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Abstract 

Depression is a multifactorial disorder representing a significant public health burden. Previous studies have linked 
multiple single nucleotide polymorphisms with depressive phenotypes and suicidal behavior. MAD1L1 is a mitosis 
metaphase checkpoint protein that has been linked to depression in GWAS. Using a longitudinal EWAS approach in 
an adolescent cohort at two time points (n = 216 and n = 154), we identified differentially methylated sites that were 
associated with depression-related genetic variants in MAD1L1. Three methylation loci (cg02825527, cg18302629, 
and cg19624444) were consistently hypomethylated in the minor allele carriers, being cross-dependent on several 
SNPs. We further investigated whether DNA methylation at these CpGs is associated with depressive psychiatric 
phenotypes in independent cohorts. The first site (cg02825527) was hypomethylated in blood (exp(β) = 84.521, p 
value ~ 0.003) in participants with severe suicide attempts (n = 88). The same locus showed increased methylation in 
glial cells (exp(β) = 0.041, p value ~ 0.004) in the validation cohort, involving 29 depressed patients and 29 controls, 
and showed a trend for association with suicide (n = 40, p value ~ 0.089) and trend for association with depression 
treatment (n = 377, p value ~ 0.075). The second CpG (cg18302629) was significantly hypomethylated in depressed 
participants (exp(β) = 56.374, p value ~ 0.023) in glial cells, but did not show associations in the discovery cohorts. The 
last methylation site (cg19624444) was hypomethylated in the whole blood of severe suicide attempters; however, 
this association was at the borderline for statistical significance (p value ~ 0.061). This locus, however, showed a strong 
association with depression treatment in the validation cohort (exp(β) = 2.237, p value ~ 0.003) with 377 partici‑
pants. The direction of associations between psychiatric phenotypes appeared to be different in the whole blood in 
comparison with brain samples for cg02825527 and cg19624444. The association analysis between methylation at 
cg18302629 and cg19624444 and MAD1L1 transcript levels in CD14+ cells shows a potential link between methyla‑
tion at these CpGs and MAD1L1 expression. This study suggests evidence that methylation at MAD1L1 is important for 
psychiatric health as supported by several independent cohorts.

Keywords  MAD1L1, DNA methylation, Depression, Suicide

*Correspondence:
Helgi B. Schiöth
Helgi.Schioth@neuro.uu.se
1 Department of Surgical Sciences, Functional Pharmacology 
and Neuroscience, Uppsala University, Uppsala, Sweden
2 Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, 
Sweden
3 Department of Women’s and Children’s Health/Neuropediatrics, 
Karolinska Institutet, Stockholm, Sweden
4 Department of Clinical Neuroscience, Karolinska Institute, Stockholm, 
Sweden

Introduction
Major depressive disorder (MDD) is a multifactorial dis-
ease affecting about 6% of the adult population worldwide 
[1]. The underlying mechanism of MDD is complex and 
assumed to be related to several social and neurobiologi-
cal determinants, which include an individual’s genetic and 
epigenetic profiles, environmental factors, neuroendocrine 
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factors, neurotransmitter biology, and structural brain 
alterations [1]. The diversity of symptoms in MDD is abun-
dant, but the most common ones (which are used by DSM-
5) include depressed mood, decreased pleasure related to 
almost any activities, weight loss, sleep issues, and others. 
Depending on the severity of the condition, a depressed 
individual might demonstrate recurrent thoughts of death 
and even suicidal ideation (or suicide attempts) [1].

Suicide, in turn, is another considerable public health 
problem. World Mental Health (WMH) Survey Initia-
tive reported that a global lifetime prevalence of suicide 
attempts could reach up to 2.7% based on the data from 
17 countries [2]. Similar to depression, suicidal behavior 
depends on several factors including social environment, 
biological determinants, and their interactions. Suicidal 
behavior is common in most severe psychiatric conditions 
like MDD, bipolar disorder, and schizophrenia [3]. Suicidal 
behavior and MDD frequently share underlying biological 
mechanisms, and thus many studies have identified com-
mon genetic and epigenetic alterations between the two 
conditions [1, 3]. For instance, the presence of genetic 
variants within the FKBP prolyl isomerase 5 (FKBP5, also 
known as FKBP51), a gene encoding enzyme related to 
the functioning of steroid hormone receptors [4], has been 
found associated with suicide attempts and depression-
related Beck Depression Inventory (BDI) score [5, 6].

In addition to genetic factors, DNA methylation is one of 
the most intensively studied areas of epigenetic alterations 
in depression or increased suicide risk [7]. DNA methyla-
tion plays a role in neural biology, where methylation pat-
terns temporarily change after neural activation [8]. Many 
research groups have focused on investigating associations 
between DNA methylation and depression/suicide [7]. 
Although most of the studies investigating psychiatric out-
comes used whole blood DNA methylation [9], it should 
be kept in mind that DNA methylation is cell- and tissue-
specific [10] and the correlation between the blood and 
brain tissue regarding DNA methylation is usually modest 
[11–13]. Importantly, genetic variants may interact with 
epigenetic shifts, and thus the effects of depression-related 
gene variants could be partially explained through changes 
in methylation [14].

Mitotic arrest deficient 1 like 1 (MAD1L1) is a 
component of the mitotic spindle assembly check-
point localized on kinetochores. This protein func-
tions to prevent the transition to anaphase of mitosis 

by inhibiting the anaphase-promoting complex until 
chromosomes are properly aligned and all kinetochores 
are attached to microtubules during the metaphase 
[15, 16]. Several studies reported that spindle and KT 
associated 2 (SKA2), a gene involved in the inhibition 
of the mitotic spindle assembly checkpoint complex 
[17], is associated with suicide and suicidal ideation 
[18–21]. Therefore, the checkpoint complex could 
be a promising candidate for association with simi-
lar phenotypes. Among several gene candidates that 
included components of the checkpoint [22], MAD1L1 
has been reported to be associated with psychiatric 
outcomes. Genome-wide association studies (GWAS) 
and their replications have identified genetic variants 
of MAD1L1 that are linked to schizophrenia [23–29], 
bipolar disorder [29–33], and depressive phenotypes 
[34–38]. Several studies identified genetic loci that 
showed associations with more than one psychiatric 
condition mentioned above [39, 40]. The functional 
impact of identified SNPs, however, has not been stud-
ied yet.

In the context of this work, we investigated how pre-
viously discovered depression-related single nucleotide 
polymorphisms (SNPs) at MAD1L1 could mediate their 
effect through local epigenome-wide significant altera-
tions in DNA methylation. In our analysis using two 
cohorts of adolescents, we applied a longitudinal epi-
genome-wide approach to identify blood methylation 
changes that are consistently associated with depressive 
SNPs. Furthermore, we investigated how these depend-
ent methylation changes might be associated with the 
psychiatric health of individuals, including depression 
and suicidal behavior in several independent cohorts. 
Here, we report a novel methylation locus (cg02825527) 
that showed an association with severe suicide attempt 
in the blood samples. We validated this site in the anal-
ysis of postmortem brain samples of MDD individuals 
compared with controls. Furthermore, in two other 
open-access cohorts, this locus demonstrated a clear 
statistical tendency toward an association with similar 
phenotypes. We also confirm the association between 
cg19624444 and depression that has been identified 
previously [41]. Additionally, we investigated if the dis-
covered CpG sites could be related to the expression 
of MAD1L1 and stress response. The workflow of the 
analysis is depicted in Fig. 1.

Fig. 1  Flowchart of the analysis. This figure depicts a sequence of analytical steps performed in the current article. For detailed information 
regarding each step, please refer to Materials and Methods. Colors in the phenotypical analyses state the following: red—no associations were 
found, green—at least one of the target CpGs has shown a statistically significant association with a depressive/suicide phenotype, gray—a clear 
statistical tendency that failed to become statistically significant. MAD1L1, mitotic arrest deficient 1 like 1; SNP, single nucleotide polymorphism; 
GWAS, genome-wide association study; mQTL, methylation quantitative trait loci; GO, gene ontology

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Materials and methods
Adolescent cohorts
To discover SNP–CpG associations, we used two adoles-
cent cohorts: “screening” and “recall.” The study initially 
consisted of 786 adolescents (more than 900 as of 2022) 
aged 14–16 years that were randomly selected from pub-
lic schools in Uppsala County, Sweden, starting from 
2012. The aim of the study was to identify genetic factors 
and epigenetic shifts in the whole blood related to risk 
for psychiatric disorders among otherwise healthy ado-
lescents. The DNA methylation analysis at the screening 
was conducted in two time batches: batch one—129 and 
batch two—92 (total 221 individuals). The recall cohort 
is composed of 169 individuals recruited approximately 
1 year after participating in screening. Participants sub-
ject to methylation analysis in the recall were analyzed 
based on the depression-related scores in the computer-
administered Development and Well-Being Assessment 
(DAWBA) questionnaire, where we selected participants 
with the highest and lowest scores as cases and controls, 
respectively (see below). Eventually, part of the recall 
cohort (78 adolescents) was analyzed at both screening 
and recall, while the other 91 individuals had DNA meth-
ylation measurement at recall only. Methylation analysis 
at the recall was also performed in two batches, and the 
batch covariable was included in the analysis.

The phenotypical assessment of individuals was under-
taken during screening and recall. Height, age, and 
gender were self-reported, and the body weight was 
measured to calculate the body mass index (BMI). Partic-
ipants answered a series of psychiatric health question-
naires. The computer-administered Development and 
Well-Being Assessment (DAWBA) questionnaire was 
used for two adolescent cohorts [42]. The risk for depres-
sion was categorized into six probability band scores, i.e., 
0 (< 0.1%), 1 (~ 0.5%), 2 (~ 3%), 3 (~ 15%), 4 (~ 50%), and 5 
(> 70%) [43]. We defined a “low-risk” group as individuals 
with a risk less than 50% and a “high-risk” group of indi-
viduals having a depression risk ≥ 50%.

