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Abstract

Background.MRI-derived cortical folding measures are an indicator of largely genetically dri-
ven early developmental processes. However, the effects of genetic risk for major mental dis-
orders on early brain development are not well understood.
Methods. We extracted cortical complexity values from structural MRI data of 580 healthy
participants using the CAT12 toolbox. Polygenic risk scores (PRS) for schizophrenia, bipolar
disorder, major depression, and cross-disorder (incorporating cumulative genetic risk for
depression, schizophrenia, bipolar disorder, autism spectrum disorder, and attention-deficit
hyperactivity disorder) were computed and used in separate general linear models with cor-
tical complexity as the regressand. In brain regions that showed a significant association
between polygenic risk for mental disorders and cortical complexity, volume of interest
(VOI)/region of interest (ROI) analyses were conducted to investigate additional changes in
their volume and cortical thickness.
Results. The PRS for depression was associated with cortical complexity in the right orbito-
frontal cortex (right hemisphere: p = 0.006). A subsequent VOI/ROI analysis showed no asso-
ciation between polygenic risk for depression and either grey matter volume or cortical
thickness. We found no associations between cortical complexity and polygenic risk for either
schizophrenia, bipolar disorder or psychiatric cross-disorder when correcting for multiple
testing.
Conclusions. Changes in cortical complexity associated with polygenic risk for depression
might facilitate well-established volume changes in orbitofrontal cortices in depression.
Despite the absence of psychopathology, changed cortical complexity that parallels polygenic
risk for depression might also change reward systems, which are also structurally affected in
patients with depressive syndrome.

Introduction

Major mental disorders are highly heritable. Family studies have estimated the overall pheno-
type heritability of schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder
(MDD) at ∼80% (Sullivan, Kendler, & Neale, 2003), ∼70% (Edvardsen et al., 2008), and ∼30–
40% (Sullivan, Neale, & Kendler, 2000), respectively. This suggests a substantial involvement of
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inherited genetic variants in the etiology of these disorders, which
has been confirmed by genome-wide association studies (GWAS).
The proportion of variance that has been attributed to common
variants (single-nucleotide polymorphisms (SNP) heritability) in
current GWAS is estimated around 9% for MDD (Howard
et al., 2019; Wray et al., 2018), 17–23% for BD (Stahl et al.,
2019), and 25–30% for SZ (Brainstorm Consortium et al., 2018;
Pardiñas et al., 2018). It is, however, unclear how these genetic
risk factors translate to brain structural and functional changes
that can lead up to psychopathology.

Neuroimaging studies have reported brain anatomical changes
as potential pathogenic features of major mental disorders
(Goodkind et al., 2015; SZ: Haijma et al., 2012; BD: Hanford,
Nazarov, Hall, & Sassi, 2016; MDD: Schmaal et al., 2016).
However, one major question remaining unanswered is which
of the structural abnormalities in patients arise from a shared gen-
etic basis with etiology and which reflect pathogenic factors, pro-
gression of mental disorders, or treatment-related mechanisms.
While the former might be present before the onset of mental dis-
orders, the latter unfolds during the course of disorder progres-
sion. Case–control studies do often not account for such
confounding effects of comorbidity, therapeutic effects [psycho-
pharmacological, electroconvulsive therapy, psychotherapy
(Enneking, Leehr, Dannlowski, & Redlich, 2020; Mulders et al.,
2020)], clinical heterogeneity, or also genetic heterogeneity.

Given the lack of larger studies assessing imaging markers of
early brain structural development in relation to genetic risk,
our present study strives to investigate cortical complexity
(Yotter, Nenadic, Ziegler, Thompson, & Gaser, 2011) in healthy
participants (HC). Cortical complexity (CC) is a biomarker that
measures the roughness of a surface by quantifying the spatial fre-
quency of cortical shape details and can thus be considered as a
measure of gyrification (Di Ieva, Grizzi, Jelinek, Pellionisz, &
Losa, 2013). Cortical regions with higher fractional dimension
values are shaped more irregularly and consist of more spatial
details (Im et al., 2006). Other studies showed that CC is affected
by genetic disorders like 22q11 deletion syndrome (Schaer et al.,
2008) and William’s syndrome (Thompson et al., 2005), but
also gender (Awate, Yushkevich, Song, Licht, & Gee, 2010;
Luders et al., 2004). However, the heritability of cortical folding
varies across different brain areas (Elliott et al., 2018; Grasby
et al., 2018; Rogers et al., 2010; Strike et al., 2019).

