In Study 2, two-hundred subjects (Mg = 23.26(4.02), range,q. = 18-36 years, 152 females, 48
males) completed the protection acquisition and direct reward acquisition task variants (Fig 1B
and 1D). Study 2 was conducted with the same protection acquisition task as Study 1, but substi-
tuted the reward acquisition task with a modified version to test whether indirect reward delivery
in Study 1 (i.e., learning to acquire sacks rather than coins themselves) artificially reduced model-
based control contributions to reward acquisition (Fig 1D). Study 2 also increased the number of
trials for both task variants. Study 1 did not reveal an effect of stakes, as found in prior work exam-
ining reward learning [21], but Study 1 had a fewer number of trials than prior work. We thus
tested whether the lack of stakes effect in Study 1 was due to the number of trials by increasing the
number of non-practice trials in Study 2 from 100 to 200 for each variant, consistent with prior
work [21]. Again, the aim in both task variants was to earn the maximum possible outcome
(shields, coins) thereby optimizing the final result (points contributing to bonus).
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Task engagement

As in Study 1, subjects were engaged and performed well, with higher than median outcomes
earned, RTs of <1 second, and higher corrected reward rate for protection compared to direct
reward (SIA-S1C Fig). No stakes effect was observed for corrected reward rate.

Computational models

Computational Model 4 was the best fitting model for Study 2, which included separate w and
o parameters for task variant and stakes (S3 Fig). However, we report Model 3 results which
also fit well to improve comparability across studies. w was higher for the protection variant
(M =.76, SD = .18) compared to the direct reward variant (M = .55, SD = .25), £(199) = 11.00,
p <.001,95% CI [.17, .25], consistent with Study 1 (Fig 2A). As in Study 1,  did not signifi-
cantly differ by task variant (protection M = .48, SD = .35; direct reward M = .51, SD = .37; t
(199) =-1.23, p =.22,95% CI [-.09, .02]) (Fig 2B). w and & were positively correlated, protec-
tion 7(199) = .25, p < .001; direct reward r(199) = .38, p < .001. See S1 Table for 4, 7, and 8
parameters. Consistent with Study 1, higher w and « parameters were associated with better
performance as indexed by increased corrected reward rate, with no moderation by task vari-
ant (Fig 2C and 2D). Accounting for correlation between w and a did not change effect on cor-
rected reward rate, w Est = .16, SE = .06, t = 2.81, p = .005, 95% CI [.05, .26], o Est = .54, SE =
.03, t=15.74, p < .001, 95% CI [.47, .61].

Mixed-effects models

Mixed-effects models identified model-based, Est = .24, SE = .003, z = 72.62, p < .001, 95% CI
[.23, .24], and model-free contributions, Est = .11, SE = .006, z = 17.11, p < .001, 95% CI [.09,
.12] (Fig 2E), and replicated the moderation by task variant observed in Study 1, Est = -.08,
SE=.01,z=-5.92, p < .001,95% CI [-.10, -.05] (Fig 2G). Stakes interacted with the model-
based component, which was driven by the direct reward variant (S2C Fig). No significant
stakes interaction was present for the model-free component.

Study 3: Comparing protection acquisition to punishment avoidance

In Study 3, two-hundred subjects (Mg = 22.25(3.85), range,,. = 18-39 years, 159 females, 41
males) completed the protection acquisition and punishment avoidance task variants (Fig 1B
and 1E). The longer protection acquisition variant from Study 2 was used. The punishment
avoidance variant was a traditional aversive avoidance variant where the aim was to avoid pun-
ishment (dragon flames) that was delivered directly at stage-two (Fig 1E).

Task engagement

Outcomes earned were higher than median available outcomes, RTs were <1 second, and sub-
jects earned more for protection compared to punishment avoidance (S1A-S1C Fig). No
stakes effect was observed for corrected reward rate. RT for first-stage decisions differed by
stakes, such that RT's were slower for high stakes trials (54 Fig).

Computational models

As in Study 1, the best fitting model was Model 3, which included separate w and o parameters
for task variant, but not for stakes type. Subjects had higher w parameters on the protection
variant (M = .74, SD = .14) compared to the punishment avoidance variant (M = .54, SD =
.25), £(199) = 10.94, p < .001, 95% CI [.17, .24] (Fig 2A). a was significantly higher for protec-
tion compared to punishment avoidance, revealing the only learning-rate difference by task

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010805 December 19, 2022 9/23


https://doi.org/10.1371/journal.pcbi.1010805

PLOS COMPUTATIONAL BIOLOGY Model-based prioritization for acquiring protection

variant across the studies (protection M = .58, SD = .35; direct reward M = .51, SD = .37; £(199)
=2.74, p =.007, 95% CI [.02, .12]) (Fig 2B). w and o were positively correlated for punishment
avoidance, 7(199) = .15, p = .04, but not protection #(199) = .10, p = .16. See S1 Table for 4, 7,
and f parameters. Consistent with Studies 1 and 2, higher w and a led to better performance,
as indexed by corrected reward rate, with no moderation by task variant (Fig 2C and 2D).
Accounting for correlation between w and o revealed no significant association with corrected
reward rate, w Est = .17, SE = .05, t = 3.30, p = .001, 95% CI [.06, .27], o Est = .61, SE = .03,
t=20.76, p < .001, 95% CI [.55, .67].