Suicide cohort at Karolinska Institute (SKI cohort)
Participants included in this study were invited to Suicide 
Prevention Clinic at the Karolinska University Hospital 
for the assessment of psychiatric health related to suicidal 
behavior and clinical follow-up. Individuals with mental 
retardation, schizophrenia, intravenous drug abuse, and 
dementia were excluded. This cohort is composed of 88 
patients who at least once tried to commit suicide prior 
to visiting the clinic (between the years 2000–2005). A 
more detailed description of the cohort creation has 
been published previously [44]. Participants were strati-
fied into two risk groups, i.e., severe and not severe 

suicide attempt. The classification criteria included either 
a violent suicide attempt method or a high score on the 
Freeman scale or eventually completed suicide (Due to 
January 2011). The classification of suicide violence was 
based on the aggressiveness of the action and the vio-
lence of the suicide method as has been proposed previ-
ously [45, 46]. Briefly, drug intake and a single wrist cut 
were considered as nonviolent methods, whereas eve-
rything else as violent. The Freeman scale includes two 
subscales—reversibility and interruption probability. 
The combination of scales captures the seriousness of 
the suicide attempt. The reversibility scale depends on 
the method of suicide used and on the potential damage 
that could be dealt by it. For instance, intoxication with 
a small number of pills with low toxicity is considered 
a reversible method, whereas self-shooting is not, and 
death outcome is extremely likely. The interruption prob-
ability scale, in turn, shows if the method of suicide could 
be interrupted by others (depending on the conditions). 
Each scale is graded from 1 to 5 and the combined total 
score—from 2 to 10 [47]. We used a cutoff score > 6 to 
define a serious (severe) suicide attempt. All participants 
were linked to the national Cause of Death register. Four 
of the individuals out of 88 eventually completed suicide 
and were included in the severe suicide group. Methyla-
tion analysis of the SKI cohort has been performed at two 
time points and the batch covariable was added to the 
model.

Sample collection in the adolescent and SKI cohorts, 
genotyping and methylation profiling
Blood samples have been collected in K2EDTA blood 
tubes (Greiner Bio-One, Austria). Genomic DNA has 
been extracted using E.Z.N.A. Blood DNA Kit (Omega 
Bio-Tek, USA). Then, extracted DNA was used for gen-
otyping or methylation profiling. The genotyping pro-
cedure for the initial 786 participants in the adolescent 
cohorts was performed using the Illumina Infinium 
array at the SNP&SEQ Technology Platform in Upp-
sala (www.​genot​yping.​se). The facility is a part of the 
National Genomics Infrastructure supported by the 
Swedish Research Council for Infrastructures and Sci-
ence for Life Laboratory, Sweden. The Illumina Infinium 
array includes 700,078 genetic variants. The data for 
other remaining SNPs were imputed using IMPUTE2 
software, and prior to imputation, several quality con-
trol (QC) steps had been performed as described in our 
previous publication [48]. A fraction of participants were 
recruited after the genotyping had been performed, and 
thus genomic data were available for 216 out of 221 par-
ticipants in the screening cohort and for 154 out of 169 in 
the recall cohort.

http://www.genotyping.se
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For the methylation analysis, DNA has been bisulfite-
converted using the EZ DNA Methylation kit (Zymo 
Research, USA). All procedures have been performed 
according to manufacturer protocol. DNA methyla-
tion profiling was performed for the adolescent cohort 
at screening, using Illumina Infinium HumanMeth-
ylation450 Array. This bead chip is designed to cap-
ture ~ 450,000 methylation sites. Methylation profiling 
for the adolescent cohort at recall and SKI was under-
taken, utilizing Illumina Infinium MethylationEPIC 
Array, which is designed to target ~ 850,000 CpG sites. 
All procedures related to sample preparations, array pro-
cessing, and scanning were performed at the SNP&SEQ 
Technology Platform in Uppsala. For each sample, 250 ng 
of bisulfite-converted DNA was used.

Open‑access validation cohorts
The first open-access cohort that was used for analysis is 
deposited on ArrayExpress (E-GEOD-41826) and Gene 
Expression Omnibus (GEO)—GSE41826. The cohort 
includes 29 postmortem MDD samples and 29 matched 
controls. The prefrontal cortical samples (BA was not 
specified) were obtained from the NICHD Brain Bank of 
Developmental Disorders. Then, nuclei were extracted 
from cells and separated into neuronal and non-neuronal 
pools, using fluorescence-activated sorting, based on the 
expression of NeuN. A detailed description of the process 
is provided in the original publication [49]. The second 
DNA methylation cohort used in the analysis can be also 
found at Gene Expression Omnibus (GSE88890) and 
included 20 MDD suicide cases and 20 non-psychiatric 
sudden death controls. Tissue samples from two cortical 
regions (BA11, n = 40 and BA25, n = 35) were obtained 
from the Douglas Bell Canada Brain Bank. BA11 sam-
ples were available from all individuals, whereas three 
MDD and two controls for BA25 were missing. Further 
information could be found in the corresponding article 
[50]. The third validation cohort in the study is avail-
able on both ArrayExpress (E-GEOD-72680) and GEO 
(GSE72680). This cohort is derived from the Grady 
Trauma Project, a study that was conducted in Atlanta, 
GA, USA. Participants were characterized by multiple 
psychiatric risk scores, including Beck Depression Inven-
tory [51], Childhood Trauma Questionnaire [52], and 
several life stress scores. Participants were also evalu-
ated if they were under treatment for depression, anxiety, 
bipolar disorder, or post-traumatic stress disorder. The 
substance abuse was evaluated via the Kreek–McHugh–
Schluger–Kellogg scale [53]. Methylation data have been 
obtained from blood. Further information is available in 
the initial publication [54].

Based on the information regarding treatment for 
depression, we stratified the cohort into depressed and 

non-depressed individuals. The initial cohort includes 
422 individuals, but some of them had missing infor-
mation regarding analysis-related variables: gender, age, 
depression treatment, BMI, and ethnicity. These individ-
uals (45 in total) were removed from the analysis, and the 
resulting cohort included 377 participants.

Data preprocessing, normalization, batch and cell‑type 
correction, and filtering
DNA methylation data for screening, recall, and SKI 
cohorts were processed starting from raw IDAT files. We 
used a minfi-based framework [55] for data preparation. 
The “minfi” R package is available at bioconductor.org, 
a project aggregating R packages for biological applica-
tions. Signal intensities from raw files were corrected for 
background noise using a “noob” method [56]. Beta val-
ues were normalized, using quantile normalization, and 
then corrected for type I and type II probe bias via Beta 
Mixture Quantile Dilation [57] from the wateRmelon 
package [58]. Since different arrays in the analysis could 
result in batch effects, we used the “ComBat” function 
from the “sva” package to adjust for the possible bias [59, 
60]. Additionally, we used a minfi-based implementa-
tion of the Houseman algorithm to adjust the methyla-
tion data for white peripheral blood cell heterogeneity 
(CD4+, CD8+, natural killer cells, B cells, monocytes, 
and granulocytes) [61]. Blood cell heterogeneity correc-
tion was performed at the stage of data preprocessing 
for adolescent cohorts and the SKI cohort. We used a 
regression-based approach that was described in detail 
previously [62], and then cell-type-corrected M values 
were applied for further analyses. Methylation data for 
E-GEOD-41826 were obtained with Illumina Infinium 
HumanMethylation450 array from DNA isolated from 
neuronal and non-neuronal nuclei. Quantile normalized 
beta values were obtained from ArrayExpress without 
additional normalization and adjustment procedures. 
Further information on the data processing is available 
in the initial publication [49]. Data for GSE88890 were 
obtained from the GEO. DNA methylation profiling for 
brain samples was performed with Illumina Infinium 
HumanMethylation450 Array. Beta values were normal-
ized and corrected for type I and type II probe bias using 
similar methods as mentioned above. Similar to blood 
cells, different cell proportions in the brain could affect 
the methylation analysis as neuronal cells show different 
methylation profiles compared with glial cells [63]. Brain 
cell proportions were added to the model as covariates. 
We utilized a “meffil” R package to estimate the pro-
portion of glial and neuronal cells in samples [64]. This 
package uses a reference methylation dataset from dor-
solateral prefrontal cortex samples [49]. We performed a 
batch correction by including a corresponding covariable 
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in the model. Methylation (HumanMethylation450 data) 
for the third validation cohort was obtained in a form 
of background-subtracted beta values. We used a simi-
lar procedure for normalization and probe-type bias 
correction as for the previous cohorts. The batch effect 
was corrected with the “ComBat” function. Cell propor-
tions were estimated via a minfi-based Houseman algo-
rithm [54]. Cell proportions were added to the model as 
covariates.

Prior to the analysis, we performed filtering and 
removal of the non-reliable probes from the methylation 
data. First, we kept the samples where more than 75% of 
samples have a detection p value less than 0.00005 and 
probes where more than 75% of samples have a detection 
p value less than 0.01. Probes from sex chromosomes, 
non-CpGs, and probes with missing beta values were 
removed. We removed all probes that have an SNP with 
a minor allele frequency (MAF) higher than 5% within 
the probe sequence. All probes that have an SNP at the 
CpG site and a single-base extension were excluded. For 
the HumanMethylation450 arrays, we did additional 
filtering, removing cross-reactive probes identified by 
Chen et al. [65] and Benton et al. [66], leading to 380,756 
probes available at the screening analysis. For the Methyl-
ationEPIC arrays, we additionally removed cross-reactive 
and SNP-overlapping probes published by Pidsley et  al. 
[67], resulting in 678,829 CpG sites at the recall analysis 
and 678,684 probes for SKI. In the open-access cohorts, 
we used only target CpG sites of interest, and all of them 
were presented and available after passing similar filter-
ing steps as described above.

Data collection and visualization
Depression-related SNPs were identified using the last 
updated version of the databases GWAS Catalog [68] and 
DisGeNet [69]. In total, eight SNPs that were associated 
with depression/several disorders with depression at the 
MAD1L1 gene were identified. Two of the SNPs were 
excluded: rs12668848 since it demonstrated no confi-
dence in association with depression [39] and rs1107592 
since it has failed to reach genome-wide significance 
[40]. We kept rs56072378 in the analysis since it was the 
only SNP that was specifically associated with ICD-10-
coded MDD, even though this variant did not fully reach 
genome-wide significance (p = 9*10−7). SNP information, 
such as genomic coordinates and MAF, was collected 
from the National Center for Biotechnology Informa-
tion (NCBI) dbSNP portal (https://​www.​ncbi.​nlm.​nih.​
gov/​snp/) [70] and from the dbSNP153 track available at 
the University of California, Santa Cruz (UCSC) genome 
browser portal (https://​genome.​ucsc.​edu/). Linkage dis-
equilibrium for SNPs was calculated using an online tool 
SNIPA with default settings [71].

