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Abstract

To reduce the potential risk of radiation to the patient, low-dose computed tomography (LDCT) 

has been widely adopted in clinical practice for reconstructing cross-sectional images using 

sinograms with reduced x-ray flux. The LDCT image quality is often degraded by different levels 

of noise depending on the low-dose protocols. The image quality will be further degraded when 

the patient has metallic implants, where the image suffers from additional streak artifacts along 

with further amplified noise levels, thus affecting the medical diagnosis and other CT-related 

applications. Previous studies mainly focused either on denoising LDCT without considering 

metallic implants or full-dose CT metal artifact reduction (MAR). Directly applying previous 

LDCT or MAR approaches to the issue of simultaneous metal artifact reduction and low-dose CT 

(MARLD) may yield sub-optimal reconstruction results. In this work, we develop a dual-domain 

under-to-fully-complete progressive restoration network, called DuDoUFNet, for MARLD. Our 

DuDoUFNet aims to reconstruct images with substantially reduced noise and artifact by 

progressive sinogram to image domain restoration with a two-stage progressive restoration 

network design. Our experimental results demonstrate that our method can provide high-quality 
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reconstruction, superior to previous LDCT and MAR methods under various low-dose and metal 

settings.
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I. INTRODUCTION

X-RAY computed tomography (CT) is a non-invasive imaging technique that visualizes a 

patient’s internal structures and has become one of the common examinations for medical 

diagnosis. Due to the increasing use of CT in clinical practice, concerns have been raised on 

the overall radiation dose to a patient. Thus, it is desirable to reduce the CT radiation dose. 

The most common ways include decreasing the operating current/voltage and shortening 

the exposure time of the x-ray tube [1], [2]. However, a weaker level of x-ray flux results 

in sinogram with higher Poisson noise, thus producing a reconstruction image with a low 

signal-to-noise ratio (SNR) [3], [4]. For patients with metallic implants, such as spinal 

implants [5] and hip prostheses [6], the image quality is further degraded due to the 

beam hardening effects caused by these high attenuation objects where the low-energy 

x-ray photons are attenuated more easily than the remaining high-energy photons, given 

a polychromatic x-ray spectrum in CT. Specifically, the projection data in the metal trace 

region in the sinogram does not follow simple exponential decay as with a monochromatic 

x-ray, thus results in additional metal artifacts in the reconstruction [3], [7]. The non-ideal 

image quality not only seriously affects the image quality for diagnostic purposes but also 

impacts other medical procedures that rely on CT, such as dose calculation in radiation 

therapy [8] and PET/SPECT attenuation corrections [9]. An example of low-dose CT with 

metallic implants is shown in Figure 1. With the increasing use of metallic implants and 

interest in reducing the CT radiation dose, how to reconstruct high-quality CT images for 

patients with metallic implants under low-dose settings is an important research direction in 

CT imaging.

For the low-dose CT (LDCT) reconstruction, there are many previous reconstruction 

approaches and can be summarized into two general categories, namely model-based 

iterative reconstruction (MBIR) and deep learning-based reconstruction (DLR). Previous 

MBIR methods reconstruct images from the noisy sinogram by iteratively minimizing a 

unified objective function combined from the prior information in the image domain and 

the statistical properties of data in the sinogram domain. Common choices of image priors 

include total variation (TV) and its variants [10], non-local mean [11], and dictionary 

learning [12]. Even though MBIR methods generate much-improved reconstruction quality, 

they rely on iterative forward and back-projection operations that not only require 

knowledge of vendor-specific scanning geometry but also are computationally heavy, thus 

suffering from a long reconstruction time.

On the other hand, DLR methods that have been developed for LDCT show promising 

reconstruction quality [13]. Chen et el. [14] first proposed to use a two-layer convolutional 
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neural network (CNN) for LDCT image denoising. Later, Chen et el. [15] further advanced 

to a RED-CNN design and show improved LDCT image denoising performance. Kang et 

el. [16] followed a similar approach but applied the CNN to a directional wavelet transform 

of the CT image. Yi et el. [17] proposed to add adversarial learning [18] in the denoising 

network training to further improve the sharpness in the denoised image. Similarly, Yang 

et el. [19] proposed to add Wasserstein distance-based adversarial learning and a perceptual 

loss [20] to further improve the performance. Other than using DLR in the image domain 

alone, Yin et el. [21] also proposed to use a sinogram domain network followed by an image 

domain network for domain progressive LDCT denoising. However, none of the previous 

LDCT algorithms considers the scenario when a patient has metallic implants, which would 

further degrade the image quality. Directly applying the previous LDCT approach to LDCT 

with metallic implants may result in sub-optimal reconstruction performance.