Mixed-effects models

Mixed-effects models identified model-based, Est = .26, SE = .003, z = 79.23, p < .001, 95% CI
[.26, .27], and model-free contributions, Est = .12, SE = .007, z = 17.44, p < .001, 95% CI [.10,
.13] (Fig 2E), and replicated the moderation by task variant observed in Studies 1 and 2, Est =
-.09, SE = .01,z=-6.42, p < .001, 95% CI [-.11, -.06] (Fig 2H). No stakes effect was observed
with respect to either model-based or model-free component (S2D Fig).

Computational model parameter comparisons between studies

Model-based control (w) for the protection variant did not significantly differ across studies, F
(2,597) = 2.56, p = .08. For non-protection task variants (i.e., reward and punishment avoid-
ance), w differed across studies, F(2, 597) = 18.93, p < .001. Post-hoc Tukey HSD comparisons
revealed a significant difference between reward in Study 1 and direct reward in Study 2 as
well as punishment avoidance in Study 3, such that both Study 2 and 3 w were .13 higher than
Study 1, p < .001. Direct reward in Study 2 and punishment avoidance in Study 3 did not dif-
fer, Waiff = —004,p =.99.

Learning rate (o) significantly differed across studies for the protection task variants, F(2,
597) =7.07, p = .001, as well as non-protection task variants, F(2, 597) = 3.76, p = .02. Post-hoc
Tukey HSD comparisons revealed a significant difference between protection in Study 3 and
protection in Study 1 as well as protection in Study 2, such that Study 3 & was .12 higher than
Study 1, p =.002, and .007 higher than Study 2, p = .007. Study 1 reward o was .09 lower than
Study 3 punishment, p = .04.

Metacognitive and predictive bias

Model-based actions can be implicit, where there is a nonconscious anticipation of an out-
come, or explicit, where a conscious prospection can motivate behavior [24]. We assessed mea-
sures of metacognitive (certainty) and predictive bias (outcome estimates) to examine whether
subjective evaluation tracked outcomes and whether bias differed as a function of learning
strategy and context.

Average certainty and outcome estimate ratings on a scale of 0-9 were above the midpoint
for all task variants (Fig 3A and 3B). Mixed effects regression results indicated that certainty
and outcome estimates were higher on trials for which subjects earned higher outcomes,
reflecting metacognitive and predictive bias, respectively (Fig 3C).

Random slope coefficients were extracted from the model of outcome predicting certainty
and outcome estimates. Coefficients represented metacognitive and predictive bias for each
subject. Metacognitive bias only differed by task variant for Study 3, with reduced bias for pro-
tection than punishment avoidance (Fig 3D). Predictive bias was lower for protection than
reward and punishment in Studies 1 and 3, but higher for direct reward compared to protec-
tion in Study 2 (Fig 3E). Bias coefficients were regressed against w and o for each task variant.
Reduced metacognitive bias was associated with faster learning rate for all tasks and more

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010805 December 19, 2022 10/23


https://doi.org/10.1371/journal.pcbi.1010805

PLOS COMPUTATIONAL BIOLOGY

Model-based prioritization for acquiring protection

a. Certainty b. Outcome Estimates
Study 1 Study 2 Study 3 Study 1 Study 2 Study 3
H 2000 M
1500 BB 1
1500 . Task Variant
I Reward
> W —{ .
2 1000 Protection 1
% 10004 - Direct Reward
li.? Protection 2
500 Punishment
5004 N Protection 3
0 0
00 25 50 75 00 25 50 75 00 25 50 75 00 25 50 75 00 25 50 75 00 25 50 75
Certainty Outcome Estimates
c. Metacognitive and Predictive Bias Tests d. Metacognitive Bias
1(197)=1.92, p=.057 | (193)=1.04, p=.299 | 1(194)=3.05, p=.003
95% CI [-.03, .0004] | 95% ClI [-.02, .007] 95% CI[.17, .20]
i 0.6
i bias ° .
i - o
!
! —_—p— | ” _ ° °
Certainty | | —_—— Model 0.4 8
! — loae Task Variant
i : ;
| —— ® protection 1 E Reward
! reward 0.2+ E3 Protection 1
{ @  protection 2 E Direct Reward
| yo ® direct reward E3 Protection 2
] ® protection 3 0.01 E3 Punishment
] —— 5
i ] — punishment E Protection 3
Outcome Estimates : b
—_— . o
i — -0.24 O °
i
i
: °
0.00 0.05 0.10 0.15 0.20 i 2 s
reduced bias Study
e. Predictive Bias - it i
f. Metacognitive and Predictive Bias Model Parameters
197)=3.69, p<.001 £194)=2.79, p=.006 1(194)=3.86, p<.001
95% CI [-.04,-.01] 95% CI [.006, .04] 95% CI [-.06, -.02]
0.50 ° :
reduced S i
bias w certainty ———
1
!
Task Variant : s Model
0.25 1
R o !
E eward alpha certainty 1 | ‘ } Protection 1
EProtecliom | —_— © Reward
$ Direct Rewa ! @ Protection 2
B3 Protection 2 ! o @ Direct Rew
0.00 E Punishment W outcome 4 $ o Protection 3
E Protection 3 | Punishment
1 Rl
° 1
i
& alpha outcome - !
-0.25 o ]
- 1
T T T + T T T T
1 2 3 0.0 0.5 1.0 1.5 2.0 25
Study reduced bias