Genomic context exploration was performed using the 
R package “gviz” [72]. Ideogram and genome axis tracks 
were available in gviz. Data for gene sequences, CpG 
islands, histone modifications, and transcription factor 
binding were obtained from the UCSC genome browser. 
Only depression-related transcription factors that were 
identified by GWAS Catalog were selected. Identifica-
tion of depression-related proteins was based on the key 
search term “depress” applied to disease/trait descrip-
tion for GWAS Catalog SNPs dataset. Histone modi-
fication data deposited in UCSC were initially derived 
from ENCODE project [73] for normal human astrocyte 
(NHA) cells. Eight chromatin state tracks were obtained 
from Roadmap Epigenomics Project (http://​www.​roadm​
apepi​genom​ics.​org/) [74]. We obtained 15-state chroma-
tin model data for adult brain regions (E067–E074): brain 
angular gyrus, brain anterior caudate, brain cingulate 
gyrus, brain germinal matrix, brain hippocampus middle, 
brain inferior temporal lobe, brain dorsolateral prefron-
tal cortex, and brain substantia nigra. These interac-
tions have been generated using the multivariate hidden 
Markov model based on the data from 127 epigenomes 
[74]. For clarity, we simplified an original 15-state model 
to eight states. The color scheme is available in Addi-
tional files.

Spearman correlations were used to assess the cor-
respondence between DNA methylation in blood and 
DNA methylation in three brain regions: BA10 (prefron-
tal cortex), BA20 (temporal cortex), and BA7 (parietal 
cortex). We used an online BECon portal to obtain the 
correlation data [75]. To identify the protein interac-
tion network, we used an online database STRING that 
aggregates information on protein–protein associations 
based on experiments, database appearance of proteins, 
or a physical interaction [76]. We selected only physical 
experiment-proven interactions with a medium minimal 
required interaction score (0.400) as set by default. All 
primary interactions are shown; secondary interactions 
were not analyzed. For the gene ontology (GO) analysis, 
we used the STRING built-in tool with default settings.

Data and statistical analysis
To investigate SNP–CpG associations, statistical analy-
ses using R (version 4.1.1) were applied. The analysis was 
conducted both for screening and recall cohorts. A lin-
ear-model-based approach (limma package in R) apply-
ing an empirical Bayes method [77] was used. The linear 
model consisted of the M value quantifying the DNA 
methylation level as a dependent outcome and the SNP 
included as an independent factor. We used dominant 
genetic models of the SNP genotypes, i.e., minor allele is 
present or not present. We used a dominant model since 
the sample size in the study is relatively small, it simplifies 

https://www.ncbi.nlm.nih.gov/snp/
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http://www.roadmapepigenomics.org/
http://www.roadmapepigenomics.org/
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the data into two categories, and it is a reason to assume 
that the effect of SNPs is dominant given the high rates 
of depression. Additionally, the use of dominant/reces-
sive models may be beneficial in "case–control"-based 
designs [78]. The analysis was adjusted for sex, BMI, age, 
and batch covariate at screening and recall. The following 
formula was used for limma-based linear models:

Limma models obtained for each SNP site were 
adjusted for multiple comparisons using a false discovery 
rate (FDR) method. Since we tested several SNP sites for 
every CpG, the resulting sets of FDR-adjusted p values 
were further corrected by the number of SNP sites tested. 
An adjusted p value of < 0.05 was considered significant. 
It has been concluded that EWAS analyses could be 
prone to genomic inflation and biases [79]. We used an 
R package bacon to adjust the t-statistics from limma for 
potential bias and inflation [79]. Bias- and inflation-cor-
rected t-statistics and adjusted p values were calculated 
along with standard estimations from limma.

We additionally performed local methylation quanti-
tative trait loci (mQTL) analysis around the MAD1L1 
gene to investigate SNP–CpG interaction architecture 
using cohorts of adolescents. First, we extracted all vari-
ants and CpGs from the MAD1L1 gene coordinates ± 10 
000  bp (Chr7:1845430–2282580) that passed QC steps 
before imputation [48]. Second, we performed addi-
tional filtering and kept variants that had standard refer-
ence identifier “rs,” imputation info score ≥ 0.9, and A1 
expected frequency between 0.1 and 0.9. Thus, 982 vari-
ants were included in the mQTL analysis. We kept only 
those CpG sites that passed the QC steps described in 
Sect. 2.5 for the adolescent screening and recall cohort. 
The mQTL analysis was performed with the R package 
“MatrixEQTL,” which uses large matrix operations to 
optimize the performance of such computations [80]. We 
used a linear model for the analysis with additive effects 
of investigated variants, as specified in the MatrixEQTL 
package. The analyses were adjusted for covariates that 
were the same as for the limma models above for adoles-
cent screening and recall cohorts. Models were adjusted 
with the false discovery rate. To investigate linkage dis-
equilibrium for the Top 10 impacting variants, SNIPA 
with default setting was applied. The R package dplyr 
was used to calculate the relative placement of CpGs and 
SNPs, and the ggplot2 to plot the mQTL heatmap.

To investigate associations between methylation and 
psychiatric phenotype, we used a binary logistic regres-
sion model, the psychiatric phenotype was treated as a 
dependent binary outcome variable, i.e., individuals at 
low-risk vs. high-risk or individuals with severe suicidal 
attempt vs. non-severe suicidal attempt, and methylation 

Methylation ∼ int + SNP + Sex + Age + BMI + Batch+ ǫ

M value was an independent variable. Native R-based 
binary logistic regression models were applied for analy-
sis. Two-tailed p values for coefficients were calculated 
with the Wald test (implemented in R in the “summary” 
function). All models were adjusted for confounders 
depending on the particular cohort (see below). The 
statistical models used in the discovery cohorts were 
adjusted for sex, BMI, age, and batch:

The ethnical background was not reported in the study.
In the SKI cohort, covariates were selected based on 

the biological relevance, considering the following: sex, 
age, batch, the presence of other personality disorders 
(yes/no), and the status of alcohol addiction (yes/no). 
These models were not adjusted for BMI since these 
data were missing for 10 participants. The ethnical back-
ground was not included since this factor contained eight 
different levels, and the presence of certain groups only 
in cases or controls would create issues fitting a model. 
The final binary logistic model included:

In the three open-access cohorts, we used similar 
methods and covariables were based on biological rele-
vance and availability of the data. We specified the model 
formulas for the cohorts E-GEOD-41826, GSE88890, and 
GSE72680, respectively:

In the equations above, diagnosis stands for depression 
or control, group—suicide or control, and Depr.Treat-
ment—treatment or no treatment, respectively. The “Cell.
prop.” coefficient depicts blood cell proportion estima-
tions for GSE72680 that were included as covariables. 
Given that substance misuse data were missing for many 
participants in GSE72680, the authors decided not to 
include these covariables in the analysis.

We additionally performed an exploratory analy-
sis of associations between identified CpG candidates 
and stress-related DNA methylation markers that 
were reported previously [81–84]. We used a linear 
regression model (native R implementation), where 
methylation M value of candidate CpGs (cg02825527, 
cg18302629, and cg19624444) were regressed against 

Depression risk ∼ int +Methylation+ Sex

+ Age + BMI + Batch+ ǫ

Suicide severity ∼ int +Methylation+ Sex

+ Age + Batch+ Pers.dis.+ Alc.add.+ ǫ

Diagnosis ∼ int +Methylation+ Sex + Age + Ethnicity+ ǫ

Group ∼ int +Methylationn+ Sex + Age + Neurons

+ Glia+ Batch.Array+ ǫDepr.Treatment ∼ int

+Methylation+ Sex + Age + Ethnicity

+ BMI + Cell.prop.+ ǫ
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methylation of a stress-related CpG and other covari-
ates. We performed these analyses specifically in those 
cohorts where candidate CpGs were associated with the 
depression-related phenotype (namely SKI, GSE88890, 
E-GEOD-41826, and E-GEOD-72680). We used the 
same covariates for these models as in the analyses 
between methylation and a psychiatric phenotype (see 
above). Nominally significant associations (raw p value) 
were considered. We included only those CpG sites 
that passed QC steps for methylation data preprocess-
ing (Sect. 2.5). To investigate overlaps between cohorts, 
an R package “visNetwork” and custom scripts were 
applied.

DNA methylation–transcriptome analysis
An association analysis of identified CpG candidates 
with MAD1L1 transcript levels was performed based on 
the data from two publicly available cohorts (GSE49065 
and GSE56047). The first cohort contained transcrip-
tome and methylation data obtained from cultured 
peripheral blood mononuclear cells from 10 healthy 
male donors. The initial study investigated associations 
between DNA methylation and aging in the context of 
exposure to peroxisome proliferator WY14,643 [85]. 
In the present work, we included only data where cells 
were exposed to sham control (0.05% DMSO) to avoid 
potential confounding. The phenotypical data included 
only one additional confounder—age. The methylation 
profiling in GSE49065 was performed with Illumina 
HumanMethylation450 BeadChip, whereas transcrip-
tome profiling was done with Affymetrix Human Gene 
1.1 ST Array. For further details, please refer to the ini-
tial publication [85]. To perform the association analy-
sis, we regressed MAD1L1 transcript levels against the 
methylation M values of three candidate CpG sites and 
adjusted the models for age.

The second cohort (GSE56047) contained a large 
transcriptome and methylome data from CD14+ 
samples, collected from 1202 individuals [86]. The 
methylation data were obtained with the Illumina 
HumanMethylation450 array, and transcriptome pro-
filing was performed with Illumina HumanHT-12 V4.0 
expression BeadChip. The phenotypical data included 
information on sex, ethnical background, age, research 
site, and non-targeted cell proportions. The informa-
tion on sex, ethnical background, and research site is 
represented by the variable “RacegenderSite.” In the 
current work, we regressed the quantity of MAD1L1 
transcripts against the methylation M value of three 
investigated CpG sites. The linear models were adjusted 
for the “RacegenderSite” covariable, age, residual 
cell contamination, and chip ID. We used already 

normalized methylation and expression data deposited 
at GEO in both cohorts.

Results
Characterization of the cohorts
The adolescent cohort was stratified into two depres-
sion risk groups: high depression risk and low depression 
risk. In screening, the cohort included 24 individuals in 
the high-risk group and 197 individuals in the low-risk 
group. In the recall, these numbers were as follows: high 
risk (n = 34) and low risk (n = 135). High-risk groups had 
a relatively higher proportion of women, other character-
istics appeared to be similar in both screening and recall. 
The characteristics of the adolescent cohorts are given in 
Table 1.

