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Abstract

The rapidly growing field of toxicoepigenetics seeks to understand how toxicant exposures 

interact with the epigenome to influence disease risk. Toxicoepigenetics is a promising field of 

environmental health research, as integrating epigenetics into the field of toxicology will enable 

a more thorough evaluation of toxicant-induced disease mechanisms as well as the elucidation 

of the role of the epigenome as a biomarker of exposure and disease and possible mediator of 

exposure effects. Likewise, toxicoepigenetics will enhance our knowledge of how environmental 

exposures, lifestyle factors, and diet interact to influence health. Ultimately, an understanding 

of how the environment impacts the epigenome to cause disease may inform risk assessment, 

permit noninvasive biomonitoring, and provide potential opportunities for therapeutic intervention. 
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However, the translation of research from this exciting field into benefits for human and animal 

health presents several challenges and opportunities. Here, we describe four significant areas in 

which we see opportunity to transform the field and improve human health by reducing the disease 

burden caused by environmental exposures. These include (1) research into the mechanistic role 

for epigenetic change in environment-induced disease, (2) understanding key factors influencing 

vulnerability to the adverse effects of environmental exposures, (3) identifying appropriate 

biomarkers of environmental exposures and their associated diseases, and (4) determining whether 

the adverse effects of environment on the epigenome and human health are reversible through 

pharmacologic, dietary, or behavioral interventions. We then highlight several initiatives currently 

underway to address these challenges.

Graphical Abstract

BACKGROUND: TYPES OF EPIGENETIC INFORMATION

The term epigenetics broadly refers to heritable and potentially modifiable information 

stored in the nucleus of cells that controls cellular processes through mechanisms that are 

independent of the DNA sequence itself. The human genome comprises approximately 

25,000 protein coding genes,1 and epigenetic processes cooperate with transcription factors 

and regulatory elements to control the timing, location, and level of gene expression. 

This spatiotemporal control of gene expression governs normal development and tissue 

identity. Epigenetic information includes an assortment of covalent modifications to the 

histone proteins which form the molecular scaffold for the genome, as well as methylation/

hydroxymethylation of cytosine bases on DNA.2 In addition, noncoding RNAs also play 

critical roles in the regulation of the epigenome.2,3 The epigenome can be modified by 

intrinsic cellular factors, such as metabolic pathways, as well as extrinsic factors such as 

diet, chemical exposures, and behaviors.4–8 Whether the epigenome directly regulates gene 

expression, or vice versa, is often unclear, and newly developed genome and epigenome 

editing tools may yield more insight into this important question.9–12 Nevertheless, it is clear 

that the epigenome plays a pivotal role in the pathogenesis of diseases. Extensive research 

on the epigenome has broadened our insight into the molecular basis of diseases such as 

cancer, cardiovascular diseases, diabetes, and neurodegenerative diseases.13 Likewise, our 
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understanding of the effects of environmental exposures on the epigenome has expanded in 

recent years, and the field of toxicoepigenetics is rapidly gaining momentum.

While it is common to refer to this field as “epigenetic toxicology”, the term 

“toxicoepigenetics” has been used because the former connotes a narrow focus on epigenetic 

mechanisms underlying toxicity. Toxicoepigenetics is a more inclusive term to refer to the 

particular type(s) of epigenetic alterations at specific loci in the genome that might arise 

following environmental exposures, including chemical and nonchemical stressors and their 

possible interactions, and the role of the epigenome as a possible mediator of exposure 

effects (Figure 1).

DNA Methylation.

DNA methylation, or 5-methylcytosine, is the most extensively studied and well-

characterized epigenetic modification. DNA methylation has multiple functions in the 

regulation of gene and transposable element (TE) expression.14 DNA methylation in 

promoters is generally associated with repression of gene expression, while methylation 

in gene bodies is often associated with active gene transcription and may regulate tissue-

specific gene expression.14,15 More recent work has shown that, as in promoters, DNA 

methylation of the first intron is negatively associated with gene expression.16 DNA 

methylation regulates gene expression through multiple mechanisms, such as blocking the 

binding of some transcription factors to DNA.17 Likewise, methylated DNA can recruit 

methyl CpG binding proteins and, in turn, other factors involved in chromatin remodeling 

and gene silencing.18,19 In addition, DNA methylation at insulator regions can regulate 

the interactions between enhancers and promoters by blocking binding of the transcription 

factor CTCF.20

DNA methylation is catalyzed by DNA methyltransferase enzymes (DNMTs), using S-

adenosylmethionine (SAM) as the methyl donor.21 Three catalytically active DNMTs have 

been identified, including the maintenance methyltransferase DNMT1 as well as two de 
novo methyltransferases, DNMT3A and DNMT3B.22,23 DNMT3A/B function in large part 

to establish DNA methylation patterns during early development, while DNMT1 maintains 

the methylation of these sites across subsequent cellular divisions.22,24 Although the 

canonical function of DNMT1 is maintenance DNA methylation, recent work highlights 

a role for DNMT1 in de novo DNA methylation in specific contexts, such as TEs.25 

Likewise, roles for DNMT3A/B in the maintenance of DNA methylation in somatic cells 

have also been identified.26,27 DNA methylation functions in regulation of several important 

cellular processes, including X-chromosome inactivation, genomic imprinting, and silencing 

of TEs.28–30

DNA Hydroxymethylation.