Fig 3. Metacognitive and predictive bias results. a. Histograms depicting Certainty ratings by study and task variant. Certainty was rated with respect to how
sure subjects felt they were that they selected the first-stage state that would lead to the most optimal outcomes. Certainty ratings were made on a scale of 0-9
from not at all certain to very certain. b. Histograms depicting Outcome Estimates by study and task variant. Outcome Estimates were provided with respect to
how many outcome units subjects thought they would receive at the second-stage. Outcome Estimates were made on a scale of 0-9 outcome units (i.e., subjects
who rated a 2 thought they would receive 2 shields/sacks/coins/flames, respectively). c. Mixed-effects model parameters testing metacognitive and predictive
bias by modeling actual outcome received as a function of Certainty and Outcome Estimates, respectively. d. Metacognitive bias boxplots by study and task
variant. Metacognitive bias was calculated by extracting random slope coefficients from the model of outcome predicting Certainty. Significant differences were
only identified in Study 3 with reduced bias for the protection acquisition variant compared to the punishment avoidance variant. e. Predictive bias boxplots by
study and task variant. Predictive bias was calculated by extracting random slope coefficients from the model of outcome predicting Outcome Estimates.
Significantly reduced bias was revealed for the protection acquisition variants compared to the reward acquisition and punishment avoidance variants, but not
compared to the direct reward variant. f. Model parameters for metacognitive and predictive bias coefficients regressed against model-based control weighting
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(w) and learning rate (@) parameters for each task variant. Far right legends indicate task variants across all studies: Study 1 = Reward and Protection 1, Study
2 = Direct Reward and Protection 2, Study 3 = Punishment and Protection 3.

https://doi.org/10.1371/journal.pcbi.1010805.9003

model-based control for protection and reward in Studies 1 and 2 (Fig 3F). Predictive bias was
inconsistently related to model-based control, but was related to slower learning rate across all
task variants with the exception of protection in Study 1 (Fig 3F).

Anxiety

All subjects provided self-report assessments of anxiety using the State-Trait Anxiety Inven-
tory (STAI) Trait Anxiety subscale [25]. Average scores were M =29.59, SD = 11.37, range = 1--
58 across all studies. Differences in deployment of model-based control (w-difference score
calculated as non-protection variant subtracted from the protection acquisition variant for
each study) were associated with anxiety such that individuals with higher scores on the STAI
demonstrated greater model-based weighting for reward acquisition compared with protec-
tion acquisition, but greater model-based weighting for protection acquisition compared with
punishment avoidance: study by w-difference interaction Estimate = 5.40, SE = 2.21, t = 2.45, p
=.015,95% CI [1.07, 9.74], R* = .02 (Fig 4). Anxiety was not significantly associated with learn-
ing rate differences: Estimate = 1.38, SE = 1.66, t = .83, p = .406, 95% CI [-1.88, 4.63], R* = .01.

For certainty, anxiety interacted with task type such that individuals with higher anxiety
reported reduced certainty for protection acquisition compared to reward and direct reward,
but increased certainty for protection acquisition compared to punishment avoidance (S5A
Fig). For outcome estimates, subjects with higher anxiety also demonstrated lower outcome
estimates for protection acquisition compared with direct reward, but higher outcome esti-
mates for protection acquisition compared to punishment avoidance (S5B Fig). Anxiety was
not significantly associated with metacognitive or predictive bias.