The characteristics of the SKI cohort are given in 
Table 2. Thirty-one participants were classified as severe 
suicide attempters, whereas 57 participants were con-
sidered as nonviolent suicide attempters. Two groups 
showed similar profiles regarding age and BMI. The 
severe suicide group was very enriched with men—51% 
versus 21% in the nonviolent group. Most of the par-
ticipants were ethnical swedes (> 65%) in both groups. 
Personality disorders and substance abuses were more 
prevalent in the violent group.

Table 1  Characteristics of the adolescent cohorts

This table shows the demographical characteristics of the adolescent cohorts in 
the study. Cohorts were split into subgroups based on the DAWBA depression 
risk group. For numerical variables, the sample mean ± standard deviation is 
shown. Min stands for a minimal value, and max shows the maximal value. 
DAWBA, Development and Well-Being Assessment; BMI, body mass index

Adolescent cohorts

DAWBA depression risk group

High depr. risk Low depr. risk

Screening

Participants High depr. risk
(n = 24 10.86%)

Low depr. risk
(n = 197 89.14%)

Gender distribution Men: 2 (8.3%)
Women: 22 (91.7%)

Men: 54 (27.4%)
Women: 143 (72.6%)

Age 15.42 ± 0.65
Min: 14, Max: 16

15.45 ± 0.63
Min: 14, Max: 17

BMI 22.51 ± 3.79
Min: 16.75, Max: 31.91

21.85 ± 3.39
Min: 15.65, Max: 37.54

Recall

Participants High depr. risk
(n = 34, 20.12%)

Low depr. risk
(n = 135, 79.88%)

Gender distribution Men: 5 (14.7%)
Women: 29 (85.3%)

Men: 40 (29.6%)
Women: 95 (70.4%)

Age 17.71 ± 1.06
Min: 16, Max: 20

18.07 ± 0.98
Min: 15, Max: 20

BMI 23.12 ± 3.71
Min: 17.5, Max: 33.35

22.78 ± 3.14
Min: 16.27, Max: 32.02
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In the cohort E-GEOD-41826, participants were pre-
sented into two groups: depressed and controls (Table 3). 
Both groups were identical in genders and almost iden-
tical in age and ethnical background. Individuals pre-
dominantly had Caucasian and African origin. The 
demographics for the GSE88890 cohort are available in 
the Additional file 9: Table S1. Study groups were almost 
identical regarding gender but appeared to be different in 
the ages of the participants, whereas in the suicide group, 
participants were on average ~ 9 years older.

Demographical characteristics for the Grady Trauma 
Project cohort (E-GEOD-72680) are shown in Addi-
tional file 10: Table S2. The investigative sample included 
377 participants after the removal of samples with miss-
ing data. Participants were from different ethnical back-
grounds; however, most of them had African-American 
origin. Based on depression treatment, the cohort was 
split into two subgroups: under treatment and with-
out treatment. These groups included 137 (36.34%) and 
240 participants (63.66%), respectively. Groups appear 
to be different in age, BMI, and ethnicity. Also, they 
demonstrate different scores in almost all psychiatric 
tests, except for substance misuse, and many appear to 
have treatment for other psychiatric disorders besides 
depression.

Identification of target CpGs in the adolescent cohorts
The flowchart of the analysis is presented in Fig. 1. The 
first step was to identify depression-related SNPs at the 
MAD1L1 gene based on the previous GWAS. For this 
purpose, we used the GWAS Catalog and DisGeNet data-
bases, and eight unique SNPs (rs12668848, rs56072378, 
rs11772627, rs3823624, rs2056477, rs11514731, 
rs61409925, and rs1107592) were identified as candi-
dates for analysis. We inspected whether our adolescent 
cohorts at screening and recall have sufficient representa-
tion of genotypes at the specified SNPs and also whether 
these SNPs are indeed associated with depression or its 
manifestation. Two SNPs (rs12668848 and rs1107592) 
did not pass the control as described in the methods, and 
thus were excluded from the subsequent analysis. Infor-
mation regarding the six remaining SNPs is available in 
Table  4. Subsequently, the SNP–CpG analysis applying 
the limma models included two steps, i.e., the discov-
ery of SNP–CpGs pairs using the adolescent cohort at 
screening and the separate discovery of SNP–CpGs pairs 
at recall. Only CpGs with DNA methylation levels associ-
ated with more than one SNP were considered since the 
associations may provide more biological relevance. We 
added this restriction since we assume that the depres-
sion contribution of SNPs and their effect on methylation 
is likely to be shared given their close positions and asso-
ciation with the same gene.

Table 2  Characteristics of the SKI cohort

This table shows the demographical characteristics of the SKI cohort in the 
study. The cohort was split into subgroups based on the severity of the suicide 
attempt. For numerical variables, the sample mean ± standard deviation is 
shown. Min stands for a minimal value, and max shows the maximal value. BMI, 
body mass index

Severe Not-violent

Participants Severe Not-violent

(n = 31, 35.23%) (n = 57, 64.77%)

Gender distribution Women: 15 (48.4%) Women: 45 (78.9%)

Men: 16 (51.6%) Men: 12 (21.1%)

Age 35.16 ± 12.27 33.63 ± 12.17

Min: 19, Max: 63 Min: 18, Max: 62

BMI 24.32 ± 4.61 24.85 ± 4.31

Min: 18.33, Max: 39.96 Min: 18.33, Max: 40.77

Ethnicity Chilean: 0 (0%) Chilean: 1 (1.8%)

Finnish: 1 (3.3%) Finnish: 5 (9.1%)

Indian: 1 (3.3%) Indian: 0 (0%)

Caucasian: 1 (3.3%) Caucasian: 0 (0%)

Korean: 0 (0%) Korean: 1 (1.8%)

Mixed: 5 (16.7%) Mixed: 12 (21.8%)

Swedish: 21 (70%) Swedish: 36 (65.5%)

German: 1 (3.3%) German: 0 (0%)

Completed suicide Absent: 27 (87.1%) Absent: 57 (100%)

Present: 4 (12.9%) Present: 0 (0%)

Personal characteristics

Borderline personality 
disorder

Present: 7 (22.6%) Present: 5 (8.8%)

Absent: 24 (77.4%) Absent: 52 (91.2%)

Other personality 
disorder

Present: 11 (35.5%) Present: 10 (17.5%)

Absent: 20 (64.5%) Absent: 47 (82.5%)

Alcohol dependence Present: 9 (29%) Present: 8 (14%)

Absent: 22 (71%) Absent: 49 (86%)

Substance dependence Present: 6 (19.4%) Present: 9 (15.8%)

Absent: 25 (80.6%) Absent: 48 (84.2%)

Table 3  Characteristics of the depression cohort E-GEOD-41826

This table shows the demographical characteristics of the E-GEOD-41826 
depression cohort. Participants were grouped based on the depression 
diagnosis. For the age variable, the sample mean ± standard deviation is shown. 
Min stands for a minimal value, and max shows the maximal value

Depression Normal

Participants Depression Normal

(n = 29, 50%) (n = 29, 50%)

Gender distribution Women: 15 (51.7%) Women: 15 (51.7%)

Men: 14 (48.3%) Men: 14 (48.3%)

Age 32 ± 15.92 32.1 ± 16.05

Min: 13, Max: 78 Min: 13, Max: 79

Ethnicity African: 6 (20.7%) African: 6 (20.7%)

Asian: 1 (3.4%) Asian: 0 (0%)

Caucasian: 22 (75.9%) Caucasian: 23 (79.3%)
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The epigenome-wide analysis at screening identified 
17 unique CpG sites that reached epigenome-wide sig-
nificance, 10 of which were located within or nearby 
the MAD1L1 gene and were associated with either of 
the four depression-related MAD1L1 SNPs (Additional 
file 11: Table S3 and Fig. 2). Eight of these CpGs showed 
associations with more than one SNP site (Fig.  3A). 
We conducted a similar independent epigenome-wide 

analysis on the recall cohort and identified 18 CpGs, 
seven of which were located near MAD1L1. Three 
of these methylation sites (cg02825527, cg18302629, 
cg19624444) showed associations with more than one 
SNP (Additional file 11: Table S3 and Additional file 1: 
Fig S1), and only these CpG sites appeared both at 
screening and recall as cross-dependent CpGs, thus 
indicating that methylation changes in these CpGs 

Table 4  MAD1L1 depression-related SNPs from GWAS Catalog and DisGeNet

This table shows the properties of the investigated SNPs. Data were obtained from the NCBI dbSNP portal. MAF is shown as a mean percent for several 
populations ± standard deviation of the percent. SNP, single nucleotide polymorphism; NCBI, National Center for Biotechnology Information; Chrom, chromosome; 
Ref, reference; Alt, alternate; MAF, minor allele frequency

SNP Chrom Start hg19 End hg19 Ref. allele Alt. allele MAF Associated gene Uniprot ID Functional impact

rs56072378 chr7 2104363 2104364 A G 25 ± 5%
Min: 20%, Max: 32%

MAD1L1 Q9Y6D9 Intron Variant

rs11772627 chr7 2109820 2109821 G AC 18 ± 4%
Min: 15%, Max: 27%

MAD1L1 Q9Y6D9 Intron Variant

rs3823624 chr7 2110345 2110346 T C 18 ± 4%
Min: 12%, Max: 27%

MAD1L1 Q9Y6D9 Intron Variant

rs2056477 chr7 2079743 2079744 G ACT​ 28 ± 5%
Min: 25%, Max: 32%

MAD1L1 Q9Y6D9 Intron Variant

rs11514731 chr7 2051502 2051503 C G 18 ± 4%
Min: 15%, Max: 27%

MAD1L1 Q9Y6D9 Intron Variant

rs61409925 chr7 1971225 1971226 G A 18 ± 4%
Min: 14%, Max: 25%

MAD1L1 Q9Y6D9 Intron Variant

Fig. 2  SNP-related CpGs identified at screening. This Manhattan plot shows identified SNP-related CpG sites in the screening adolescent cohort. 
This figure comprises results for all investigated SNP sites. All four studied SNPs were tested independently. Analyses were conducted with the R 
package “limma,” the dominant model was used. The smallest p value for every SNP–CpG association is included in the image. Raw p values from 
limma are visualized. The dashed red line shows a threshold for significance after correction for multiple testing (false discovery rate) and the 
number of SNP sites. Only probes that passed initial QC were included in the analysis. CpG sites located at the MAD1L1 gene are highlighted in 
yellow. All statistically significant results are annotated by name. SNP, single nucleotide polymorphism; QC, quality control
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are consistent and might have biological implications 
(Fig.  3B, C). All analyses depicted very low genomic 
inflation and bias (Additional file  9: Table  S1) based 
on the estimations using the empirical null distribu-
tion [79]. Adjusting for the bias lowered the test p 
values (except for rs56072378); however, the overall 
results were not affected, yielding only cg02825527, 
cg18302629, and cg19624444 as both screening and 
recall cross-dependent CpGs. Identified CpGs demon-
strated weak correlations at both screening and recall, 
with Spearman’s correlation coefficients ranging from 
0.21 to 0.38 (p values < 0.05). Only cg02825527 and 
cg18302629 were not correlated at screening.