Numerous recent studies have highlighted the critical role for DNA hydroxymethylation 

in the context of environmental exposures and disease.31–34 DNA hydroxymethylation 

entails the oxidative conversion of 5-methylcytosine to 5-hydroxymethylcytosine by TET 

dioxygenases.35,36 While 5-hydroxymethylcytosine is an intermediate in the process of 

active DNA demethylation, it is also now considered to be a stable epigenetic modification 
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and is associated with regulation of gene expression and alternative splicing.37–39 

TET dioxygenases convert 5-methylcytosine to 5-hydroxymethylcytosine using iron (Fe 

II), α-ketoglutarate, and vitamin C as cofactors,36 and can also catalyze the further 

oxidation of 5-hydroxymethylcytosine to 5-formylcytosine and 5-carboxylcytosine.40,41 

Like 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine are intermediates 

in the process of demethylation of DNA through both replication-dependent dilution as 

well as pathways involving DNA repair enzymes such as thymine DNA glycosylase.41,42 

Three TET dioxygenases, TET1, TET2, and TET3 have been identified and each show 

distinct expression patterns during normal development and in differentiated tissues.35,43 

TETs are most highly expressed in embryonic stem cells and during early development, 

where they function in active DNA demethylation during both waves of reprogramming. 

5-Hydroxymethylcytosine is present to a notable degree in embryonic stem cells and the 

brain.44–46 The specific role of 5-hydroxymethylcytosine in the brain is only beginning to 

be characterized, but there is evidence to suggest it plays a role in neurodevelopment47 

and aging,46 and its aberrant expression is implicated in several neurological disorders.48,49 

Furthermore, 5-hydroxymethylcytosine is influenced by the environment, with exposures 

such as arsenic, lead, and pesticides associated with alterations in 5-hydroxymethylcytosine 

in the brain and blood.8,34,50 Future studies will undoubtedly continue to clarify the role for 

5-hydroxymethylcytosine in normal neurodevelopment, environmental health, and disease.

Programming of DNA Methylation and Hydroxymethylation During Development.

During early development, DNA methylation undergoes two distinct waves of 

reprogramming.51,52 The first wave of reprogramming occurs immediately after fertilization, 

in which the parental DNA methylation marks are erased. In this wave, the paternal 

genome undergoes a rapid demethylation, while the maternal genome undergoes a 

more gradual demethylation during the first few cellular divisions.53,54 Although TET3-

mediated formation of 5-hydroxymethylcytosine was thought to be necessary for the 

rapid DNA demethylation of the paternal genome, recent work suggests that these 

processes are mechanistically uncoupled, challenging widely held assumptions about timing 

and mechanisms of post-fertilization 5-methylcytosine programming.55 Parental genomic 

imprints are retained during this initial stage of programming.56 Remethylation in the 

somatic cells then gradually occurs between implantation and birth.52 The second wave 

of reprogramming occurs in the primordial germ cells of the developing embryo, as 

they migrate toward the genital ridge. At this stage, somatic DNA methylation marks 

are erased, along with parental genomic imprints.57 Contrary to previous assumptions, 

however, global demethylation in the primordial germ cells does not require formation 

of 5-hydroxymethylcytosine.58 Remethylation then occurs to establish the appropriate sex-

specific patterns of methylation, with remethylation completed at birth in males and after 

birth in females.59–61 Because of these extensive reprogramming events, and the relative 

stability of DNA methylation, early development is exquisitely sensitive to disruption by 

environmental perturbations, with potential long-term health implications.

Histone Modifications.

In the somatic cells of eukaryotic organisms, genomic DNA is wrapped around 

nucleosomes, which are composed of histone proteins. Covalent modifications to histone 

Svoboda et al. Page 4

Chem Res Toxicol. Author manuscript; available in PMC 2023 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



protein tails represent another important form of epigenetic information. A wide 

array of histone modifications have been identified, including methylation, acetylation, 

phosphorylation, sumoylation, ubiquitination, and ADP ribosylation, among others.62 The 

effects of these modifications on gene expression are often highly context-dependent, 

and there is significant cross-talk between the various modifications and with other 

epigenetic mechanisms such as DNA methylation.63,64 Histone methylation, acetylation, 

and phosphorylation are among the most widely studied modifications. Histone methylation 

occurs on both lysines and arginines, and is associated with either gene activation 

or repression, depending on the location of the lysine or arginine.62 For example, 

trimethylation of lysine 4 on histone H3 (H3K4me3) is associated with gene activation, 

while trimethylation of lysine 27 on histone H3 (H3K27me3) is linked to repression 

of gene expression.62 Similarly, both activating (H3R17me2) and repressive (H4R3me2) 

arginine methylation marks have been identified.65,66 Histone acetylation is generally linked 

to gene activation, as the addition of the acidic, negatively charged acetyl group repels 

the negatively charged phosphate backbone of DNA, resulting in a more open chromatin 

conformation.62,67 Histone phosphorylation can occur on serine, threonine, or tyrosine 

residues and is associated with gene activation, DNA repair, and chromatin condensation 

during mitosis and meiosis.68

Like DNA methylation, histone modifications exhibit dynamic reprogramming during early 

prenatal and postnatal development,69–71 and vulnerability to environment-induced disease 

has been linked to changes in histone modifications.72–77 Several recent studies have 

demonstrated that histone modifications may be heritable and involved in the processes 

of genomic imprinting and transgenerational epigenetic inheritance.70,78,79 Although most 

toxicoepigenetics studies have focused on DNA methylation, recent work has identified 

global changes in histone modifications as biomarkers of environmental exposures in human 

populations.76,80–82

Noncoding RNA.