Discussion

This is the first study we are aware of that determines how humans apply reinforcement learn-
ing strategies to adaptively acquire protection. Reinforcement learning models describe how
predictions about the environment facilitate adaptive decision making. In aversive contexts,
predictions center on minimizing harm whereas appetitive contexts motivate reward maximi-
zation. Traditional safety conceptualizations center on threat and, as such, typically elicit
avoidance as opposed to approach behavior [26]. However, the current study required
approach behavior to maximize positively-valenced protection. Our results demonstrate that
individuals engaged model-based control systems to a greater extent when acquiring protec-
tion compared to acquiring reward and avoiding punishment. By reconceptualizing safety in
terms of appetitive protection, this study progresses understanding of context-valence interac-
tions underlying differential recruitment of decision control systems.

In contrast to prior studies that consider safety in terms of punishment avoidance, the cur-
rent studies aligned protection with reward by making both positively valenced (i.e., more is
better). We compared protection with reward to determine whether there was something con-
ceptually different about the way individuals learn for these types of stimuli, or whether protec-
tion is simply reward by a different name. Our results suggest the former. We interpret these
findings to suggest that, despite similar valence, protection acquisition is conceptually different
from other types of reward. The ultimate goal of protection acquisition is to minimize harm,
whereas reward acquisition does not explicitly consider harm. During value-based choice,
individuals first assigning values to all of the stimuli that can be obtained, and then compare
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Fig 4. Anxiety and model-based weighting (w) estimated separately for each Study. Model-based prioritization was
observed for protection compared with punishment avoidance (Study 3) for individuals with higher anxiety scores and
for protection compared with reward acquisition for individuals with lower anxiety scores (Study 1 and 2). Dashed
grey line represents the sample average scores on the State-Trait Anxiety Inventory (STAI) Trait Anxiety subscale.

https://doi.org/10.1371/journal.pcbi.1010805.g004

the computed values to select one. In real-world contexts, multiple value-based choices that
span appetitive and aversive outcomes may occur simultaneously. For example, perhaps you
build a fence with a friend because dangerous mountain lions invade your yard. But while
building the fence, you also have positive experiences like sharing time with a friend and
drinking a refreshing lemonade. Importantly, the friend and lemonade may be positive but are
not protective stimuli. Instead, they are other rewarding social stimuli that co-occur with pro-
tection acquisition. Thus, the value-based choice of building a fence versus digging a trench is
dissociable from the value-based choice of which friend to invite to help you or the choice of
whether to have iced tea or lemonade. The current experimental tasks were designed to disen-
tangle appetitive and aversive motivation with respect to the type of outcome faced (reward or
loss), as is standard with examinations of appetitive/aversive domains [27,28]. Using both
computational modelling and model-agnostic analyses, our findings revealed that protection
amplifies contributions from the model-based system when compared with traditional appeti-
tive reward and aversive punishment.

The current tasks were designed such that greater model-based control was yoked to more
beneficial outcomes through deterministic state transitions [23]. This feature clarifies prior
work that suggested greater reliance on model-based control may be suboptimal in aversive
contexts [11]. When the goal is to maximize protection, and deployment of model-based con-
trol can better achieve that goal, individuals show increased reliance on model-based control.
Thus, aversive context can motivate flexible and adaptive behavior for positively-valenced out-
comes. Differences in model-based control were not attributable to task complexity as evinced
by faster reaction time for protection than other task variants and no significant differences in
learning rate between tasks. Thus, it is not that protection as a construct is more abstract thereby
requiring more effortful control to optimize behavior. Instead, these results suggest value-based
features of protection drive engagement of more flexible, goal-directed learning systems.
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Metacognitive and predictive biases were reduced for acquiring protection than avoiding
punishment. In line with the reinforcement learning results, it is likely that punishment avoid-
ance engages reflexive decision circuits, whereas protection acquisition more closely approxi-
mates distal threat affording engagement of cognitive circuits [8]. These findings clarify prior
work identifying an increase in metacognitive bias in aversive contexts [29], and provide sup-
port for our assertion that approach and avoidance motivations underlie differences previously
attributed to context. Because our design improved accuracy-demand trade-offs through
deterministic state transitions, our results are also consistent with recent work showing higher
decision confidence is associated with model-free learning when model-based and model-free
systems have chance level performances [30]. In this study, reduced metacognitive bias was
associated with more model-based control and faster learning rates. Thus, model-based actions
can be interpreted to reflect explicit forecasts. Predictive accuracy demonstrated the same gen-
eral pattern with less consistency, perhaps because of the inherent difficulty in estimating pre-
cise outcomes with random walks. Together, metacognitive bias findings suggest that a boost
in model-based control by reframing safety as an approach toward protection mitigates meta-
cognitive differences previously linked to context.