Visualizations for SNP–CpG pairs for identified lead 
CpGs are available in Additional file 2: Fig S2 and Addi-
tional file 3: Fig S3.

At screening, genotypes at all six investigated SNPs 
were associated with DNA methylation levels at 
cg19624444, while genotypes at four SNPs were asso-
ciated with DNA methylation at cg02825527, and 

two SNPs were associated with DNA methylation at 
cg18302629. Using SNIPA, linkage disequilibrium was 
observed between several investigated SNPs (Additional 
file 12: Table S4).

We additionally performed local mQTL analysis around 
MAD1L1 coordinates to investigate the SNP–CpG 
interactions in the region. These analyses were applied 
separately in adolescent screening and recall cohorts 
(Additional file 13: Tables S5.1–S5.7 and Additional file 4: 
Fig S4). We identified many potential SNP–CpG associa-
tions that passed adjustment for multiple comparisons. 
For the depression SNPs, cg19624444 was the Top 1 
interacting CpG site for both screening and recall, with 
the exception of rs61409925:G:A at the screening where 
it was the second CpG. The site cg02825527 was typi-
cally around the third place, whereas cg18302629 varied 
from the 2-nd to 20+. Interestingly, from the CpG per-
spective, the depression SNPs frequently did not appear 
even in the Top 20 interacting SNPs regarding the FDR. 
However, for cg19624444, almost all Top 10 partners 

Fig. 3  SNP–CpG associations. A SNP–CpG associations identified at screening adolescent cohort with limma. Nodes represent either SNP or 
CpG. The yellow color shows an SNP, and the blue color shows CpGs. The light blue color shows CpGs that were related to more than one SNP at 
screening. The red color indicates that a CpG was associated with more than one SNP both at screening and at recall. B. Number of longitudinal 
cross-dependent CpGs per SNP. This figure shows how many identified CpGs (cg02825527, cg18302629, and cg19624444) are associated with every 
SNP at screening and recall
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were in the linkage disequilibrium with depression-
related MAD1L1 loci, and some of the Top 10 partners of 
cg02825527 were in similar LD at screening (Additional 
file 13: Tables S5.3 and S5.6). The heatmaps of interaction 
show that cg19624444 interacts with many SNPs with 
high effect sizes in both screening and recall samples 
(Additional file 5: Fig S5). Also, there are visible clusters 
with high effect sizes close to Chr7:1 900 000. The overall 
architecture of SNP–CpG interactions appears to be rela-
tively similar at screening and recall.

Investigation of DNA methylation at MAD1L1 gene 
and psychiatric outcome
We investigated if the candidate CpG sites demonstrate 
associations with psychiatric phenotypes and sever-
ity of the suicidal attempts in the discovery and SKI 
cohorts. Lower methylation profiles at cg02825527 
were associated with the severity of the suicide attempt 
(exp(β) = 84.521, p value ~ 0.003) in the SKI cohort 
(Table  5, Fig.  4A). Similarly, DNA methylation levels 
at cg19624444 were lower in severe suicide attempt-
ers, though this association failed to become statistically 
significant (p value ~ 0.061, Fig.  4B) after adjustment 
for covariates. Adding BMI in the model results in the 
exclusion of 10 participants, and the results remain 
relatively unchanged for cg02825527 (exp(β) = 109.18, 
p value ~ 0.004) and cg19624444 (p value ~ 0.12). DNA 
methylation levels at none of the three CpGs were associ-
ated with the DAWBA depression band in the adolescent 
cohorts.

Replication of results in open‑access cohorts
We sought to replicate the results in open-access cohorts. 
In the cohort E-GEOD-41826, we investigated our tar-
get CpGs, cg02825527, cg18302629, and cg19624444, 
separately in neural and glial cells. Methylation levels at 
cg02825527 were significantly associated with depression 

diagnosis (yes/no) in glial cells (exp(β) = 0.041, p 
value ~ 0.004, Additional file  14: Table  S6) but not in 
neural cells. The association was in opposite direc-
tion compared with results in blood (Fig.  4C). Addi-
tionally, cg18302629 was significantly hypomethylated 
in glia in depressed participants in the same cohort 
(exp(β) = 56.374, p value ~ 0.023, Additional file  13: 
Table S5 and Fig. 4D). This association with depression, 
however, was in the opposite direction in comparison 
with methylation at cg02825527. Since control and sui-
cide subgroups are identical for covariates, we also com-
pared depressed cases and controls, using a standard T 
test (equal variance), which confirmed the results from 
binary logistic regression models for cg02825527 and 
cg18302629 (p value = 0.003 and 0.016, respectively). 
Methylation of cg19624444 did not demonstrate an asso-
ciation with depressive phenotypes in any cell type.

We performed an additional investigation of identified 
CpG sites in the second open-access cohort—GSE88890. 
The methylation data were available for two brain corti-
cal regions (BA11 and BA25), and we investigated them 
separately. The methylation of cg02825527 in the BA11 
region tended to have an association with a suicide death; 
however, the association failed to become statistically 
significant (exp(β) = 0.197, p value = 0.089, Additional 
file 6: Fig S6A). Importantly, the direction of the associa-
tion was matching the previous results from brain tissue, 
i.e., suicidal attempters had higher methylation compared 
to non-psychiatric sudden death controls. In the BA25 
region, methylation levels at cg19624444 and cg18302629 
demonstrated associations with suicide (exp(β) = 29.755, 
p value = 0.098; exp(β) = 0.009, p value = 0.06; Additional 
file 6: Fig S6B and C), though without passing a signifi-
cance threshold.

Lastly, we studied cg02825527, cg18302629, and 
cg19624444 in the Grady Trauma Project cohort 
(E-GEOD-72680). A binary logistic regression identified 

Table 5  Binomial logistic regression coefficients for the model with cg02825527 in the SKI cohort

This table shows coefficients for the binary logistic regression model, where the severity of a suicide attempt is a dependent outcome variable depending on 
methylation at cg02825527 (M value) adjusted for confounders. Statistics for the model were calculated using a native implementation of the binary logistic 
regression model in the R programming language. Confidence intervals for β coefficients were calculated using the R package “stats.” Pers.dis., personality disorders; 
Alc.add., alcohol addiction

Coef. β 95% CI β Exp(β) Std. error β Z.value P value

Intercept − 17.163 − 30.068 to − 6.213 < 0.001 6.029 − 2.847 0.004

cg02825527 M value 4.437 1.698 to 7.661 84.521 1.505 2.947 0.003

Sex − 1.728 − 2.933 to − 0.626 0.178 0.582 − 2.968 0.003

Age − 0.012 − 0.056 to 0.033 0.988 0.022 − 0.516 0.606

Batch − 1.422 − 4.742 to 1.891 0.241 1.479 − 0.961 0.336

Pers.dis 0.649 − 0.539 to 1.833 1.914 0.599 1.084 0.279

Alc.add 0.955 − 0.362 to 2.325 2.599 0.676 1.414 0.157
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Fig. 4  CpG–phenotype associations. A. Methylation at cg02825527 (β value) in relation to the severity of the suicide attempt in the SKI cohort. 
Methylation analysis is obtained from the blood sample. p value was derived from a binary logistic regression analysis, where methylation (M value) 
was used as a predictor and calculated using Wald statistics (implemented natively in R). B. Methylation at cg19624444 (β value) in relation to the 
severity of the suicide attempt in the SKI cohort. Methylation analysis is obtained from the blood sample. p value was derived from a binary logistic 
regression analysis, where methylation (M value) was used as a predictor and calculated using the Wald statistics (implemented natively in R). C. 
Methylation at cg02825527 (β value) in glial cells in relation to the diagnosis in the validation cohort E-GEOD-41826. p value was derived from a 
binary logistic regression analysis, where methylation (M value) was used as a predictor and calculated using Wald statistics (implemented natively 
in R)
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a statistical tendency toward an association between 
lower blood methylation at cg02825527 and treat-
ment for depression. It should be noted that the direc-
tion of the association matches the findings from blood 
in the SKI cohort, although the effect size is relatively 
small (exp(β) = 1.119, p value ~ 0.075) and the associa-
tion failed to become statistically significant. However, 
both groups appear to have many outliers based on box 
plot visualization (Additional file  6: Fig S6D). Interest-
ingly, cg19624444, in turn, showed a strong associa-
tion between lowered DNA methylation at the site and 
depression treatment (exp(β) = 2.237, p value ~ 0.003, 
Additional file 6: Fig S6E). Adding information on treat-
ment for BD, PTSD, and anxiety in the model leads to 
exclusion of additional 35 participants due to miss-
ing data. Interestingly, the new model still shows a 
strong association for cg19624444 (exp(β) = 2.517, p 
value ~ 0.01); however, there was no association for two 
other CpGs.

Genomic context analysis and gene ontology
We explored the spatial organization of investigated SNPs 
and CpGs in the genome (Fig.  5). All studied sites are 
located within intronic sequences of the MAD1L1 gene 
and the majority of investigated SNPs group closer to 
cg02825527 and cg19624444 compared to cg18302629. 
Both cg02825527 and cg19624444 are located outside 
of CpG Islands within the 2–4  kb range. The latter CpG 
cg18302629 is not located close to any CpG Island. Addi-
tionally, methylation sites at cg02825527 and cg19624444 
do not overlap any histone acetylation/methylation marks, 
whereas cg18302629 shows overlap with increased acetyla-
tion based on the astrocyte cell data from ENCODE. Chro-
matin state inspection shows that cg19624444 is located in 
close proximity to enhancer regions in several brain tissues, 
particularly in the brain cingulate gyrus, brain germinal 
matrix, brain hippocampus middle, and brain inferior tem-
poral lobe and is also potentially close to H3K27ac mark.