Historically regarded as “junk”, non-coding RNA (ncRNA), RNA molecules that are 

not translated into protein, possess substantial regulatory capacity and are a significant 

contributor to transcriptional and post-transcriptional regulation of gene expression. While 

roughly three-quarters of our genome is estimated to be transcribed, less than 2% of that 

accounts for protein-coding genes.83,84 ncRNA is commonly classified by size, with long 

and short ncRNA being longer or shorter than 200 nucleotides in length, respectively.85 

Depending on the type of RNA and often in concert with protein complexes, ncRNA 

regulates gene expression at the transcriptional as well as translational level, modulates 

splicing, and controls TE expression.86–91 These functions are commonly involved in 

processes such as cellular growth and proliferation, differentiation, and heterochromatin 

formation.92–96 The aberrant expression of some ncRNA has been associated with adverse 

health outcomes such as cardiovascular disease, neurological disorders, and many types of 

cancer.97–104

The various classes of ncRNA differ substantially in terms of their size, function, and the 

protein complexes they commonly interact with. Micro-RNA (miRNA), the most thoroughly 
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studied class of ncRNA, is 21–25 nucleotides in length and regulates gene expression 

post-transcriptionally. In concert with the RNA-induced silencing complex (RISC), a 

ribonucleoprotein (RNP) commonly including Argonaute proteins, miRNA acts as a guide to 

targeted mRNA.105 The RISC can degrade the mRNA or act as a translational block.106,107 

Small interfering RNA (siRNA) is similar in size to miRNA and also interacts with proteins 

of the Argonaute clade, assembling into a RISC to carry out their function.108,109 Post-

transcriptionally, siRNA acts as a guide, similarly to miRNA, to seek out mRNA transcripts 

for degradation. At the transcriptional level, short ncRNA has also been shown to regulate 

the formation of heterochromatin110 via the RNA-induced initiation of transcriptional 

silencing (RITS) pathway.

PIWI-interacting RNA (piRNA) is the largest subclass of small ncRNA that interacts 

primarily with the PIWI clade of Argonaute proteins. piRNA has been most extensively 

characterized within the germline, where its expression is most abundant, and with regard 

to its functions in regulation of TE expression.111 piRNA transcripts (24–32 nucleotides 

in length) direct PIWI protein complexes to targets in the cytoplasm, and, much like their 

miRNA and siRNA counterparts, the piRNA-PIWI complex post-transcriptionally regulates 

gene expression via the degradation of TE RNA.91 The piRNA-PIWI complex has also 

been shown to relocate to the nucleus, where it has been linked to de novo methylation and 

acts upstream of DNA methylation machinery such as DNMT3A/B.112,113 Suppression of 

piRNA expression results in increased rates of transposition mutagenesis, whereas increased 

piRNA expression results in greater DNMT3A expression and inhibition of TE activity in 

mice.114 Finally, piRNA has been shown to guide heterochromatin formation, providing a 

second form of transcriptional gene regulation.115,116

There are several additional classes of ncRNA that function in regulation of gene expression. 

Circular RNA (circRNA) is single-stranded RNA in which the 3′ and 5′ ends have 

been covalently linked. Some circRNA contains an miRNA response element, or MRE, 

allowing it to bind to specific miRNA and suppress activity.117 Several circRNAs have 

also been shown to bind to various proteins and transcription factors, thereby acting as 

transcriptional regulators.92,118 Small nuclear RNA (snRNA) is most well-known for its 

pre-mRNA splicing activity. snRNAs U1, U2, U4, U5, and U6 associate with proteins in a 

small nuclear RNP (snRNP) to carry out this form of post-transcriptional regulation.119,120 

Larger than the classes of short ncRNA discussed here, long ncRNA (lncRNA) is >200 

nucleotides long and has a wide array of regulatory functions, including X chromosome 

inactivation during mammalian female development,121,122 as well as regulating the parent 

of origin monoalleleic expression of imprinted genes.123

CHALLENGES AND OPPORTUNITIES IN TOXICOEPIGENETICS

Challenge 1: Determining Whether Epigenetic Changes Are Mechanistic Mediators of 
Environment-Induced Disease.

Numerous studies in humans and animals demonstrate that environmental exposures are 

associated with epigenetic changes and that these epigenetic changes, in turn, are associated 

with disease. However, in many circumstances it remains unclear whether epigenetic 

changes fall within the causal pathway linking environmental exposures to adverse health 
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outcomes or if they represent biomarkers of exposure and/or disease (Figure 1). Randomized 

controlled trials are the gold standard for assessing cause and effect in human studies; 

however, because it is not ethical to assign humans to receive injurious exposures, this 

approach is not feasible. In addition, cross-sectional studies demonstrate that environmental 

exposures are associated with conditions such as cardiovascular disease,124 obesity,125,126 

reproductive health issues,127 diabetes,128 and neurodegenerative diseases, concomitant with 

altered DNA methylation. However, it is unclear whether the observed epigenetic changes 

precede and potentially cause the disease or whether they may be an effect of the disease 

process itself.