In vivo fetal imaging studies showed that CC increases rapidly
during intrauterine brain folding development (Shyu et al., 2011;
Wu, Shyu, Chen, & Guo, 2009). After birth, in the first two dec-
ades of life, smaller maturational changes in CC were observed
(Blanton et al., 2001; Sandu et al., 2014; Sun & Hevner, 2014).
By contrast, CC stays relatively stable in adulthood (Cao et al.,
2017). Thus, we can use CC as a marker for major maturational
processes in the brain that occur mainly throughout fetal and
early postnatal life (Armstrong, Schleicher, Omran, Curtis, &
Zilles, 1995; Hedderich et al., 2020; Sun & Hevner, 2014).

Cross-sectional case–control studies of cortical folding showed
changes in cortical folding in patients suffering from SZ (Nenadic,
Yotter, Sauer, & Gaser, 2014; Nesvåg et al., 2014; Palaniyappan &
Liddle, 2012; Yotter et al., 2011), BD (Nenadic et al., 2017), and
MDD (Depping et al., 2018; Schmitgen et al., 2019). It is
unknown, though, how individual molecular genetic risk for
major mental disorders shapes early developmental cortical folding.

In the current study, we investigated the impact of molecular
genetic risk for SZ, BD, and MDD on cortical folding. By analyz-
ing a healthy control sample, we minimize the effects of mental

disorder phenotype expressions, medication, and other factors
commonly confounding the studies in patient populations. We
hypothesized polygenic risk scores (PRS) to be associated with
cortical folding in brain areas that have been implicated in these
disorders. In particular, we expect, first, polygenic risk for SZ to
be associated with CC changes in parietal and frontal regions
(Liu et al., 2017; Nenadic et al., 2014; Palaniyappan,
Mallikarjun, Joseph, White, & Liddle, 2011); second, BD poly-
genic risk to be associated with changes in cortical development
in frontal areas as well as in the precuneus (Nenadic et al.,
2017); third, polygenic risk for MDD to affect cortical folding
in the rostral anterior cingulate cortex, orbitofrontal cortex
(OFC), and frontal poles (Han et al., 2017). Additionally, we con-
ducted an analysis with cross-disorder polygenic risk
(Cross-Disorder Group of the Psychiatric Genomics
Consortium, 2013) to test its potential effects on cortical folding
complexity. In order to further characterize potential CC clusters
that are significantly associated with PRS for major mental disor-
ders, we conducted follow-up analyses with grey matter volumes
and cortical thickness. Therefore, we used region of interest
(ROI) and volume of interest (VOI) analyses in those brain
areas which were significantly associated with PRS for major
mental disorders for the purpose of identifying potential add-
itional changes in other morphological modalities.

Methods

Participants and MRI data acquisition

We analyzed data from 580 healthy non-clinical participants from
the ongoing FOR2107 study (http://for2107.de/; Kircher et al.,
2019). All participants gave written informed consent to a study
protocol approved by the Ethics Committees of the Philipps
University of Marburg or the University of Münster and received a
financial compensation. All subjects underwent a structured clin-
ical interview (SCID-I; Wittchen, Wunderlich, Gruschwitz, &
Zaudig, 1997) administered by trained clinical raters that is
based on DSM-IV-TR. Besides lifelong absence of mental disor-
ders, additional exclusion criteria were any history of neurological
(stroke, tumor, neuro-inflammatory diseases, head-trauma) or
other major medical conditions (cancer, chronic autoimmune
diseases, infections), a current or previous substance dependence,
severe obstetric complications, or an IQ <80 [estimated with the
MWT-B (Mehrfachwortschatztest-B), a German equivalent of the
Multiple Choice Word Test-B (Lehrl, 1995)]. The participants were
recruited through local newspaper advertisements. Subsamples
recruited at Münster and Marburg had similar demographics except
for a significant difference in mean age [t(492.55) = 6.73, p= 4.7 ×
10−11, d = 0.55]. For detailed descriptive statistics of the sample, see
Table 1.