Fig. 5  Genomic context for investigated SNPs and CpGs. This figure shows the genetic organization of the MAD1L1 gene and the location 
of investigated SNPs and their dependent CpGs. Ideogram and genome axis tracks were available natively in the R package “gviz.” Data for 
gene sequences, CpG islands, histone modifications, and transcription factor binding were obtained from the UCSC genome browser. Only 
depression-related transcription factors (PAX5, ESR1, FOXP2, TAL1, EBF1, SP4, and MEF2C) that were identified using GWAS Catalog were selected. 
For further information please refer to “materials and methods.” RefSeq track shows neighboring genes. CpGIsl track, H3k27ac, H3 methyl, and Txn_
ChIP show CpG islands, histone H3 acetylation, histone H3 methylation, and transcription factor binding, respectively. The last eight tracks (BRAG to 
BRSN) show chromatin states for the investigated gene region. For color codes, please refer to Additional file 18: Table S10. SNP, single nucleotide 
polymorphism; TFAMP1, transcription factor A, mitochondrial pseudogene 1; ELFN1, extracellular leucine-rich repeat and fibronectin type III 
domain containing 1; ELFN1-AS1, ELFN1 antisense RNA 1; MAD1L1, mitotic arrest deficient 1 like 1; SNORA114, small nucleolar RNA, H/ACA Box 114; 
LOC105375303, homo sapiens uncharacterized LOC105375303; MIR4655, microRNA 4655; MRM2, mitochondrial RRNA methyltransferase 2; NUDT1, 
nudix hydrolase 1; MIR6836, microRNA 6836; SNX8, sorting nexin 8; EIF3B, eukaryotic translation initiation factor 3 subunit B; CHST12, carbohydrate 
sulfotransferase 12; GRIFIN, galectin-related inter-fiber protein; PAX5, paired box 5; ESR1, estrogen receptor 1; FOXP2, forkhead box P2; TAL1, T-cell 
acute lymphocytic leukemia protein 1; EBF1, early b cell factor 1; MEF2C, myocyte enhancer factor 2C; SP4, sp4 transcription factor; BRAG, brain 
angular gyrus; BRAC, brain anterior caudate; BRCG, brain cingulate gyrus; BRGM, brain germinal matrix; BRHM, brain hippocampus middle; BITL, 
brain inferior temporal lobe; BDPC, brain dorsolateral prefrontal cortex; BRSN, brain substantia nigra
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The association of MAD1L1 with depression may be 
reflected in MAD1L1-interacting proteins and their 
secondary functions; thus, we have conducted an 
enrichment analysis for MAD1L1 physical interactors 
based on the data from the STRING database and its 
provided GO/pathway analysis tools. MAD1L1 inter-
acts with 11 proteins based on the STRING data with 
a medium confidence score (Fig. 6A). These proteins, as 
expected, are related to the known mitosis checkpoint 
role of MAD1L1 as confirmed by enrichment analy-
ses of biological processes, cellular location, molecular 

function, and pathways of the identified network 
(Fig. 6B, Additional file 15: Table S7).

Blood–brain correlation analysis
We inspected blood–brain correlations for the identi-
fied CpG sites to explain contradictory directions of the 
results in the blood compared with the brain. Methyla-
tion at cg19624444 was inversely correlated in all availa-
ble brain versus blood comparisons, whereas cg02825527 
demonstrated a weak inverse correlation only between 
BA20 and blood (Fig.  6C). Methylation at cg18302629 

Fig. 6  Interactors, gene ontology, and methylation blood–brain correlation. A. Interacting partners of MAD1L1. Physical interactions of the MAD1L1 
protein are shown. Data were downloaded from the STRING database. Only physical experimental data are shown, the medium confidence score 
was used. B. Gene ontology (biological processes) for the network in sub-figure A. The graph shows biological processes and the number of genes 
for the processes identified in the network. C. Methylation blood–brain correlation for cg18302629, cg02825527 and cg19624444. This section 
shows Spearman correlation values between blood and a brain region. Images were obtained from BECon. Data for all sub-figures are due March 
2022. MAD1L1, mitotic arrest deficient 1 like 1; CDC20, cell division cycle 20; LEKR1, leucine, glutamate and lysine-rich 1; LGALSL, galectin like; 
MAD2L1, mitotic arrest deficient 2 like 1; MAD2L1BP, MAD2L1 binding protein; ZW10, zw10 kinetochore protein; TPR, translocated promoter region, 
nuclear basket protein; TTK, TTK protein kinase; RNF8, ring finger protein 8; NEBL, nebulette; SIN3A, SIN3 transcription regulator family member A; 
BA, Brodmann area
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is generally lower in blood compared with brain tissues 
and was in weak positive correlation with BA7. All of the 
investigated CpGs appear to be relatively independent of 
cellular compositions in the samples from blood/brain 
based on the BECon data.

DNA methylation–transcriptome analysis
To explore the functional impact of identified CpGs, 
we performed an association analysis between meth-
ylation at targeted CpG sites and the levels of MAD1L 
transcripts. We performed this analysis in two publicly 
available cohorts (GSE49065 and GSE56047). In the 
first cohort, we regressed the M values of cg02825527, 
cg18302629, and cg19624444 against one available 
probe of MAD1L1 (probe 8137805, primary tran-
script NM_003550) and found no association for any 
of the CpGs (Additional file 16: Table S8). In the cohort 
GSE56047, however, we observed a nominally significant 
positive association between methylation at cg18302629 
and the MAD1L1 probe ILMN_2358069 (β = 0.244, p 
(unadj.) = 0.01), and a trend for association between 
methylation at cg19624444 and intensity of the same 
probe (β = -0.124, p (unadj.) = 0.058). The models assume 
the opposite direction for both CpG sites (Table  6). No 
associations for cg02825527 were observed.

Investigation of relationship between stress‑related 
methylation and targeted CpG sites
Given the potential association of MAD1L1 to stress 
[87], we performed an exploratory analysis to investigate 
whether methylation at identified candidate CpG sites 
could be systematically associated with stress-related 
methylation that was identified previously. To do so, we 
regressed methylation at cg02825527, cg18302629, and 
cg19624444 against methylation at previously published 
stress-related CpGs and covariates (see methods) in the 
cohorts where we observed an association (or a ten-
dency) between methylation at any of candidate CpGs 
and a psychiatric phenotype. This analysis identified 54 

nominally significant associations, some of which, such 
as cg19624444–cg06309855, cg18302629–cg05608730, 
and others, passed adjustment for multiple compari-
sons at a cohort level (Additional file  17: Tables S9.1–
S9.6). We inspected nominally significant associations 
and how they are consistent across the samples in terms 
of direction. Twelve CpG pairs were observed in two 
samples, whereas two pairs (cg02825527–cg00130530 
and cg18302629–cg00130530) were significant in three 
samples (Additional file  7: Fig S7). The association 
cg18302629–cg00130530 was consistent in three cohorts 
with the same positive direction (β = 0.237; 0.445; 0.666). 
In total, we identified eight nominally significant CpG 
pairs such as cg18302629–cg10782349 and others that 
had similar directions for associations (Additional file 17: 
Tables S9.7-S9.8).

Discussion
This is the first study showing associations between DNA 
methylation and previously identified depression-related 
SNPs at the MAD1L1 gene and depression and suicidal 
behavior using multiple independent cohorts. Previous 
studies identified multiple genetic variants in MAD1L1 
that were associated with psychiatric disorders. Vari-
ants used in the analysis were primarily associated with 
depression. However, rs2056477 also showed an associa-
tion with adult body height based on GWAS [88], and 
rs3823624 was associated with duration of sleep [89]. We 
identified three methylation loci that were dependent on 
several genetic variants and the associations remained 
preserved longitudinally. In this setting, consistent SNP–
CpG associations may be more relevant to depression, 
especially if they are associated with several depression-
related SNPs. The interesting aspect of the findings is 
that associations were consistently inverse depending 
on whether a sample has been derived from blood or 
brain tissue, thus highlighting the importance of tissue-
specific methylation patterns in relation to depression. In 
the blood-based cohorts, the individuals at high risk for 

Table 6  Methylation–transcriptome analysis in the cohort GSE56047

This table shows the results for association analysis between investigated CpG sites and MAD1L1 probes in the cohort GSE56047. In the models, the transcript level 
was a dependent numeric outcome variable, whereas CpG and other confounders (age, “racegendersite,” residual cell contamination, and chip ids) were predictors. 
Statistics for the model were calculated using a native implementation of the linear regression model in the R programming language. Confidence intervals for β 
coefficients were calculated using the R package “stats.” Raw p values were adjusted with the false discovery rate method

Probe Coef. β 95% CI β Std. error β T value p value Adj. p

MAD1L1___ILMN_2358069 cg02825527 0.0244 − 0.1708 to 0.2195 0.0995 0.2449 0.8066 0.834

MAD1L1___ILMN_2358074 cg02825527 − 0.0059 − 0.0609 to 0.0492 0.0281 − 0.2096 0.834 0.834

MAD1L1___ILMN_2358069 cg18302629 0.2439 0.058 to 0.4298 0.0947 2.5743 0.0102 0.0611

MAD1L1___ILMN_2358074 cg18302629 − 0.0156 − 0.0682 to 0.037 0.0268 − 0.5812 0.5613 0.834

MAD1L1___ILMN_2358069 cg19624444 − 0.1242 − 0.2527 to 0.0043 0.0655 − 1.8961 0.0582 0.1747

MAD1L1___ILMN_2358074 cg19624444 − 0.0135 − 0.0498 to 0.0228 0.0185 − 0.7316 0.4646 0.834
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depression tended to demonstrate decreased methyla-
tion of the identified CpGs, whereas in postmortem brain 
samples, there was a slight increase in methylation. These 
associations appear to be related not only to the anatomi-
cal location of the sample source but also to the cell type. 
In the E-GEOD-41826 data, for instance, a clear associa-
tion between MDD and cg02825527 or cg18302629 was 
observed only in glial cells, but not in neural ones.

We did not find any published articles on cg02825527 
and cg18302629 loci in relation to depression nor for 
other diseases or biological processes. However, a recent 
study by Shen et  al. identified cg19624444 as a depres-
sion-related methylation site that was associated with a 
depression polygenic risk score. This CpG has also shown 
casual associations based on Mendelian randomization 
analysis conducted in the same study [41]. Our SNP–CpG 
analysis with limma identified cg19624444 as a top hit 
based on adolescent cohorts at screening and recall using 
a dominant genetic model. This CpG was a Top 1 inter-
acting partner for almost all depression-related MAD1L1 
SNPs in mQTL analysis with the additive genetic model 
as well, and its top 10 interacting SNPs were almost 
always in LD with depression-related MAD1L1 loci. 
Our results indicate the relationship between depression 
and methylation at cg19624444 based on the treatment 
data from E-GEOD-72680. Additionally, methylation 
levels at this CpG were associated with the severity of 
suicide attempt, but our analysis has insufficient statis-
tical power to fully confirm it. Another study identified 
the cg08985282 site at MAD1L1 as a depression-related 
locus based on a comparison of depressed individuals 
with their healthy monozygotic twins (12 pairs) [90]. This 
probe, however, did not pass the QC in our analysis since 
it was found to align with more than one genome site 
based on the list published previously [66].