Individual differences in trait anxiety were associated with degree of model-based control
deployed to acquire protection, offering a potential mechanistic explanation for differences in
safety decisions previously documented in anxious individuals [31]. For individuals with
higher anxiety, model-based control for protection was decreased compared with reward. In a
separate sample, model-based control was elevated for protection compared with punishment.
This increase in model-based control depending on valence-context interactions also supports
our assertion that protection acquisition is distinct from purely aversive punishment and appe-
titive reward. Trait anxiety was also associated with a general reduction in certainty and out-
come estimates across the valence spectrum, but not with increased metacognitive or
predictive bias. Together, these finding suggests that individuals with higher anxiety per-
formed worse on tasks involving negative context, but that they were able to estimate their per-
formance with comparable accuracy to those with lower anxiety scores. The increase in
model-based control for protection compared to punishment has implications for real-world
behaviors observed in anxiety. Model-free responses to protection acquisition can lead to
repeating overly-cautious avoidance behaviors, often referred to as problematic “safety-seek-
ing”. Model-based control, however, can facilitate flexible updating in response to changing
threat contingencies, which supports adaptive safety acquisition. The increase in strategic con-
trol for protection compared with punishment raises the possibility that leveraging approach
motivation may be beneficial for protection-based learning in anxious individuals. Applying
computational decision frameworks to safety extends understanding of how humans rationally
acquire protection in the face of threat and how decision control strategies differ compared
with other appetitive and aversive stimuli.

This study has implications beyond informing theoretical frameworks to potentially
expanding clinical approaches to treating anxiety. Up to 50% of individuals with anxiety do
not fully respond to current treatments (e.g., cognitive behavioral therapy) [32]. This may be,
in part, due to clinical science conceptualizations of safety seeking as dysfunctional avoidance
[33,34] contributing to the onset and maintenance of anxiety [35]. However, recent work pro-
poses focusing on learning about safety, as opposed to threat, may be a promising alternative
avenue by which to improve anxiety treatment [36,37]. The current studies supports this call
to disaggregate threat extinction and safety acquisition. Our findings show adaptive safety
acquisition does not function the same as threat avoidance, even for those with higher trait
anxiety. Similar to conditioned inhibition approaches, our findings indicate safety via protec-
tion can be trained in the presence of threat thereby reducing competing associations formed
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during Pavlovian extinction learning [36]. The current paradigm also has the potential to dif-
ferentiate between maladaptive coping strategies such as avoidance and adaptive coping strate-
gies[38] such as flexible safety maximization by examining decisions to acquire protection
when doing so is rational and in the presence of threat.

Study findings should be considered in the context of design limitations. The sample was
recruited and tested online without a primary aversive stimulus (i.e., shock). Monetary out-
comes have been previously validated for studying aversive and appetitive learning [16,19,24],
but other aversive contexts will need to be tested to enhance generalizability. Although we
based our paradigm development on widely-used and validated reinforcement-learning tasks,
we only replicated the stakes effect observed in prior work in Study 2 [21]. The model account-
ing for both task variant and stakes fit best for Study 2, but the WAIC score for the more com-
plex model was only .18% different from the simpler model, thus we used Model 3 to compare
across studies. Despite prior work identifying higher exploit behavior under high-stakes [19],
we did not test an inverse-temperature difference by stakes considering the lack of stakes effect
on model-based weighting and the potential for non-identifiability given inverse-temperature
interacts multiplicatively with the weighting parameter [39]. The lack of a robust effect of
incentives (i.e., stakes) raises the possibility that other task-based factors not yet classified in
the reinforcement-learning literature are at play [23]. Additional tasks exploring approach-
based safety are needed to further validate and replicate the constructs examined here. We did
not examine working memory effects, which have been recently argued to be relevant for per-
formance on two-step tasks [40]. We did not collect race and ethnicity data for our sample,
which precludes conclusions as to whether our sample adequately represents the broader pop-
ulation. We also did not assess intolerance of uncertainty, which is considered a lower order
factor related to anxiety, and is often correlated with trait anxiety, but has independent predic-
tive value [41]. Intolerance of uncertainty has been shown to specifically relate to physiological
regulation in response to threat and safety cues during conditioning [42,43]. With regard to
decision control systems, prior findings suggests model-free control may be more optimal
under high uncertainty, particularly for punishment avoidance [11]. However, more work is
needed to understand how dispositional intolerance of uncertainty interacts with situational
uncertainty to influence decision control systems and learning.

Every day, humans seek to acquire protection through prospective decisions, which engage
model-based decision control systems. The current studies illuminate computational decision
control components that differentiate protection acquisition from reward acquisition and
punishment avoidance. We focus on how humans make adaptive decisions to seek out protec-
tive stimuli as a rational choice behavior when threat is present. This focus on beneficial safety
seeking differs from examinations of aberrant safety seeking, which currently dominate the lit-
erature given important ties to psychopathology. Here we provide evidence that the valence
and context asymmetry of protection increased goal-directed control compared with other sti-
muli that have consistent valence and context matching (i.e., reward and punishment). By
identifying the engagement of flexible decision control systems in protection acquisition, this
work lays the foundation for better understanding of how humans adaptively acquire safety
and how safety learning goes awry in psychopathology.