We acquired MRI data in the FOR2107 group at two sites, fol-
lowing a quality assurance protocol (Vogelbacher et al., 2018). In
Marburg, MRI data were acquired with a 3T MRI scanner (Tim
Trio, Siemens, Erlangen, Germany), using a 12-channel head
matrix Rx-coil. In Münster, a 3T MRI scanner (Prisma, Siemens,
Erlangen, Germany) and a 20-channel head matrix Rx-coil were
used. The MP-RAGE sequence used consisted of 176 sagittal slices
with an in-plane field-of-view of 256mm and a voxel size of 1 ×
1 × 1mm (for further MRI acquisition parameters across sites,
see Supplementary material). Before preprocessing, scans were
manually checked for the absence of artefacts and anatomical
abnormalities by a senior clinician and excluded if necessary.
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MRI data preprocessing

CAT12 (version 1278; Gaser, Dahnke, Kurth, Luders, &
Alzheimer’s Disease Neuroimaging Initiative, in review) builds
on SPM (Penny, Friston, Ashburner, Kiebel, & Nichols, 2011)
and includes a pipeline for surface-based morphometry. Using
default settings, cortical surfaces were extracted with a spherical
harmonics approach (Dahnke, Yotter, & Gaser, 2013), topological
correction was applied (Yotter, Dahnke, Thompson, & Gaser,
2011), and surfaces were spherically mapped with a volume-based
diffeomorphic DARTEL algorithm (Ashburner, 2007), in order to
reparametrize the surfaces into a common coordinate system to
allow inter-subject analysis (Yotter, Thompson, & Gaser, 2011).
Local surface complexity was estimated utilizing a fractal dimen-
sions approach (Yotter et al., 2011).

All modulated CC datasets were smoothed with a Gaussian
kernel of 20 mm full width at half maximum (FWHM). In
order to assign significant clusters to anatomical areas, we used
the Desikan-Killiany-40 atlas (Desikan et al., 2006).

Additionally, we extracted cortical thickness and grey matter
volumes from our MRI data for follow-up analyses (Dahnke
et al., 2013). For volume data, structural MRI scans were first spa-
tially registered with a high-dimensional DARTEL template pro-
vided by CAT12 to achieve more accurate inter-subject
registration. Data were segmented into different tissues (grey mat-
ter, white matter, and cerebrospinal fluid) and MRI inhomogene-
ities were normalized. Segmentations were modulated by scaling
with the portion of volume changes due to spatial registration
in that way that the total amount of grey matter in the modulated
image remains the same as it would be in the original image. For
exclusion of artefacts on the grey–white matter border (i.e. incor-
rect voxel classification), we applied an absolute grey matter
threshold of 0.1. Data were then smoothed using a kernel of 8
mm (FWHM). VOIs were selected as anatomical regions that
approximately overlap with regions that showed significant asso-
ciations with CC changes that are significantly associated with
PRS for mental disorders. They were defined by using the neuro-
morphometrics atlas (Neuromorphometrics, Inc., 2019). We ana-
lyzed the left and right posterior orbital, anterior orbital, lateral
orbital, inferior frontal orbital, and medial orbital gyri.

For cortical thickness estimation, we used a fully-automated
method that reconstructs the central surface of the cortex and,
thereby, computes the cortical thickness (Dahnke et al., 2013;
Yotter, Dahnke, et al., 2011; Yotter, Thompson, et al., 2011).
We smoothed the cortical thickness by applying a kernel of 15
mm (FWHM). ROIs were chosen as anatomical regions that

approximately overlap with regions that showed significant asso-
ciations with changes in CC that are significantly associated with
PRS for mental disorders. They were defined by the
Desikan-Killiany atlas (Desikan et al., 2006). Regions included
in our ROI analyses were the left and right lateral orbitofrontal
and medial OFC. Homogeneity checks were performed in the
CAT12 Toolbox, and all images passed the quality assurance
protocol.

Genotyping, imputation, and PRS calculation

DNA was extracted from peripheral blood samples using standard
methods. Genotyping was performed using Illumina
Infinium PsychArray-24 BeadChips (Illumina, San Diego, CA,
USA). The GenomeStudie software (v.2011.1, Illumina) and the
Genotyping Module (v.1.9.4) were used to perform clustering
and initial quality control. Subsequent quality control was con-
ducted in PLINK v1.90b5 (Chang et al., 2015) and R v3.3.3.
Individuals were removed if they met any of the following criteria:
genotyping call rate <98%, gender mismatches or other
X-chromosome-related issues, genetic duplicates, cryptic related-
ness with pi-hat ⩾0.125, genetic outlier with a distance from
the mean of >4 standard deviations (S.D.) in the first eight ancestry
components, or a deviation of the autosomal or X-chromosomal
heterozygosity from the mean >4 S.D. Genotype data were
imputed to the 1000 Genomes Phase 3 reference panel using
SHAPEIT and IMPUTE2 (Delaneau, Zagury, & Marchini, 2012;
Howie, Donnelly, & Marchini, 2009; Howie, Fuchsberger,
Stephens, Marchini, & Abecasis, 2012). In order to adjust for
population stratification, multi-dimensional scaling (MDS) com-
ponents were computed based on the pairwise identity-by-state
distance matrix, calculated on the genotype data in PLINK. For
further details, see the Supplementary methods.