Investigated methylation sites are located within the 
gene body of MAD1L1. There is a general assump-
tion that methylation within a promoter region of a 
gene tends to have a negative impact on a gene expres-
sion, leading to its silencing [91]. Methylation of the 
gene body, on the other hand, might be associated with 
increased gene expression as was shown in dividing cells, 
but not in nondividing cells such as brain cells [92]. This 
difference adds up to difficulties with interpreting results 
from methylation studies, and the regulatory role of gene 
body methylation/demethylation is still incompletely 
understood. The localization of CpGs provides rather 
weak evidence that methylation of these sites impacts 
the expression of MAD1L1 or other genes. Also, we do 
not observe any overlap with depression-related tran-
scription factor binding sites. However, the expression 
of MAD1L1 may be regulated by other transcription 
factors. We were able to observe a potential overlap of 

cg19624444 with acetylation marks; however, they are 
relatively distant. Interestingly, the transcriptome-meth-
ylation association analysis, in turn, indicates a potential 
relationship between methylation at cg18302629 and 
cg19624444 with expression levels of MAD1L1. However, 
we are not able to investigate if these associations hold 
in the brain tissue, and in glial cells in particular. Addi-
tionally, the opposite directions for both CpGs and the 
absence of associations for cg02825527 provide fairly lit-
tle clarity in the interpretation given that both MAD1L1 
Illumina probes in the analysis correspond to the same 
transcript. Additionally, MAD1L1 could be expressed in 
form of alternative variants, which could be affected by 
methylation at investigated CpGs and left undetected by 
the transcriptome array. However, the three candidate 
CpGs predominantly do not overlap with transcription 
start sites/promoter regions of alternative MAD1L1 vari-
ants (Additional file 8: Fig S8).

The metaphase checkpoint protein MAD1L1 is pri-
marily responsible for the cell cycle regulation, and thus 
it might be important for neural function only in the 
early stage of the lifespan since neurons are not capa-
ble of cell division, and adult neurogenesis occurs only 
in a few areas of the brain [93, 94]. This could explain 
that the association of methylation at cg02825527 and 
cg18302629 with depression was noticeable only in glial 
cells in postmortem brain samples from E-GEOD-41826 
since glial cells are capable of regeneration [95]. Some evi-
dence suggests that depression could be associated with 
the function of glial cells, such as microglia and oligoden-
drocytes, and their disruption could be associated with 
the disease [96, 97]. MAD1L1 protein physically interacts 
with 11 partners associated with its main mitosis check-
point function, and these proteins could be potentially 
related to depression as well. Though such associations 
have not been reported yet. As mentioned earlier, sev-
eral studies identified the association between SKA2 gene 
that is functionally related to MAD1L1 with suicide and 
suicidal ideation [18–21]. This gene is a component of the 
SKA complex that functions to silence spindle assembly 
checkpoint (which includes MAD1L1) to promote cell 
cycle progression [17]. SKA2 was reported to be asso-
ciated with cortisol stress reactivity [98]. Additionally, 
MAD1L1 is also associated with stress responses based 
on several studies [87]. We were able to observe several 
associations between candidate CpG sites and previously 
reported stress-related CpG marks. Particularly, two pairs 
(cg02825527–cg00130530 and cg18302629–cg00130530) 
were observed in three samples, and notably, cg00130530 
is located at FKBP5 gene that was previously reported 
to be associated with suicide and depression [5, 6]. 
Also, for instance, the pair cg18302629–cg10782349 
was observed in two samples, having a similar direction 
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for the association. The CpG cg10782349 is located at 
Zinc Finger Protein 701 (ZNF701) and was reported to 
be associated with stress-related suicidal ideation [84]. 
Additionally, similar pairs with consistent directions 
cg02825527–cg06092834 and cg18302629–cg12282311 
also depend on CpGs related to suicidal ideation and 
stress [84]. Taken together, our results with previous find-
ings on SKA2 indicate a relationship between the func-
tion of MAD1L1 and psychiatric health and also provide 
small evidence (given the exploratory nature and possible 
statistical inflation of such analysis) that stress response 
may be involved in the process.

It should be noted that our study has limitations. First, 
individual cohorts have a relatively small number of par-
ticipants, and thus results should be interpreted with cau-
tion. Additionally, the cohorts at screening and recall do 
not fully overlap, so conclusions regarding longitudinal 
changes in methylation need to be studied separately in 
a larger cohort. Even though the SNP–CpG interactions 
appear similar at screening and recall based on mQTL 
analysis, the differences in genetic architectures may 
affect SNP–CpG pairs. Also, there are potential genetic 
differences in other cohorts used in the study. Given that 
investigated CpGs show either no or inverse correlation 
with methylation in the brain and phenotypical associa-
tions were also inverse, the biological impact of differential 
methylation is not clear. The relatively weak association 
between methylation at investigated CpGs and MAD1L1 
transcriptome in CD14+ cells may not be reflected in the 
brain. We could not draw conclusions regarding the cau-
sality of identified methylation changes given the overall 
cross-sectional design of the study. Additionally, partici-
pants in the adolescent cohorts in the present study were 
not evaluated by a psychiatrist, and thus it limits the clini-
cal validity of associations (even though we did not observe 
them in these cohorts). Also, the analyses may be affected 
by hidden confounding factors, such as antidepressant 
intake. This is particularly important for the cohorts inves-
tigating suicide, given that these individuals are likely to 
have some kind of antidepressant treatment. The strength 
of our study, however, is a longitudinal approach to iden-
tify consistently differentially methylated loci coupled with 
the use of several independent cohorts for phenotypical 
associations and transcriptome analysis. Such an approach 
should increase the likelihood to identify biologically rel-
evant methylation changes and could avoid potential hid-
den biases in comparison with a single cohort.

Our results suggest an association between methylation 
changes in the MAD1L1 gene in relation to suicide sever-
ity and depression. There is weak evidence of an associa-
tion between methylation at cg18302629 and cg19624444 
with an expression of MAD1L1 in CD14+ cells. However, 
there are no available data if the expression levels of 

MAD1L1 in glia are related to depressive phenotypes or 
whether the investigated CpGs affect MAD1L1 expres-
sion in the brain. The logical step forward would be an 
investigation of genetic, epigenetic, and proteomic pro-
files simultaneously. Ideally, this should be studied both 
in the blood and in the brain samples, so a potential 
explanation of brain changes would also offer a path for a 
clinical diagnostic/screening application.
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Additional file 1: Fig S1. This Manhattan plot shows identified SNP-
related CpG sites in the recall adolescent cohort. This figure comprises 
results for all investigated SNP sites. All four studied SNPs were tested 
independently. Analyses were conducted with the R package “limma,” the 
dominant model was used. The smallest p value for every SNP–CpG asso‑
ciation is included in the image. Raw p values from limma are visualized. 
The dashed red line shows a threshold for significance after correction for 
multiple testing (false discovery rate) and the number of SNP sites. Only 
probes that passed the initial QC were included in the analysis. CpG sites 
located at the MAD1L1 gene are highlighted in yellow. All statistically 
significant results are annotated by name. Abbreviations: SNP, single 
nucleotide polymorphism; QC, quality control.

Additional file 2: Fig S2. This figure shows the DNA methylation (β value) 
of identified lead CpGs in relation to alleles of all related investigated 
SNPs based on data at screening. All depicted associations were found 
to be statistically significant after correction for multiple testing and the 
number of SNP sites using limma-based models. For rs2056477, there 
were 2 alternative alleles available, and all discovered different genotypes 
are depicted.

Additional file 3: Fig S3. This figure shows the DNA methylation (β value) 
of identified lead CpGs in relation to alleles of all related investigated SNPs 
based on data at recall. All depicted associations were found to be statisti‑
cally significant after correction for multiple testing and the number of 
SNP sites. For rs2056477, there were 2 alternative alleles available, and all 
discovered different genotypes are depicted.

Additional file 4: Fig S4. This figure shows QQ plots of the p-values 
obtained in the mQTL analysis in the adolescent screening and recall 
samples. The figure A corresponds to screening, whereas the figure B 
corresponds to recall.

Additional file 5: Fig S5. This figure shows heatmaps of the SNP–CpG 
interactions in the mQTL analysis. The X-axis shows coordinates for SNPs, 
the Y-axis represents coordinates for CpGs. Both coordinates correspond 
to the genome assembly hg19. The first row with plots shows heatmaps 
for -log10 p values (raw) and beta coefficients in the linear models 
(adjusted for age, sex, batch, and BMI) for the adolescent screening sam‑
ple. The second row depicts similar maps for the adolescent recall sample. 
The linear models were generated with the R package MatrixEQTL and 
assumed additive genetic effects and the heatmaps were created with 
ggplot2 (see methods).

Additional file 6: Fig S6. A. Methylation of cg02825527 in BA11 
brain region in the GSE88890 cohort. This figure shows methylation of 
cg02825527 (β-value) for suicide and control individuals in GSE88890. B. 
Methylation of cg19624444 in BA25 brain region in the GSE88890 
cohort. This figure shows methylation of cg02825527 (β-value) for suicide 
and control individuals in GSE88890. C. Methylation of cg18302629 
in BA25 brain region in the GSE88890 cohort. This figure shows 
methylation of cg02825527 (β-value) for suicide and control individuals in 
GSE88890. D. Methylation of cg02825527 in E-GEOD-72680. This graph 
shows methylation of cg02825527 (β-value) for individuals on antide‑
pressant treatment and without it. E. Methylation of cg19624444 in 
E-GEOD-72680. This figure depicts methylation of cg19624444 (β-value) 
for individuals on antidepressant treatment and without it.

Additional file 7: Fig S7. This figure shows associations between can‑
didate CpGs and stress-related CpGs in the samples where we observed 
associations (or trends) between MAD1L1 methylation and depression/

suicide phenotype. The figure includes all pairs (without accounting for 
direction) that were nominally significant based on the linear model 
adjusted for the cohort-specific covariates. The color of the nodes 
indicates the following: green—sample, blue—CpG–CpG pairs that were 
observed in one cohort, orange—CpG–CpG pairs that were observed in 
two cohorts, red—CpG–CpG pairs that were observed in more than two 
cohorts.