Materials and methods
Ethics statement

All methodology was approved by the California Institute of Technology Internal Review
Board, and all subjects provided written consent to participate through an online consent
form at the beginning of the experiment. Subjects were compensated for their time at a rate of
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US$9.00 per hour and were entered into a performance-contingent bonus lottery for US
$100.00. The lottery served to increase task engagement.

Sample

Six-hundred human subjects completed two reinforcement learning tasks online across three
studies. Each study involved an independent sample of 200 subjects. Study 1 compared a pro-
tection and reward variant (Fig 1B and 1C), Study 2 compared a longer version of the protec-
tion variant and a direct reward variant (Fig 1B and 1D), and Study 3 compared the Study 2
protection variant and a punishment avoidance variant (Fig 1B and 1E). Subjects were
recruited through Prolific, an online recruitment and data collection platform that produces
high-quality data [44]. As described in our preregistration, we used a stopping rule of 200 sub-
jects with useable data. In each Study, subjects completed two task variants (Study 1, 90-min-
utes; Studies 2 and 3, 120-minutes).

Inclusion and exclusion criteria

Subjects were included based on being aged 18-40, fluent in English, and normal or corrected
vision. Subjects were excluded from all analyses and replaced through subsequent recruitment
if they failed to respond to more than 20% of trials within the allotted time or if they incor-
rectly responded to more than 50% of comprehension checks. In total, 15 subjects (2.5% of the
total sample) failed these criteria (Study 1, 3; Study 2, 8; Study 3) and were replaced through
subsequent recruitment.

Materials and procedure

In Study 1, subjects played two similar games in which they were traveling through a fictitious
forest with a goal to either maximize protection (protection variant) or reward (reward vari-
ant). Each variant consisted of 120 trials, with the first 20 trials designated as practice and not
included in analyses. In Study 2, subjects played a longer version of the same protection variant
and a modified version of the reward variant with reward directly delivered at Stage 2 (direct
reward variant). In Study 3, subjects played the longer protection variant and a punishment
variant with the goal to minimize punishment (punishment avoidance). In Study 2 and 3, trial
numbers were increased to 225 trials, with the first 25 designated as practice in line with prior
work examining the effect of stakes [21]. Presentation of the two task variants were counterbal-
anced across subjects for each study.

Prior to completing the tasks, subjects were instructed extensively about the transition
structure, outcome distribution, and how the stakes manipulation worked. Subjects completed
10 comprehension questions (no time limit) with feedback after the task instructions. Subjects
were excluded from analyses and replaced through subsequent recruitment if they completed
less than 50% of comprehension questions accurately. Instructions and comprehension were
included to ensure subjects fully understood task elements.

Stakes

Each trial started randomly with an indicator of high (x5) or low (x1) stakes for 1500ms. Spe-
cifically, in all protection and the punishment avoidance variants subjects were shown dragons
who were either small and delivered one flame or were large and delivered five flames. In the
reward and direct reward variants subjects were shown fairies that were either small and deliv-
ered one gold coin or were large and delivered five gold coins. Low-stakes results ranged from
0-9 units of reward/punishment whereas high-stakes results ranged from 0-45 units. This
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allowed for an outcome/reward distribution similar to that used previously with varying stakes
magnitudes [19]. The stakes amplifier was applied to the punishment/reward available on that
trial as well as the final result received.

First-stage choices

After the stakes depiction, one of two possible first-stage states was randomly shown. In all
protection variants, first-stage states were depicted as trees where gnomes dwelled. In all other
variants, first-stage states were depicted as houses where elves dwelled. Houses were used to
denote reward, direct reward, and punishment in order to minimize between-study differences
in comparisons as a function of stimulus kind. Subjects had to choose between the left- and
right-hand first-stage dwellings using the “F” and “J” keys within a response deadline of
1500ms. If subjects did not respond within the time allotted, they were told they did not select
in time and were instructed to press “space” to start the next trial.

Second-stage outcomes

First-stage choices determined which second-stage state was encountered. Deterministic tran-
sitions specified that the same first-stage dwelling always led to the same second-stage state,
which was depicted as a creature. Choices between first-stage states were equivalent between
such that a dwelling in each pair always led to one of the two second-stage creatures and the
other always led to the remaining creature. This equivalence distinguished model-based and
model-free strategies because only the model-based system can transfer learned experiences
from one first-stage state to the other [23]. This is an important aspect of the task given grow-
ing evidence that both model-free and model-based strategies can result in optimal decisions
depending on task constraints [45]. In the Study 1 reward variant, second-stage creatures were
elves who made sacks to carry the fairy’s gold coins. In the Study 2 direct reward and Study 3
punishment avoidance variants, coins and flames were delivered at the second-stage. In all
protection variants, second-stage creatures were gnomes who made shields to protect against
the dragon’s flames. Payoffs were initialized as low (0-4 points) for one creature and high (5-9
points) for the other. Payoffs changed slowly over the course of the task according to indepen-
dent Gaussian random walks (o = 2) with reflecting bounds at 0 and 9 to encourage learning
throughout. A new set of randomly drifting outcome distributions was generated for each
subject.