PRS were calculated by summing the minor allele dosage of the
LD-independent single nucleotide polymorphisms in the target
sample, weighted by different GWAS effect sizes [cross-disorder
(overlapping genetic risk for MDD, SZ, BD, autism spectrum
disorder, and attention-deficit/hyperactivity disorder): Cross-
Disorder Group of the Psychiatric Genomics Consortium, 2013;
SZ: Ripke et al., 2014; BD: Stahl et al., 2019; MDD without
23andMe: Wray et al., 2018]. PRS were calculated in R v3.33
using imputed genetic data. For each PRS, the effect sizes of var-
iants below a selected p value threshold, both obtained from large
GWAS (training data), were multiplied by the imputed SNP dos-
age in the test data and then summed to produce a single PRS per

Table 1. Sociodemographic characteristics

Site

Marburg Münster Total

Variable M S.D. n M S.D. n M S.D. n t/χ2 df p

Demographics

Age (y) 34.61 12.55 377 28.14 10.14 203 32.34 12.15 580 6.73 492.55 4.7127 × 10−11

Gender (female) 230 (61%) 377 128 (63%) 203 358 (62%) 580 0.16* 1 0.694

Handedness 0.75 0.47 377 0.75 0.44 201 0.75 0.46 578 −0.10 576 0.917

p shows significant differences after Bonferroni correction for multiple comparisons (n = 3). * indicates that a χ2-test has been conducted. Handedness was assessed using the EHI (Oldfield,
1971).
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threshold. The PRS thus represent a cumulative, weighted, addi-
tive risk. For additional details, see the Supplementary methods.
In our analyses, we used PRS with a p value threshold of p =
5 × 10−8 (see Table 2 for intercorrelations of PRS).

Statistical analysis of associations between PRS for major
mental disorders and brain morphology

We conducted separately for each hemisphere and separately for
each PRS multiple regressions with CAT12 resulting in eight sep-
arate tests. CC was used as regressand, the PRS-variables as
regressors, and age, quadratic age, gender, site, and three ancestry
components as covariates. Our quality assurance protocol
(Vogelbacher et al., 2018) showed non-negligible differences in
the quality of MRI images after the replacement of a gradient
coil in Marburg that took place after 322 from a total of 377 par-
ticipants were scanned at this site. We accounted for this in our
statistical model by using an additional scanner-covariate.
Cognition and brain morphology share genetic influences from
liabilities for mental disorders (Toulopoulou et al., 2015).
Therefore, potential associations between PRS related to mental
disorders and CC could be mediated by cognitive abilities,
which are associated with both regional variations in cortical fold-
ing (Gautam, Anstey, Wen, Sachdev, & Cherbuin, 2015; Gregory
et al., 2016) as well as polygenic risk for major mental disorders in
the general population (Clarke et al., 2016; Germine et al., 2016;
Mallet, Le Strat, Dubertret, & Gorwood, 2020; Shafee et al.,
2018). For this reason, we repeated all multiple regressions with
years of education as an additional covariate.

For each multiple regression, we conducted an F-contrast and
computed for each vertex on the cortex surface the threshold that
has been exceeded in order to reach significance. We report results
at the initial significance height threshold of α = 0.001 and also
after applying FWE-correction at the significance height threshold
α = 0.05 based on Gaussian random field theory to adjust for mul-
tiple testing of each vertex (Nichols & Hayasaka, 2003). To correct
for multiple testing in the FWE-analyses, we divided α by the
eight conducted tests, which results in α = 0.00625. For every
FWE-significant association, we calculated the coefficient of
determination R2. Therefore, we extracted predicted β-values
from uncorrected clusters that withstood FWE-correction that
are based on the contrast of the corresponding multiple regres-
sion, including its covariates and residuals using the CAT12 func-
tion cat_surf_results.

Association analyses for grey matter volumes of interest and
cortical thickness regions of interest were identical, except total
intracranial volume was used as an additional covariate in the
analyses of grey matter volumes. We set the initial significance
level at α = 0.05. To correct for multiple testing resulting from
the 14 ROIs/VOIs, we adjusted the threshold to α = 0.0036.