For metal artifact reduction (MAR), there are many previous methods for MAR in full-dose 

CT setting, and can be summarized into two general categories too, namely traditional 

sinogram-based correction methods and deep learning-based methods. As the metal artifacts 

are non-local in the image due to the beam hardening in the metal-affected sinogram 

regions, traditional MAR methods either correct the metal-affected sinogram regions by 

modeling the physical effects of x-ray imaging [22] or replace the metal-affected sinogram 

regions by estimated values [23]–[27]. Substituting the metal-affected sinogram regions by 

linear interpolation of its neighboring unaffected sinograms is one typical solution [23]. 

However, the inconsistency between the interpolated values and unaffected values often 

leads to new artifacts in the reconstructions. For improved estimation of the metal-affected 

region, previous works also attempted to utilize the forward projection of synthesized prior 

images [24], [27]–[30]. In general, these methods aim to first estimate an artifact-reduced 

prior image or sinogram based on physical properties of CT, and then use this prior signal 

to guide the sinogram completion. For instance, NMAR [24] generates a prior image by 

a multi-threshold segmentation of the initial reconstructed image [28]. Then, the forward 

projection of the prior image is used to normalize the sinogram before linear interpolation, 

thus improving the value estimation in the metal-affected sinogram regions.

With the recent advances in CNN for medical image reconstruction, deep learning-based 

MAR methods have also been proposed and demonstrated promising performance. Park 

et el. [31] proposed to use UNet [32] to correct the sinogram inconsistency caused by 

beam hardening. Gjesteby et el. [33] further improved the NMAR [24] by utilizing a CNN 

with three convolutional layers for improved sinogram data correction. Similarly, Zhang et 

el. [34] used a CNN with five convolutional layers to generate an artifact-reduced image 

from initial artifact-reduced images, and then the generated image is forward projected 

to aid the metal-affection sinogram regions’ corrections. Besides addressing the MAR in 

the sinogram domain, there are also many previous works on reducing metal artifacts by 

image post-processing. Huang et el. [35] used a CNN with a residual connection between 

the input and output for MAR in cervical CT. Wang et el. [36] utilized a 3D conditional 

adversarial network [18] for MAR in ear CT. Gjesteby et el. [37] proposed to further 

improve the MAR performance by adding a perceptual loss [20]. Combining the sinogram 

domain and image domain, dual-domain restoration methods have been developed. Lin et 

el. [38] first proposed DuDoNet that combines the sinogram domain correction and image 
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domain correction into a single network. Lyu et el. [39] further improved the DuDoNet by 

adding the metal mask information in the dual-domain network. Similarly, Yu et el. [40], 

[41] found that dual-domain learning with deep sinogram completion by first estimating 

a prior image using CNN and then correct sinogram using another CNN yields further 

improved MAR performance. However, the aforementioned MAR algorithms only address 

the MAR in full-dose CT. With MAR in LDCT, the image quality is heavily degraded by 

both noise and metal artifacts. While the previous image-to-image based MAR algorithms 

[35]–[37] could be adapted to the simultaneous metal artifact reduction and low-dose CT 

reconstruction (MARLD) problem, the performance may be sub-optimal since the image 

quality is heavily degraded by both noise and metal artifacts, and image-domain alone 

correction may be insufficient. Other MAR algorithms are hard to be directly adapted to the 

MARLD problem since they generally assume only the metal-affected sinogram needs to be 

corrected.

As the reconstruction quality is seriously degraded when these two conditions are 

present simultaneously, the stand-alone LDCT methods and MAR methods may not be 

suitable for MARLD. To address these issues, we develop a dual-domain under-to-fully-

complete progressive restoration network (DuDoUFNet) for MARLD. The pipeline of our 

DuDoUFNet is illustrated in Figure 2. Specifically, we propose progressive restoration in 

terms of both domain and network design. First, we use progressive dual-domain restoration. 

Since the image noise and non-local metal artifacts are caused by noisy and inconsistent 

projection data in the sinogram domain, we propose to progressively restore information 

on the sinogram domain and then on the image domain. Second, we propose to use a under-

to-fully-complete progressive restoration network (UFNet) for the dual-domain restorations. 