Several lines of evidence suggest that epigenetic changes may have a mechanistic role 

in environment-induced disease. It is clear that epigenetic changes can play a critical 

role in disease pathogenesis, as demonstrated in several cancers, overgrowth syndromes, 

dwarfism, and neurological diseases that are driven by mutations or epimutations in 

epigenetic modifiers or histone proteins.129–131 Longitudinal studies show that epigenetic 

alterations can often precede the onset of disease brought on by early environmental 

exposures,72,73,132–134 suggesting that such reprogramming may have a causal role in 

disease. Indeed, early environmental exposures may reprogram the epigenome in a manner 

that does not affect basal gene expression, but primes genes to be hyper-responsive to 

stimuli later in life, leading to disease.72,73 For example, developmental bisphenol a (BPA) 

exposure in rats reprograms histone methylation at hormone-responsive genes, making them 

hyper-responsive to hormonal challenges later in life and more susceptible to prostate tumor 

development.73 In numerous studies, statistical approaches have demonstrated that DNA 

methylation is a mediator of environment-induced diseases including diabetes, asthma, 

cancer, and schizophrenia, among others.134–137 It is likely that environmental exposures 

cause disease through multiple interrelated mechanisms including epigenetic, genetic, and 

metabolic alterations.138

Challenge 2: Understanding the Factors That Influence Vulnerability to Environmental 
Exposures.

Toxicoepigenetics studies are further complicated by several biological and socioeconomic 

factors that influence vulnerability to environmental exposures and susceptibility to 

environment-induced disease. Three key factors include sex, age, and membership in a 

marginalized group (Figure 1). Importantly, these factors do not function independently 

to modulate environmental susceptibility and disease, but likely interact via complex 

mechanisms.139,140

Sex and Environmental Exposures.—There is arguably no other attribute that has 

a greater impact on mammalian phenotype, physiology, and disease than sex, yet sex 

effects in research studies ranging from human to cellular models have been systematically 

understudied until recently.141 Diseases with a well-established environmental etiology, 

such as cardiovascular diseases, liver diseases, neurodegenerative diseases, diabetes, and 

cancer also exhibit sexual dimorphism,142–146 suggesting that sex-dependent effects of 

environmental exposures may underlie some of the observed differences in disease 

pathogenesis between males and females. Recent studies have identified sexually dimorphic 
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patterns of gene expression and epigenetic regulation during the development of almost 

every organ, including the liver, heart, kidney, and brain,147–150 which are present during 

the earliest stages of development and persist into adulthood. Specifically, sex differences 

have been identified across multiple tissues in DNA methylation, histone marks, and ncRNA 

expression across the lifespan.143,151–154 Although this sexual dimorphism has largely been 

attributed to sex hormones, sex differences in gene expression and the epigenome have been 

observed in embryonic stem cells and in the earliest stages of development, prior to gonadal 

hormone release.147,148,155 Thus, non-hormonal factors such as sex chromosomes and sex-

specific expression and localization of transcription factors,148 likely govern sex-specific 

gene expression patterns. Consideration of sex will be imperative in toxicoepigenetics 

studies aimed at identifying epigenetic mechanisms and biomarkers linking environmental 

exposures and disease. Indeed, work from our lab and others has identified sex-specific 

effects of environmental exposures on DNA methylation and histone marks.156–161 We 

recently demonstrated that a comparison of DNA methylation changes between liver and 

blood in mice perinatally exposed to lead showed few overlaps between blood and liver, 

and the overlaps identified were sex-specific.156 Similar sex differences in blood DNA 

methylation have also been identified in human populations.162,163 These findings have 

important implications for environmental epidemiology studies that seek to find epigenomic 

markers of exposures and disease in surrogate samples such as blood, hair, and saliva.

Age–Environment Interactions.—Age plays a critical role in the effects of 

environmental exposures on the epigenome. At a molecular level, there are several hallmarks 

of epigenomic aging, including a general shift from heterochromatin toward euchromatin, 

with formation of distinct heterochromatic foci (senescence-associated heterochromatin 

foci), a loss of nucleosomes, an increase in age-related histone variants, an increase 

in activating histone marks, and global hypomethylation of DNA concomitant with 

hypermethylation at CpG-rich regions of the genome.164–169 Age-related epigenetic changes 

include predictable changes that occur with normal aging, as well as stochastic epigenetic 

drift that differs from person to person and likely occurs as a result of inefficiencies in 

epigenetic modifying proteins over the course of time.170–173 Age-related changes in DNA 

methylation at distinct CpG sites, referred to as “epigenetic clocks”, have been demonstrated 

to predict longevity as well as risk of cancer, Alzheimer’s disease, physical decline, and 

mortality.174,175 Further, age–environment epigenetic interactions can be explained through 

the framework behind environmental deflection of the aging epigenome, which is defined 

as environment- or toxicant-induced shifts in baseline age-related methylation or epigenetic 

drift.170,176 Several twin studies have demonstrated that DNA methylation in twins diverges 

with age, suggesting that the aging epigenome is shaped by environmental factors, not 

just genetics.172,177 Likewise, human studies demonstrate that exposure to stress, chemical 

exposure, and diet can influence the trajectory of epigenetic aging.7,178–181 Although 

the majority of studies in this area have focused on DNA methylation, recent work has 

demonstrated that early environmental exposures and stress can also modify age-related 

changes in histone marks, ncRNA, and gene transcription.72,182,183

Given the interaction between the environment and aging, future environmental epigenetics 

studies should not be limited to cross-sectional analyses and should consider longitudinal 
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changes in the epigenome. Indeed, as chemical exposures may cause precocious aging of 

the epigenome, a single cross-sectional study of adult tissues may miss important exposure-

related changes.72 Moreover, biomarkers of environmental exposures and disease may differ 

based on age.184

Marginalized Status and Environment.—In addition to the intrinsic characteristics 

of sex and age, external factors also differentially affect epigenomic programming and 

disease risk in response to environmental exposures and are important considerations in 

toxicoepigenetics studies. One key example of this is membership in marginalized groups. 