Results

Associations between polygenic risk for MDD and CC

We found a significant association with PRS for MDD in the right
OFC that withstood correction for multiple testing (k = 453, F =
21.69, p = 0.0000039, uncorrected, R2 = 0.036; p = 0.006, FWE-
corrected; see Table 3, Figs 1 and 2). In exploratory follow-up
analyses without correction for multiple testing, we observed
nominally significant associations contralateral in the left
OFC (k = 20, F = 11.15, p = 0.000897, uncorrected, p = 0.606,

FWE-corrected) and also in the right lateral occipital cortex
(k = 133, F = 12.7, p = 0.0003968, uncorrected, p = 0.364, FWE-
corrected). In follow-up VOI/ROI-analyses with grey matter
volumes and cortical thickness, there were no significant associa-
tions with the PRS for MDD (all p > 0.0036; see Supplementary
material).

Associations between polygenic risk for SZ and CC

The general linear model including the PRS for SZ showed no sig-
nificant associations when correcting for multiple testing. In the
exploratory analysis, we found a nominally significant association
between the PRS for SZ and CC in a cluster also located in the
right OFC (k = 121, F = 12.3, p = 0.0004744, uncorrected, p =
0.411, FWE-corrected). Additionally, we found a nominally sig-
nificant cluster ranging over the right lingual gyrus (93%) and
the right precuneus (7%; k = 69, F = 11.81, p = 0.0006327, uncor-
rected, p = 0.491, FWE-corrected).

Associations between polygenic risk for BD and CC

There was no significant association between the polygenic risk
for BD and CC in our sample.

Associations between cross-disorder polygenic risk and CC

We found no significant association between the cross-disorder
PRS and CC when applying FWE-correction. Exploratory analysis
with uncorrected thresholds showed a nominally significant asso-
ciation in a cluster in the right lateral occipital cortex (k = 234, F
= 16.96, p = 0.0000437, uncorrected, p = 0.063, FWE-corrected).
Our analyses also revealed a nominally significant association in
the left caudal middle frontal cortex (k = 67, F = 11.71, p =
0.0006657, uncorrected, p = 0.515, FWE-corrected).

Statistical results of the conducted multiple regressions chan-
ged only marginally when we included years of education as an
additional covariate (see Supplementary material).

Discussion

In the current study, we characterized the impact of SNP-related
genetic risk for SZ, MDD, BD, and cross-disorder on cortical fold-
ing complexity in a large sample of healthy subjects. CC is a
marker reflecting prenatal and early postnatal brain development
(Nenadic et al., 2014, 2017). Our main finding is the association
between MDD polygenic risk and CC in the OFC. We show that
early cortical folding is associated with polygenic risk for major
mental disorders, which potentially predisposes for later expres-
sions of psychopathology.

Association between CC and polygenic risk for depression

We found an association between MDD polygenic risk and CC in
the OFC, a key anatomical region in the pathophysiology of this
disorder. Previous analyses in MDD patients have observed
decreased (Depping et al., 2018; Zhang et al., 2009), as well as
increased (Han et al., 2017) local gyrification in the orbitofrontal
gyrus to be linked to the expression of the phenotype of this men-
tal disorder, while yet others found no changes in gyrification in
the OFC in MDD (Peng et al., 2015; Schmitgen et al., 2019).
Therefore, the observed association between altered CC in the
OFC in HC and MDD polygenic risk might constitute only one
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specific intermediary phenotype that is associated with vulner-
ability for MDD and might not be observed across all patients
with depression. This emphasizes the multiple exposure pathways
of genetic risk for MDD and also the current assumption that the
depressive syndrome reflects on a nosological level a heterogeneity
of different mental disorders (Drysdale et al., 2017; Insel &
Cuthbert, 2015). Our work might therefore help to further disag-
gregate the complex phenotype depression for refinements of tax-
onomies of mental disorders.

Several recent studies with large sample sizes and
meta-analyses that investigated grey matter volumes and cortical
thickness consistently reported reductions in the OFC in MDD
patients (Arnone, McIntosh, Ebmeier, Munafò, & Anderson,
2012; Koolschijn, van Haren, Lensvelt-Mulders, Hulshoff Pol, &
Kahn, 2009; Schmaal et al., 2016; Suh et al., 2019). These well-
documented structural changes could be facilitated by genetically
induced disrupts in early cortical development that are reflected
in CC during MDD expression.