Final result

After making their first-stage choice, subjects were shown which creature they visited for
1500ms and then were shown how much outcome they received as well as the final result
based on how outcomes were applied to the initial stakes for 2500ms. Outcomes were multi-
plied by stakes and presented as the final result applied to the maximum reward/penalty avail-
able on each trial (see Fig 1 for an example). Subjects lost points if attacked in the protection
and punishment avoidance variants and gained points in the reward and direct reward vari-
ants. Points contributed to actual bonus money distributed. Similar incentives have success-
fully been used in prior work [12].

Reinforcement learning models

Reinforcement learning models were fit using a hierarchical Bayesian approach, assuming sub-
ject-level parameters are drawn from group-level distributions, implemented in Stan [46],
which allowed us to pool data from all subjects to improve individual parameter estimates.
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Building on prior work [19,23], we fit 4 computational reinforcement learning models with
weighting parameters (w) that determined the relative contribution of model-based and
model-free control and learning-rate parameters () that governed the degree to which action
values were updated after a positive outcome. Models also included an eligibility trace parame-
ter (1) that controlled the degree to which outcome information at the second stage transferred
to the start stage, a “stickiness” parameter (7) that captured perseveration on the response, and
an inverse-temperature parameter () which controlled the exploitation exploration trade-off
between two choice options given their difference in value. Model fitting was conducted as fol-
lows: (Model 1) First we fit a “null model” that did not include an effect of stakes or task vari-
ant and accounts for subjects’ choices by integrating first-stage value assignment for both
model-based and model-free systems. Four distinct first-stage states were assumed. (Model 2)
Next, we fit a model that included the same first-stage model-based and model-free learning as
Model 1 with an additional separate w and a parameter for the effect of high- and low-stakes
trials. (Model 3) Then, we fit a model that included the same first-stage model-based and
model-free learning as Model 1 with an additional separate w and o parameter for each task
variant. (Model 4) Finally, we fit a model that included the same first-stage learning and task
variant effect as Model 3 with an additional separate w and o parameter for the effect of high-
and low-stakes trials.

Parameters were specified using non-centered parametrizations, whereby each subject-level
parameter (0,pjec;) is formed by a group-level mean (4gy0.,) and standard deviation (0g,oqp)
plus a subject-level offset parameter (€g,pjecr):

Hsubject = lugmup + O-group : Esuhjer:t

We used weakly informative prior distributions (normal distributions with mean = 0 and
standard deviation = 1) on each of these parameters and assigned a lower bound of zero for
the standard deviations.

Subject-level parameters 6,4, were subject to logistic sigmoid (inverse logit) transforma-
tions to map them into the range [0, 1]. For the inverse temperature parameter, this was multi-
plied by 20 to give the range [0, 20].

Posterior distributions for model parameters were estimated using Markov chain Monte
Carlo (MCMC) sampling implemented in Stan, with 4 chains of 4000 samples each. For further
analyses, we used the mean of each parameter’s posterior distribution. Model comparison was
performed using Watanabe-Akaike Information Criterion (WAIC) scores [47], which provides
a goodness of fit measure for Bayesian models penalized according to the number of free
parameters in the model. Lower WAIC scores indicate better out-of-sample predictive accuracy
of the candidate model. WAIC scores for all models and all studies are reported in S2 Table.

Mixed-effects models

All statistical tests, with the exception of the reinforcement learning models, were conducted
in R (version 4.0.3) using the Ime4 package (version 1.1.26) [48]. Mixed effects models were
tested using the Imer function (ImerTest assessed t-tests using Satterthwaite’s method). Linear
models were tested using the Im function. General effects sizes are reported as 95% confidence
intervals. Model effect sizes reported as R” are conditional effects of variance explained by the
entire model [49].

Metacognitive and predictive bias

Decision certainty and outcome estimates were collected throughout the tasks on 25% of trials
each. Subjects were asked to report on a scale of 0-9 how certain they were that they selected

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010805 December 19, 2022 18/23


https://doi.org/10.1371/journal.pcbi.1010805

PLOS COMPUTATIONAL BIOLOGY Model-based prioritization for acquiring protection

the first-stage state that would lead to the best outcome and to estimate the number of outcome
units they thought they would receive at the second-stage on a scale of 0-9. Certainty and out-
come estimates were not elicited on the same trial.