It is clear that members of minority groups frequently experience substantially greater 

social stress, economic hardship, neighborhood violence, poor diet, discrimination, and 

environmental injustice.185,186 Stress from these factors may accumulate over time to 

adversely affect overall health. Multiple mechanisms have been identified by which chronic 

stress promotes negative health effects and increased disease susceptibility.187–190 The 

term allostatic load has been coined to describe these cumulative stressors, and various 

metrics for measuring allostatic load have been developed.190–192 Although allostatic load 

has been associated with accelerated epigenetic aging, the two metrics appear to measure 

distinct processes.193 On a molecular level, several studies link increased allostatic load to 

altered programming of DNA methylation, histone marks, and ncRNA,194–196 suggesting 

that epigenetic mechanisms may play a mechanistic role in the adverse health effects of 

chronic stress.

Unanswered questions exist with regard to the effects of allostatic load on vulnerability to 

environmental exposure. One important question is whether a higher allostatic load may 

program the epigenome in a manner that increases vulnerability to toxicant exposures. 

Recent studies support the hypothesis that higher allostatic load interacts with environmental 

exposures to increase the risk of disease.197–201 However, the molecular basis for this 

cooperative effect, including epigenomic programming, is unclear. A second consideration 

is whether epigenetic biomarkers of exposure and disease will differ depending on the 

allostatic load experienced by an individual. A higher allostatic load is closely correlated 

with race and ethnicity, with communities of color experiencing a higher load compared 

to those with European ancestry.186 Careful examination of population-specific factors is 

necessary in the design of environmental epigenetics studies and in the extrapolation of 

epigenomic data on mechanisms and biomarkers from one group to another.

Challenge 3: Identifying Biomarkers of Exposure.

One important aim of toxicoepigenetics studies is to identify epigenetic biomarkers linking 

past, present, and cumulative environmental exposures to disease, in order to identify 

vulnerable populations who may benefit from intervention. The ideal epigenetic biomarker 

should be stable, such that exposures during early life, which are difficult to measure at the 

time, can be identified later in life. It should also reflect the timing, duration, and dose of 

the exposure. Here, we highlight several widely used and emerging epigenetic biomarkers of 

environmental exposures, followed by challenges associated with their use (Figure 1).
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DNA Methylation as a Biomarker.—DNA methylation is the most widely utilized 

epigenetic biomarker, due in large part to its stability, persistence, and heritability across 

cellular divisions. Exposure-induced changes in DNA methylation may persist after the 

insult is no longer present, providing a signature of exposure and a potential mechanism 

by which cells “remember” prior insults.11 The relative ease of tissue collection methods 

necessary to preserve the modification as well as readily available, standardized assays also 

make DNA methylation an ideal candidate for toxicoepigenetics studies. One example of a 

toxicant with robust DNA methylation biomarker data is smoking. A recent meta-analysis 

demonstrated that changes in infant cord blood DNA methylation at thousands of CpG 

sites were linked to maternal smoking.202 Many smoking-related DNA methylation changes 

persist into later life, are sensitive to the level of maternal or adult smoking, and are 

reflective of the time since quitting.202–206 DNA methylation biomarkers have also been 

identified for other exposures, such as alcohol and the metal lead,207–210 although few are as 

robust and extensively studied as smoking. Such comprehensive exposure and methylation 

data in the same human samples are lacking for many toxicants, necessitating further 

research.

Transposons as Biomarkers.—Due to their genomic plasticity, abundance, and 

distribution in the genome; copy number variations; and respective roles in epigenetic 

regulation,211,212 TEs can serve as biomarkers of both environmental exposure and human 

health and disease status. Alu and LINE1, the two most studied TEs in humans, remain 

hypermethylated under normal conditions and serve as an indicator for global DNA 

methylation across the genome. Environmental, chemical, or disease factors can lead to 

altered DNA methylation levels at these TEs, making them reliable biomarkers. In mice, 

the intracisternal A particle (IAP) is a TE that includes long terminal repeats (LTRs) at its 

ends that are CpG dense. The agouti viable yellow (Avy) mouse model displays a coat color 

indicative of the DNA methylation state of the IAP insertion LTRs.211 This mouse model 

has been widely used to identify potential molecular mechanisms and modes of intervention 

related to toxicant exposures such as BPA,213 phytoestrogens such as genistein,214 or folic 

acid supplementation.215 Perinatal exposure to environmental toxicants including lead216 

and phthalates217 demonstrate that DNA methylation changes at the IAPs are sex- and 

tissue-dependent.