It is not yet fully understood to which extent these cortical vol-
ume and thickness reductions in the OFC are a result of patho-
genic factors and to which extent they reflect genetic effects that
can also be found in HC. In order to empirically address this

question, we executed VOI/ROI-analyses in the OFC. Since we
use a healthy control sample, we are able to preclude effects
from phenotype expression of this mental disorder and treatment.
Our results showed no significant associations neither between
the PRS for MDD and grey matter volume nor between the
PRS for MDD and cortical thickness. Thus, the structural changes
in grey matter volume and cortical thickness in the OFC found in
MDD patients do not precede pathogenic processes as a result of
high additive genetic risk for MDD. This hypothesis is further
empirically supported by studies investigating grey matter
volumes and cortical thickness of the OFC in drug-naïve (but
not always treatment-naïve) MDD patients. A meta-analysis and
other VBM studies on medication-naïve first-episode MDD
patients found no volumetric changes in the OFC relative to
HC (Kong et al., 2014; Shen et al., 2016; Zhao et al., 2014).
Additionally, a study on cortical thickness showed evidence for
no changes in cortical thickness between HC and drug-naïve
MDD patients (Peng et al., 2015), but some others did not (Qiu
et al., 2014; Shen et al., 2019).

Volume changes in the OFC in MDD patients are modifiable
through a wide range of therapeutic interventions (Gbyl et al.,
2019; Kong et al., 2014; Mackin et al., 2013; Phillips, Batten,

Table 2. Intercorrelations of polygenic risk scores

Polygenic risk score MDD SZ BD CROSS Number of SNPs included in the PRS

MDD – 6

SZ 0.133*
( p = 0.001)

– 119

BD −0.004 ( p = 0.925) 0.072 ( p = 0.082) – 18

CROSS −0.051 ( p = 0.223) 0.164* ( p < 0.001) 0.079 ( p = 0.057) – 4

p shows significant differences after Bonferroni correction for multiple comparisons (n = 6).

Table 3. Overview of associations between polygenic risk scores and cortical complexity

Coordinates Anatomical region according to DK-40 k F p (α = 0.001)
p (FWE)

(α = 0.00625)

Polygenic risk for major depressive disorder

Left hemisphere −28 33 −12 Orbitofrontal 20 11.15 0.000897 0.606

Right hemisphere 24 33 −12 Orbitofrontal 453 21.69 0.0000039 0.006

28 −98 −9 Lateral occipital 133 12.7 0.0003968 0.364

Polygenic risk for cross-disorder

Left hemisphere −36 26 43 Caudal middle frontal 67 11.71 0.0006657 0.515

Right hemisphere 49 −78 4 Lateral occipital 234 16.96 0.0000437 0.063

Polygenic risk for schizophrenia

Left hemisphere – – – No suprathreshold clusters – – – –

Right hemisphere 12 30 −26 Lateral orbitofrontal 121 12.36 0.0004744 0.411

28 −60 4 Lingual (93%), precuneus (7%) 69 11.81 0.0006327 0.491

Polygenic risk for bipolar disorder

Left hemisphere – – – No suprathreshold clusters – – – –

Right hemisphere – – – No suprathreshold clusters – – – –

Note p and p (FWE) are shown at cluster-level and k refers to the cluster size at uncorrected thresholds. Significance thresholds were set at α = 0.001 and α = 0.00625 when correcting for
multiple testing. Multiple regressions were performed using the following covariates: age, quadratic age, gender, site, MRI scanner, and three MDS-components. Bold indicates statistically
significant results after applying FWE-correction. Cluster labeling was executed with the Desikan-Killiany-40 atlas (Desikan et al., 2006).
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Tremblay, Aldosary, & Blier, 2015; van Eijndhoven et al., 2013).
Potentially, these structural changes interact with CC changes
associated with high genetic burden, and therefore CC alterations
may not only facilitate disorder outbreak but also influence thera-
peutic responses.

Chronic MDD patients and patients with relapse also show
volume changes in the OFC (Frodl et al., 2008; Schmaal et al.,
2016; Zaremba et al., 2018). In the context of the results presented
in this study, one could suggest that chronicity and relapse are
influenced by a high genetic burden. Potentially, genetically
induced CC changes in the OFC prevent volume modifications
associated with treatment which complicates recovery.
Simultaneously, chances of relapse are increased by CC changes
that facilitate grey matter volume reductions and cortical thin-
ning. Further studies could investigate whether chronic MDD
patients and patients with relapse also suffer from higher additive
genetic risk.

We conclude that genetically determined liability for MDD
potentially impacts on the OFC development which is primarily
defined prenatally and during early life. This might increase vul-
nerability for a broad range of morphological changes associated
with a higher MDD risk, but also therapeutic response, chronicity,

and relapse. Overall, this emphasizes the importance of the OFC
as a biomarker for MDD.