Anxiety

As preregistered, anxiety was measured using the State-Trait Anxiety Inventory (STAI) Trait
Anxiety subscale [25]. STAI is a 20-item measure on a 4-point scale ranging from “almost
never” to “almost always”. Trait anxiety evaluates relatively stable aspects of anxiety proneness
including general states of calmness, confidence, and security. Internal consistency for anxiety
in this sample was Cronbach’s & = .94. Individual differences were analyzed with respect to dif-
ference in model-based control and learning rate across task variants operationalized as each
model parameter for the protection variant minus the corresponding parameter for the non-
protection variant within a given study. Positive values reflect increased model-based control
and learning rates for the protection variant.

Preregistration

The main hypotheses and methods were preregistered on the Open Science Framework
(OSF), https://ost.io/4j3qz/registrations.

Supporting information

S1 Fig. Task performance. a. Histograms depicting the number of outcome units earned by
study and task variant. Black lines indicate median available outcome for each study. b. Cor-
rected reward rate boxplots by study and task variant. Corrected reward rate was significantly
higher for the protection task variants compared to all other task variants. Corrected reward
rate was calculated as the average outcome earned divided by average outcome available,
which was determined by the randomly drifting outcome distributions generated for each sub-
ject. c. Reaction time (milliseconds, ms) boxplots by study and task variant. Subjects made
first-stage decisions quicker for the protection task variants compared to all other task variants.
Far right legend indicates task variants across all studies: Study 1 = Reward and Protection 1,
Study 2 = Direct Reward and Protection 2, Study 3 = Punishment and Protection 3.

(TIF)

S2 Fig. Stakes and model-based control. We assessed whether use of model-based control
was affected by stakes by testing whether stakes moderated stay behavior in mixed model anal-
yses. (a) Stakes did not significantly interact with either the model-based or model-free com-
ponent across tasks in Study 1: MB Estimate = .0001, SE = .009, z = .02, p = .988, 95% CI [-.02,
.02], 700 = .48, R2 = .15; MF Estimate = -.02, SE = .02, z = .89, p = .375, 95% CI [-.02, .05], 700
= .49, R2 = .17. (b) Task duration interacted with stakes and previous outcome, such that there
was no effect of stakes at the start of the task but high-stakes trials had an increase in likelihood
of stay behavior at the end of the task: Estimate = -.001, SE = .0003, z = -2.10, p =.036, 95% CI
[-.001, -.00004], 7o = .48, R*> = .16. (c) Study 2, which increased trials to 200 non-practice
(compared with 100 non-practice in Study 1), which revealed a stakes effect that interacted
with the model-based component: Estimate = .01, SE =.006, z = 2.20, p = .028, 95% CI [.002,
03], 7g0 = .51, R* = .16. This effect was driven by the direct reward variant: direct reward Esti-
mate = .02, SE =.009, z = 2.68, p = .007, 95% CI [.006, .04], 790 = .59, R* = .17; protection Esti-
mate = .004, SE = .009, z = .37, p = 711, 95% CI [-.02, .02], 740 = .66, R* = .21. No significant
interaction was present for the model-free component: Estimate = -.007, SE = .01, z=-.53,p =
.595, 95% CI [-.03, .02], 7o = .51, R* = .17. (d) In Study 3, the stakes effect was not significant
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with respect to either model-based or model-free component: MB Estimate = .006, SE = .007, z
= 88, p=.381,95% CI [-.01, .02], Too = .46, R*> = .17; MF Estimate = .02, SE=.01,z=1.87, p =
062, 95% CI [-.001, .05], 7o = .46, R> = .18.

(TIF)

S3 Fig. Study 2 stakes effect by task. Diverging from Study 1, Study 2 revealed a stakes effect
such that model-based weighting (w) differed between tasks for both high and low stakes, with
the protection variant demonstrating more model-based control for both stakes: high stakes
Wproteetion = -70(21), Wairectreward = -55(:23), #(199) = 7.40, p < .001, 95% CI [.11, .19], low
stakes Wrorection = -77(-19), Wetrectrewara = -55(:23), (199) = 11.82, p < .001, 95% CI [.18, .26].
(TIF)

$4 Fig. Reaction time by stakes and task variant. RT for first-stage decisions only differed by
stakes for Study 3, such that RTs were slower for high stakes: Estimate = 9.84, SE = 4.75,
t=2.07, p =.039,95% CI [.52, 19.16], 0> = 67.23, oo = 85.23, R* = .63.

(TIF)

S5 Fig. Anxiety associations with metacognitive and predictive bias. (a) Effects on Certainty
of the interaction between anxiety (STAI) and task-variant by Study. (b) Effects on Outcome

Estimates of the interaction between anxiety (STAI) and task-variant by Study.
(TIF)

S1 Table. Additional model parameters. Eligibility trace (1), stickiness (7), and inverse-tem-
perature () parameters by study for Model 3.
(XLSX)

S2 Table. Model fit. Watanabe-Akaike Information Criterion (WAIC) scores for each model
by study.
(XLSX)
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