TEs have shown variable levels of DNA methylation by tissue and environmental exposure 

in human epidemiological studies. Multiple human studies have discovered TE biomarkers 

in response to arsenic,218,219 lead,220,221 mercury,222 industrial environment particulate 

matter,223 other chemicals,224,225 and disease states.226,227 Recent studies implicate 

maternal and fetal LINE1 DNA methylation as a potential molecular mechanism associated 

with preterm birth228,229 and that early maternal care may contribute to restoring DNA 

methylation at LINE1 to improve neurodevelopmental outcomes.230 Alu DNA methylation 

changes have been associated with nutritional factors and age in population studies,231 with 

its methylation tightly regulated by epigenetic mechanisms acting on a single CpG site.

ncRNA-Based Biomarkers.—Some ncRNA types are preferred over others for use as 

biomarkers due to their prevalence in common human samples including urine, blood, saliva, 
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and cell-free RNA sources.232,233 Their prevalence can be attributed in part to their stability, 

which is conferred by localization or unique structural features. miRNA and circRNA can be 

excreted to extracellular fluid and harbored by exosomes, extracellular vesicles, or proteins, 

which protect the miRNA from degradation.233,234 On the other hand, piRNA biomarkers 

typically contain a 2′-O-methylation at their 3′ end, which increases stability and resists 

degradation by ribonucleases,235,236 while circRNAs are resistant to exonuclease RNase 

R.237

miRNA is the most extensively studied class of ncRNA biomarkers in toxicological 

research. Numerous studies have highlighted miRNA biomarkers in response to 

cadmium,238 mercury,233 and other metals,239 as well as radiation,234 environmental 

stress,240 particulate matter,241 and diseases. Due to miRNA versatility and the growing 

body of toxicological research, routine evaluation of miRNA biomarker detection methods 

and regulatory mechanisms is required to advance future miRNA research. To date, piRNA 

biomarkers have been discovered from cell lines and multiple species in response to 

ethinylestradiol,242 fluoride,243 tetrabromodiphenyl ether (DBE-47),182 cigarette smoke,244 

dichlorodiphenyltri-chloroethane,245 and diseases.246,247

circRNA biomarkers are emerging players in toxicological research. Due to their novelty, 

very few investigations have reported circRNA associations to environmental exposures. 

Exposures to lead,248 particulate matter,249 cigarette smoke,250 and diseases251,252 have 

identified potential circRNA biomarkers in toxicology.237

In a small number of studies, lncRNAs have been linked to environmental exposures 

including phthalates,253 cadmium,233 BPA,254 benzene,255 ethanol,240 and certain human 

diseases.256,257 A typical imprinted gene cluster contains at least one lncRNA that regulates 

the DNA methylation imprint at a given imprinted locus.123 Toxicological studies may 

also include lncRNA biomarkers associated with imprinting. For instance, Meg3 lncRNA 

is impacted by low dose cadmium exposure258 and inorganic arsenic.259 These studies 

warrant further exploration of additional lncRNA regulation mechanisms, including genomic 

imprinting.

Challenges in Development of Exposure-Based Biomarkers.—Several challenges 

exist regarding the use of epigenetic biomarkers in toxicoepigenetics studies. In addition 

to the aforementioned issues associated with sex, age, ethnicity, and socioeconomic status, 

additional important challenges include tissue specificity of epigenetic changes, tissue and 

cellular heterogeneity, and availability of tissues targeted by the exposure.260 First, because 

human disease-relevant tissues are often not accessible, human toxicoepigenetics studies rely 

on easily obtainable surrogate samples (blood, buccal swab, skin, saliva, hair) as proxies for 

exposures to inaccessible target tissues (brain, liver, heart, kidney).260 However, the extent 

to which epigenetic changes in these surrogate tissues reflect the changes occurring in target 

tissues is unclear.

Additionally, many chemical exposures may only exhibit their effects on a specific cell 

type in a tissue,261 making isolation of an adequate quantity of cells for DNA and RNA 

analysis very difficult. Moreover, there is significant epigenetic heterogeneity within a given 
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tissue and even within individual cell types.262–266 Recent work demonstrated that estimates 

of epigenetic age or correlations between DNA methylation and environmental exposures 

vary widely within the same individual, depending upon the sample type investigated.263 

Likewise, environmental exposures may alter the relative proportions of cell types in a 

given tissue,267,268 making it difficult to distinguish between epigenetic programming at the 

cellular level from shifts in cell type. TE biomarker research poses some unique challenges 

due to the need for refined TE detection and DNA methylation analysis, especially since 

nonconserved CpGs in multiple copies of TEs may confound the true DNA methylation 

status.211 The use of ncRNA biomarkers poses additional challenges, as investigators often 

use large and unrefined public databases to assess their case-specific small RNA sequencing 

data derived from an environmental exposure of interest.211

Challenge 4: Identification of Potential Interventions to Mitigate Environment-Induced 
Effects on the Epigenome and Health.

Dietary Factors.—Given the potential reversibility of epigenetic changes, a great deal 

of research is focused on targeting the epigenome for treatment of diseases. The most 

rigorous efforts thus far have focused on cancer, where epigenetic therapies are either 

approved for use or in clinical and preclinical trials.269 Several studies have demonstrated 

that dietary and behavioral interventions mitigate the effects of environmental factors on 

the epigenome as well as the adverse health effects. The role for diet in modulating 

environment–epigenome interactions has garnered significant interest in recent years. 