Changes in the folding of the OFC in HC might additionally
lead to functional changes in this brain area, for which there is
considerable evidence in MDD patients. The non-reward attractor
theory proposes that non-reward systems which are located in the
OFC are over-responsive in MDD (Groenewold, Opmeer, de
Jonge, Aleman, & Costafreda, 2013; Rolls, 2016, 2019).
Functional connectivity is increased in the lateral OFC in MDD
and the reward-involved medial OFC shows decreased functional
connectivity. Thus, less CC in the OFC, which could be a conse-
quence of polygenic risk for MDD, might moderate interindivi-
dual differences in reward processing. This genetically induced
cognitive change that is moderated by CC changes could be a
behavioral manifestation of increased vulnerability to MDD and
ease potential later pathogenic developments that change func-
tional connectivity in MDD.

According to the tension-based hypothesis, cortical convolu-
tion during brain development is influenced by axonal tension
leading to either elongation or retraction and thereby forming
gyri and sulci (Hilgetag & Barbas, 2006; Kroenke & Bayly,
2018; Xu et al., 2010; Zilles, Palomero-Gallagher, & Amunts,

Fig. 1. Associations between the polygenic risk for MDD and CC. Orbitofrontal cortical folding complexity is significantly associated with polygenic risk for major
depression (for the purpose of display, images are shown at p < 0.001, uncorrected threshold). The cluster in 24/33/-12 withstood correction for multiple compar-
isons ( p = 0.006, FWE cluster-level correction).

Fig. 2. Scatter plot showing the association between
the polygenic risk score for MDD and adjusted aver-
aged cortical complexity in a significant cluster in the
right orbitofrontal cortex. Note. Adjusted cortical com-
plexity values were cluster-wise extracted for every
participant using the CAT12 function cat_surf_results.
Cluster values were calculated as β-values based on
the used contrast of the corresponding multiple
regression, including its covariates and residuals. A
non-parametric correlation yielded also a significant
association: Spearman’s ρ =−0.189 ( p < 0.0001).
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2013). Thus, the folding of the cortex can to a certain extend be
explained by the underlying white matter connectivity and any
changes in it can be interpreted as a result of disruptions in the
connectivity of underlying axons. In this context, we could con-
clude that the genetically induced variations in OFC folding
shown by this study potentially arise from genetically induced
changes in inter-regional connectivity. This notion is consistent
with empirical support from a diffusion tensor imaging study
finding changes in white matter tracts such as the superior longi-
tudinal fasciculi, inferior fronto-occipital fasciculi, corpus callo-
sum, and thalamocortical radiations in MDD patients as well as
HC at high risk for MDD that also connects with the OFC
(Whalley et al., 2013).

Association between CC and cross-disorder polygenic risk

Our analyses showed no associations between the used PRS for
cross-disorders and CC. However, there was a trend for such a
relationship in the right lateral occipital cortex ( p = 0.063,
FWE-corrected), which we discuss cautiously due to its question-
able statistical validity. Although this region has mainly been
associated with visual stimulus processing, recent research has
shown that resilience is associated with changes in cortical thick-
ness in the lateral occipital cortex (Kahl, Wagner, de la Cruz,
Köhler, & Schultz, 2020), which might be a result of
genetically-induced differential cortical folding. The association
could also be explained by occipital bending, a pattern of curva-
ture in the brain whereby one occipital lobe wraps around the
other which has been observed in MDD (Fullard et al., 2019;
Maller et al., 2014), SZ (Deutsch, Hobbs, Price, &
Gordon-Vaughn, 2000; Maller et al., 2016), and BD (Maller
et al., 2015). It has been hypothesized that occipital surface vari-
ation might be a neurobiological variation that signals an
increased vulnerability to major mental disorders in general
(Koch & Schultz, 2014).

No association between CC and polygenic risk for SZ

There were no associations between the applied PRS for SZ and
CC at the chosen conservative statistical threshold level. Other
studies, however, showed dynamic expressions of genes associated
with SZ during fetal development and early infancy in the pre-
frontal cortex (Clifton et al., 2019). Additionally, associations
between polygenic risk for SZ and gyrification in the inferior par-
ietal lobules (Liu et al., 2017) are mentioned in the literature, but
no associations with surface area (Neilson et al., 2019), although
both biomarkers are affected by cortical folding.

It is worthwhile mentioning that we were able to demonstrate
an association between CC and the PRS for SZ in the right OFC,
when not controlling for multiple testing ( p < 0.001, uncorr.).
Additionally, this significant CC-cluster is regionally partly over-
lapping with the one we found when investigating associations
between CC and the PRS for MDD when applying
FWE-correction. Since both PRS are intercorrelated (Table 2)
and both include partly the same SNPs, we can assume that CC
in the OFC might not be specific for either polygenic risk
for MDD nor SZ. This means that not only genetic etiology is
to a certain extent overlapping in both MDD and SZ, but that
there might potentially also be an overlap between the different
neurobiological risk phenotypes for these mental disorders.