Additional file 8: Fig S8. A. This figure shows alternative transcripts of 
MAD1L1 obtained from the AceView portal (https://​www.​ncbi.​nlm.​nih.​
gov/​IEB/​Resea​rch/​Acemb​ly/​av.​cgi?​db=​human​&​term=​MAD1L​1&​submit=​
Go) and the relative positions of candidate CpG sites. B. This figure 
shows NCBI RefSeq tracks of the MAD1L1 gene obtained from the UCSC 
genome browser. The red MAD1L1 transcript is associated with Illumina 
HumanHT-12 V4.0 MAD1L1 probes. The orange MAD1L1 transcript is asso‑
ciated with the Affymetrix Human Gene 1.1 ST MAD1L1 probe.

Additional file 9: Table S1. Demographical characteristics of the 
GSE88890 cohort for two brain regions BA11. Participants were grouped 
based on the death cause: suicide or non-psychiatric sudden death. For 
the age variable, sample mean ± standard deviation is shown. Min stands 
for a minimal value, and max shows the maximal value.

Additional file 10: Table S2. Demographical characteristics of the 
E-GEOD-72680 cohort. Participants were grouped based on the depres‑
sion treatment status. For numerical variables, sample mean ± standard 
deviation is shown. Min stands for a minimal value, and max shows the 
maximal value. Abbreviations: BMI, body mass index; BD, bipolar disorder; 
CTQ, Childhood Trauma Questionnaire; PTSD, post-traumatic stress disor‑
der; BDI, Beck’s Depression Inventory.

Additional file 11: Table S3. Results for SNP–CpG association analysis 
based on R limma models. Tables for screening and recall are provided 
separately. Limma models were run independently for every SNP site 
for all available CpG sites; only statistically significant results are shown. 
Adjusted p values were calculated using the false discovery rate method 
for every SNP separately. Adjusted p values were further adjusted by the 
number of SNP sites tested. Additionally, moderated t values from limma 
were adjusted for genomic inflation and bias with the R package bacon. 
Similar statistics as for limma t values were calculated for bacon-adjusted 
t values. Cumulated positions for CpGs were calculated based on the data 
from (https://​www.​ncbi.​nlm.​nih.​gov/​grc/​human/​data?​asm=​GRCh37). 
Associated genes and coordinates for CpGs were obtained from Illumina 
annotation files for a corresponding array. Column names state the 
following: Gene, a gene associated with an SNP; SNP, investigated SNP; 
SNP coords, coordinates of SNP; CpG; associated CpG site; CpG chrom., 
a chromosome of a CpG; CpG pos., coordinates of a CpG (for the current 
chromosome); CpG cumul. Pos., the cumulative position of a CpG; CpG 
gene, a gene associated with a CpG; logFC, estimate of the log2-fold-
change corresponding to the effect; AveExpr, average log2 value for 
the probe over all arrays and channels; t, moderated t-statistic; P.Value, 
raw p value; adj.P.Value, FDR-adjusted p value with no correction for the 
number of SNPs and inflation/bias; B, log-odds that the site is differentially 
methylated; adj.P.Val.SNP, limma FDR-adjusted p value corrected for the 
number of SNPs; Inflation.Bacon, inflation factor calculated in bacon; Bias.
Bacon, bias of estimations; T.Bacon, corrected moderated T statistics; 
P.val.Bacon, p value after correction for inflation and bias; Adj.P.Val.Bacon, 
FDR-adjusted p value after correction for inflation and bias; adj.P.Val.SNP.
Bacon, FDR-adjusted p value corrected for the number of SNPs, inflation, 
and bias. Abbreviations: SNP, single nucleotide polymorphism; FDR, false 
discovery rate.

Additional file 12: Table S4. Linkage disequilibrium for investigated SNPs 
based on the output from (https://​snipa.​helmh​oltz-​muenc​hen.​de/​snipa3/) 
with default settings. Only associations between investigated SNPs are 
shown. Column description provided by SNIPA: QRSID, Query SNP rsID; 
RSID, Proxy SNP rsID; RSALIAS, Proxy SNP alias rsID(s); CHR, Chromosome; 
POS1, Sentinel SNP Position; POS2, Proxy SNP Position; DIST, Distance; R2, 
LD r^2; D, LD D; DPRIME, LD D’; MAJOR, Proxy Allele A; MINOR, Proxy Allele 
B; MAF, Allele B Frequency; CMMB, Recombination Rate (CM/Mb); CM, 
Genetic distance (CM); COMPEFFECTS, Compressed functional annotation 
of Proxy SNP; TRAIT, Associated with trait (yes/no); CISEQTL, Associated 
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with eQTL in cis (yes/no); TRANSEQTL, Associated with eQTL in trans (yes/
no); GENES, Genes hit or close-by (distance 5 KB max); REGGENES, Poten‑
tially regulated genes (linked via promoter or enhancer); EQTLGENES, 
Genes linked via eQTL associations. Abbreviations: SNP, single nucleotide 
polymorphism.

Additional file 13: Table S5. 5.1 Genetic variants used for mQTL analysis. 
The column headers correspond to the IMPUTE2 output. 5.2 The mQTL 
analysis in the adolescent screening sample. The statistics were calculated 
in the package MatrixEQTL. P values were adjusted with false discovery 
rate method. 5.3 Statistics of the candidate CpG sites in screening. Depr. 
SNP placement column indicates a relative placement of a MAD1L1 
depression-related SNP in the CpG-specific mQTL table (sorted by FDR). 
Depr. SNP name column indicates the name of the MAD1L1 depression-
related SNP in the column with placement. Top 10 Variants column shows 
the Top 10 variants associated with a CpG in the CpG-specific mQTL table 
(sorted by FDR). LD with depr.SNPs column shows if the SNP in the Top 10 
list is in LD with at least one MAD1L1 depression-related SNP. 5.4 Statistics 
of the MAD1L1 depression-related SNPs in screening. The Top CpG place‑
ment column shows a relative placement of a candidate CpG site in the 
SNP-specific mQTL table (sorted by FDR). The CpG name column shows 
the name of the CpG associated with its placement in the previous col‑
umn. 5.5 The mQTL analysis in the adolescent recall sample. The statistics 
were calculated in the package MatrixEQTL. P values were adjusted with 
the false discovery rate method. 5.6 Statistics of the candidate CpG sites in 
the recall. Depr. SNP placement column indicates a relative placement of 
a MAD1L1 depression-related SNP in the CpG-specific mQTL table (sorted 
by FDR). Depr. SNP name column indicates the name of the MAD1L1 
depression-related SNP in the column with placement. Top 10 Variants 
column shows the Top 10 variants associated with a CpG in the CpG-spe‑
cific mQTL table (sorted by FDR). LD with depr.SNPs column shows if the 
SNP in the Top 10 list is in LD with at least one MAD1L1 depression-related 
SNP. 5.7 Statistics of the MAD1L1 depression-related SNPs in the recall. The 
Top CpG placement column shows a relative placement of a candidate 
CpG site in the SNP-specific mQTL table (sorted by FDR). The CpG name 
column shows the name of the CpG associated with its placement in the 
previous column.

Additional file 14: Table S6. Coefficients for binary logistic regression 
models, where depression diagnosis is a dependent outcome variable 
depending on methylation at cg02825527 (M value) or cg18302629 (M 
value) in glial cells adjusted for confounders. Statistics for the models were 
calculated using a native implementation of the binary logistic regression 
model in the R programming language.

Additional file 15: Table S7. Results for gene ontology analysis for 
MAD1L interacting partners based on the STRING database data. For 
further information, please refer to the STRING database. Analysis was con‑
ducted with default settings. Abbreviations: TFAMP1, transcription factor 
A, mitochondrial pseudogene 1; ELFN1, extracellular leucine-rich repeat 
and fibronectin type III domain containing 1; ELFN1-AS1, ELFN1 antisense 
RNA 1; MAD1L1, mitotic arrest deficient 1 like 1; SNORA114, small nucleo‑
lar RNA, H/ACA Box 114; LOC105375303, homo sapiens uncharacterized 
LOC105375303; MIR4655, microRNA 4655; MRM2, mitochondrial RRNA 
methyltransferase 2; NUDT1, nudix hydrolase 1; MIR6836, microRNA 6836; 
SNX8, sorting nexin 8; EIF3B, eukaryotic translation initiation factor 3 subu‑
nit B; CHST12, carbohydrate sulfotransferase 12; GRIFIN, galectin-related 
inter-fiber protein; PAX5, paired box 5; EP300, E1A binding protein p300; 
SP4, sp4 transcription factor; BRAG, brain angular gyrus; BRAC, brain ante‑
rior caudate; BRCG, brain cingulate gyrus; BRGM, brain germinal matrix; 
BRHM, brain hippocampus middle; BITL, brain inferior temporal lobe; 
BDPC, brain dorsolateral prefrontal cortex; BRSN, brain substantia nigra.

Additional file 16: Table S8. Coefficients for candidate CpGs in the tran‑
scriptome–methylation association analysis in GSE49065. The expression 
of MAD1L1 was regressed against a candidate CpG site and age. Each row 
shows coefficients and estimates with statistics obtained from individual 
linear models. The models were implemented in R, using the standard 
implementation of linear regression. Confidence intervals were calculated 
with the R package stats.

Additional file 17: Table S9. 9.1 The source publications of stress-
related CpG sites. 9.2 CpG–CpG associations in the SKI. The models were 
calculated, using the standard implementation of linear regression. The 
covariates are specific for every cohort (see methods). The p values were 
adjusted with the false discovery rate method. The Stress CpG genes were 
obtained from Illumina annotation files for HumanMethylation450 and 
MethylationEPIC arrays. 9.3 CpG–CpG associations in the Grady sample. 
9.4 CpG–CpG associations in the E-GEOD-41826 (glia) sample. 9.5 CpG–
CpG associations in the GSE88890 (BA11) sample. 9.6 CpG–CpG associa‑
tions in the GSE88890 (BA25) sample. 9.7 Pooled CpG–CpG associations 
that were nominally significant and detected more than once. 9.8 Pooled 
CpG–CpG associations that were nominally significant, were detected 
more than once, and had matching directions for beta coefficients.

Additional file 18: Table S10.Color codes for chromatin states tracks in 
Fig. 5.
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