Regulation of the epigenome is closely coupled to cellular metabolic pathways, which are, 

in turn, influenced by dietary factors.270,271 Epigenetic modifying enzymes are critically 

dependent upon cofactors for their function, which are derived from the diet. For example, 

DNMTs and histone methyltransferases methylate their substrates using the cofactor S-

adenosylmethionine (SAM) as a methyl donor, generating S-adenosylhomocysteine (SAH) 

in the process.270 Importantly, dietary methionine and folate levels can influence the level of 

SAM as well as 5-methylcytosine, 5-hydroxymethylcytosine, and histone methylation.4,5 

Moreover, TET dioxygenases and Jumonji histone demethylases utilize iron (Fe2+), α-

ketoglutarate, and vitamin C as cofactors to demethylate their substrates.272 Fluctuations 

in vitamin C have been shown to regulate DNA methylation, hydroxymethylation, and 

histone methylation, underscoring the intimate link between diet and the epigenome.272 

Histone acetyltransferases require the cofactor acetyl coenzyme A (acetyl-CoA), which is 

generated by both glucose and fatty acid oxidation. Thus, fluctuations in this critical cofactor 

influence histone acetylation.273 Several other dietary factors have been shown to alter 

the epigenome, including sulforaphane and phytoestrogens.133,274,275 Numerous dietary 

supplements, including B vitamins, folic acid, choline, genistein, and polyphenols, can 

mitigate the adverse effects of environment on the epigenome and health. For example, BPA-

induced hypomethylation of the IAP TE in the Avy mouse was abolished by maternal dietary 

supplementation with nutrients that bolster one carbon metabolism (folic acid, betaine, 

vitamin B12, and choline) or the phytoestrogen genistein.133,214 Thus, dietary interventions 

may prove useful in mitigation of environment-induced epigenetic deregulation and disease.

Lifestyle Factors.—In addition to dietary factors, lifestyle modifications may mitigate 

the deleterious effects of the environment on the epigenome and health. Supportive 
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family environments may attenuate the increase in epigenetic aging conferred by racial 

discrimination or harsh parenting,276,277 and environmental enrichment has been shown to 

attenuate the effects of parental or ancestral stress on cognitive and psychiatric function 

via regulation of DNA methylation or miRNA expression.278,279 Likewise, exercise may 

be an effective intervention against radiation-induced brain injury or cognitive impairment 

from anesthetic exposure via modulation of 5-hydroxymethylcytosine or histone acetylation, 

respectively.6,280 Collectively, these studies suggest that exposure-mediated effects on 

the epigenome may, in some cases, be reversible. However, the precise timing, doses, 

and combinations of interventions necessary to obtain the optimal benefit are important 

unanswered questions. In addition, it is necessary to identify whether interventions should 

differ based on sex, other genetic factors, preexisting diseases, or age.

ONGOING INITIATIVES TO ADDRESS CHALLENGES TO THE FIELD OF 

TOXICOEPIGENETICS

The NIEHS TaRGET II Consortium.

The TaRGET (Toxicant Exposures and Responses by Genomic and Epigenomic Regulators 

of Transcription) Consortium is engaged in understanding how early environmental 

exposures program the epigenome across the life course in multiple tissues.260 Launched by 

NIEHS, TaRGET I explored how adverse environmental exposures impact the epigenome. 

TaRGET II established a multi-institution consortium to validate the robustness and 

feasibility of using surrogate tissues (e.g., blood) to detect epigenetic reprogramming by 

early life exposures in mouse models.260 The third phase, TaRGET III, will support the 

translation of epigenomic data from mouse- and cell-based studies to population-based 

studies in which epigenomic data are available. The fourth phase, TaRGET IV, will support 

integrated analyses in population-based studies, using several genomic and epigenomic 

databases to develop more comprehensive epigenomic/genomic analyses.

Our recent work in TaRGET II demonstrates that changes in DNA methylation after 

perinatal exposure to lead or the plasticizer di-2-ethylhexyl phthalate are highly tissue- 

and sex-dependent, with little concordance between liver and blood.156,184,281 Our findings 

are in keeping with recent work in human subjects, which found correlation in DNA 

methylation between blood and the liver at only a minority of CpG sites within 35 

hemostatic genes.282 Additional studies have demonstrated limited correlation in DNA 

methylation between human blood and other tissues.283–286 These findings have important 

implications for environmental epidemiology studies and suggest that the most meaningful 

biomarkers may be restricted to a subset of genes that are correlated across tissue, sex, and 

age. Further investigations into epigenetic signatures across surrogate and target tissues are 

necessary to identify meaningful disease and exposure-specific biomarkers.

Cellular and Tissue Heterogeneity.

Cellular heterogeneity within and across tissues in a single individual, as well as 

across individuals, may confound toxicoepigenetics studies. Several approaches have been 

developed to address this issue including separation and quantification of the individual 

cell types, single cell profiling, and cell type deconvolution in silico, each with specific 
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strengths and limitations.287 Separation and quantification of cell types can be achieved 

via several methods, including sedimentation, fluorescence-activated cell sorting, magnetic 

separation, microfluidics, affinity chromatography, and electrophoresis.288 Selection of 

the appropriate method is based on considerations of time, cost, antibody availability, 

knowledge of the distinguishing characteristics of the different cell types, and desired purity. 

Single cell profiling provides a second approach to address heterogeneity. Commercialized 

and increasingly affordable approaches are now available to profile gene expression, 

DNA sequence, DNA methylation, and chromatin accessibility at single cell resolution.289 

Additional methods are currently being developed to allow retention of spatial information 

about the cell in the context of its native tissue.289 Cellular deconvolution methods in 
silico offer a third mechanism to deal with heterogeneity. Bioinformatics algorithms have 

been designed which utilize cell specific gene expression or DNA methylation profiles as 

references.289 Reference-free methods are also available that rely on mathematical models to 

account for biological and nonbiological variability in the data.287

Genome and Epigenome Editing as Tools for Mechanistic Studies and Precision 
Environmental Health.