The lack of significant associations in our sample could also be
due to a lack of statistical power if effects were less focal.

Remarkably, the CC changes associated with polygenic risk for
SZ at uncorrected thresholds in this study partially overlap with
findings from clinical studies on SZ patients (Nenadic et al.,
2014; Nesvåg et al., 2014; Yotter et al., 2011).

Compared to the used MDD PRS, the PRS for SZ includes a
larger number of variants and thus implicated genes. Therefore,
it likely reflects potential consequences on a broader range of bio-
logical pathways. As some of them are potentially not affecting
cortical folding, future studies might explore which genes
influence CC. This would enable studies that use PRS that only
include genetic risk variants for mental disorders from which
we already know that they affect the folding of the cortex
(Spalthoff et al., 2019).

Association between CC and polygenic risk for BD

There were no significant associations between the polygenic risk
for BD and CC applying a stringent statistical threshold. This
would suggest that cortical folding abnormalities observed in
BD (Nenadic et al., 2017) might arise mainly from environmental
or other pathological effects.

Additionally, genetically transmitted abnormalities in CC in
HC could be limited to subgroups since different clinical pheno-
types (e.g. age at onset, with v. without psychosis) are associated
with different cortical folding patterns (Sarrazin et al., 2018).
These different neurodevelopmental subtypes are often inter-
preted as reflections of underlying genetic heterogeneity in BD
(Kalman et al., 2019; Lin et al., 2006).

Different directions of effects

The effects on CC arising from polygenic risk for three major
mental disorders and cross-disorder point to different directions
of effects, i.e. both subtle hypo- and hypergyrification. This aspect
is consistent with findings in patients, in which both increases and
decreases of cortical folding parameters are found in the same
samples (Nenadic et al., 2014, 2017; Palaniyappan & Liddle,
2012; Yotter et al., 2011). Therefore, significant deviations from
the mean in either direction might serve as an indicator for sub-
sequent risk for psychopathology. However, we also need to con-
sider the possibility that parts of the variation observed in our
analyses are related to resilience, as none of our adult healthy con-
trols had experienced a mental disorder.

Limitations

We only analyzed a cumulative SNP-based genetic risk burden,
which does not include gene-interaction effects that influence
the risk for a particular disorder phenotype, and also does not
take into account rare genetic variants such as copy number
variants.

In this study, we used only SNPs that showed genome-wide
significance ( p = 5 × 10−8). Thereby, we wanted to focus only on
the SNPs showing the strongest statistical support for an associ-
ation with disorder risk. Consequently, our PRS represent only
a limited amount of the polygenic risk background for the
disorders.

Between-individual variability in brain folding that depends on
polygenic risk is determined by gene–environment interactions,
and therefore, also reflects differences in sensitivity to environ-
mental and genetic perturbations. The analysis of HC may
mask considerable environmental contributions to brain
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development and may result in less heterogeneity not depicting
the whole spectrum.

Environmental factors such as paternal education and mater-
nal ethnicity also act in utero on cortex development (Girault
et al., 2018). Additionally, it has been demonstrated that potential
environmental risk factors during pregnancy such as smoking, age
at delivery, pre-pregnancy body mass index, and use of acet-
aminophen during the second half of pregnancy are associated
with maternal risk alleles, primarily maternal polygenic risk for
ADHD (Leppert et al., 2019). It should thus be taken into consid-
eration that possibly maternal genetic factors are confounding our
results, which makes inferring causal relationships impossible.

Conclusion

In conclusion, this study provides novel insights into how cumu-
lative genetic influences shape cortical structure during brain
development. We argue that CC changes in the OFC in HC
that are significantly associated with polygenic risk for MDD pre-
cede disorder expression. However, this additive genetic risk is not
associated with reduced grey matter volume and cortical thinning
in HC, which is a robust finding in MDD patients. CC aberrations
in HC associated with disorder-related polygenic risk could there-
fore facilitate well-researched morphological changes in the OFC
associated with MDD during disorder expression.

Further, we propose that the demonstrated CC alterations in
HC that tend to parallel polygenic risk for MDD might change
non-reward systems in HC which are structurally changed in
MDD patients. Future research focusing on relationships between
MDD and CC, using a spherical harmonics approach, could aid
the detection of pathogenic effects on CC and thereby further
characterize the neurobiological correlates of the courses of this
mental disorder.
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