Genome and epigenome editing tools have the potential to improve our understanding of 

how epigenetic factors function in regulation of gene expression and disease pathogenesis, 

as well as provide potential opportunities for therapeutic intervention.290 These technologies 

allow the precise modulation of epigenetic modifications at predetermined locations of 

interest to regulate expression of target genes. For example, approaches using CRISPR/

dCas9 to target DNA methylation and other epigenetic marks at specific loci are beginning 

to address important questions of cause and effect regarding the role of the epigenome 

in modulating gene expression and disease risk.9,10,291 The piRNA system may provide 

another opportunity for targeted epigenome editing. The PIWI/piRNA system uses a piRNA-

induced silencing complex to recruit DNA methylation to silence TEs.211 This ncRNA-

based silencing mechanism may be adapted to target-specifically silence potential genes of 

interest by inducing DNA methylation at a specific locus. In addition to its potential in 

therapy, this approach may be utilized in mechanistic research studies to identify the causal 

role for DNA methylation in environment-induced disease. Insight about endogenous PIWI/

piRNA expression profiles, synthetic piRNA manipulation and DNA methylation response, 

the role of piRNA biomarkers of environmental exposures, as well as in vitro and in vivo 
manipulation are necessary to successfully determine the efficacy and specificity of piRNA 

delivery as a possible therapeutic approach in toxicology.

EXAMPLES AT THE FOREFRONT OF EPIGENETICS AND HUMAN HEALTH

In spite of the aforementioned challenges, there are numerous examples of the successful 

use of epigenetic biomarkers and therapies in non-toxicology fields, particularly in cancer. 

Reprogramming of the epigenome is recognized as an important hallmark of cancer. 

Epigenetic instability is caused by both mutational and nonmutational mechanisms, leading 

to tumor-cell heterogeneity and promotion of the malignant phenotype.292,293 Epigenetic 

changes at several genes are currently being used as clinical cancer biomarkers, and many 

more are in preclinical studies. For colon cancer screening, the ColoGuard test detects 
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BMP3 and NDRG4 DNA methylation, in addition to KRAS mutations and hemoglobin 

in stool samples, while the Epi proColon test detects SEPT9 DNA methylation in 

plasma.294,295 DNA methylation of the BRCA1 gene is currently in phase II clinical trials 

for use as a biomarker of treatment response in tumor biopsy samples.296 Additionally, 

in vitro tools are being developed for lung cancer diagnosis that measure SHOX2 and 

PTGER4 DNA methylation in pleural effusion samples.297,298 Other epigenetic biomarkers 

of cancer are under evaluation for clinical applications such as subtype classification, 

prognosis, and diagnosis.299–301 Outside of cancer, epigenetic biomarkers show promise 

in clinical trials for detection of diseases such as Alzheimer’s disease, Parkinson’s disease, 

multiple sclerosis, and autism.302 Several therapies targeting the epigenome have also been 

developed, and many are approved or in clinical trials for numerous human cancers. For 

example, inhibitors of DNA methylation and histone deacetylation are currently approved 

by the FDA or European agencies for the treatment of several hematological malignancies 

and lymphomas.303 Moreover, inhibitors of specific epigenetic modifying enzymes such as 

EZH2, LSD1, and DOT1L are in clinical trials for the treatment of various solid and liquid 

malignancies.303 These examples collectively demonstrate that epigenetic biomarkers and 

therapies have the potential to improve human health and provide a beacon for the field of 

toxicoepigenetics.

CONCLUSIONS

Toxicoepigenetics has the potential to identify epigenetic biomarkers of environmental 

exposure, as well as increase our understanding of the molecular mechanisms underlying 

environment-induced disease (Figure 1). Epigenetic marks may confer memory of, and 

serve as proxies for, a previous environmental exposure. Consideration of factors such as 

age, sex, ethnicity, socioeconomic status, and preexisting disease state in toxicoepigenetics 

studies will be paramount, as each of these factors may affect utility of specific biomarkers 

and susceptibility to environment-induced disease. Likewise, data from surrogate tissues, 

particularly bulk tissue consisting of multiple cell types, must be interpreted with caution. 

In spite of significant challenges, research in the field of toxicoepigenetics has adapted 

with novel approaches to address these limitations. Furthermore, the field has made 

significant strides in expanding the repertoire of epigenetic biomarkers to include DNA 

hydroxymethylation, histone marks, ncRNA, and TEs. Toxicoepigenetics studies have shed 

light on the dietary and lifestyle factors that may mitigate the effects of toxic exposures 

on disease risk, highlighting opportunities for intervention. Moreover, the continued 

development of epigenome editing tools, such as the CRISPR/dCas9 and piRNA systems, 

hold the promise of precision environmental health interventions to reverse environment-

mediated epigenetic changes and disease.
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Figure 1. 
Schematic illustrating the interplay between the environment, the epigenome, and human 

health. Numerous environmental toxicants play a role in the etiology of human diseases. A 

few examples of toxicants linked to disease include perfluoroalkyl substances (PFAS), which 

are ubiquitous in the environment and bioaccumulate in the human body, tobacco products, 

and the heavy metal lead. Epigenetic changes may be biomarkers of exposure and/or disease, 

mechanistic mediators of environment-induced disease, or both. Factors such as sex, age, 

and allostatic load alter susceptibility to environment-induced disease, but the role of the 

epigenome in these interactions is currently unclear.
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