Please note that all of the aforementioned previous deep learning-based LDCT and deep 

learning-based MAR methods relied on UNet or its variants [32] for restorations. While 

UNet with downsampling and upsampling operations can recover satisfactory general image 

content, it is not suitable for recovering fine details. Thus, it is neither suitable for sinogram 

domain restoration since a sinogram with a loss of fine details may lead to secondary 

artifacts in the reconstructed image, or suitable for image domain restoration since the final 

restored image may lose fine details. Inspired by the recent works in image restoration [42]–

[47], we combined an under-complete restoration network and a fully-complete restoration 

network with cross stage connections for progressive restoration, where the multi-scale 

features from the under-complete network helps enrich the original resolution fine features 

from fully-complete restoration for final restorations. The proposed network is used for 

both sinogram and image domain restorations. Our DuDoUFNet is trained in an end-to-end 

fashion with losses supervising in both domain progressive outputs and network progressive 

outputs.

II. METHODS

A. Overview

The framework of our DuDoUFNet is illustrated in Figure 2. The DuDoUFNet aims to 

simultaneously reduce the noise and metal artifacts in low-dose CT by sinogram domain and 

image domain progressive restoration learning. Specifically, the DuDoUFNet consists of a 
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sinogram domain progressive restoration network Gsino and an image domain progressive 

restoration network Gimg, where Gsino and Gimg share the same architecture (Figure 3) while 

configuring with a different number of channel inputs. The progressive restoration network 

is a two-stage network with under-complete and fully-complete restoration outputs. The 

Gsino and Gimg are connected by a Filtered Back Projection (FBP) layer [45] to enable the 

dual-domain restoration learning.

Since the noise and metal artifacts in the image domain are highly correlated caused 

by the noise and missing projection data in the sinogram domain, we propose to use 

sinogram restoration learning followed by image restoration learning. Given the low-dose 

metal-affected sinogram Sldma ∈ ℝL × V  and the metal trace Mproject ∈ ℝL × V  that forward 

projected from the metal mask M ∈ ℝH × W , we first concatenate Sldma and Mproj and input 

the two-channel sinogram into the Gsino for progressive sinogram restoration, where Mproj 

indicates the metal size and location information in the sinogram domain. Gsino outputs both 

the under-complete restoration output Su and fully-complete restoration output So. Then, 

the finest restored sinogram So is converted into an initial restored image Xo ∈ ℝH × W

via the FBP layer [45] for further image domain restoration. Since the FBP image Xldma 

reconstructed from Sldma still provides correct anatomical outlines in non-metal regions 

(Figure 1), we concatenate Xldma and M with Xo and input the 3-channel image into the 

Gimg for progressive image restoration. Similar to the sinogram restoration, Gimg outputs 

both the under-complete restoration output Xu and fully-complete restoration output Xfinal, 

and the image Xfinal is our final reconstruction outputs. During training, supervision is 

provided for So, Su, Xo, Xu, and Xfinal.

B. Under-to-fully-complete Restoration Network

The backbone restoration network is a two-stage network, called under-to-fully-complete 

progressive restoration network (UFNet), consisting of an under-complete restoration 

subnetwork (UnNet), a fully-complete restoration subnetwork (FuNet), and cross-stage 

connections. The architecture of UFNet is illustrated in Figure 3.

The UnNet is based on a U-shape network [32] for the stage-1 restoration, as illustrated 

in the bottom part of Figure 3. Specifically, we propose to use a residual squeeze-and-

excitation block (RSEB) for feature extraction. Given an input feature Fin for RSEB, the 

output can be written as:

Fout = Fin + Pse Pex Fin , (1)

where Pex consists of two convolutional layers for feature extraction, and Pse is the squeeze-

and-excitation layer [48], generating channel-attention from the input feature for channel-

wise feature re-calibration. Given an input Xin in UnNet, we first use a convolutional layer 

with an RSEB for initial feature extraction. Then, two consecutive RSEBs are employed 

for feature extraction at 3 different levels of the UnNet, generating encoder features of Fe1, 

Fe2, Fe3 and decoder features of Fd3, Fd2, Fd1 which contain multi-scale features suitable for 

general appearance restoration and are used in the stage-2 restoration. The final output of 

UnNet then can be written as:
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Xu = Xin1 + Pfu Fd1 , (2)

where Pfu is a convolutional layer for reducing the number of feature channel to 1, and Xin1 

is the first-channel data of Xin.

To utilize the final supervised feature of UnNet for the stage-2 restoration, we also proposed 

a self-attention connection, as illustrated by the pink connections in Figure 3. Specifically, 

the self-attention feature can be computed via:

Fatt = Fd1 + P1 Fd1 ⊙ σ P2 Xu , (3)

where P1 is a 3 × 3 convolutional layers for generating the unweighted feature, and P2 is 

another 3 × 3 convolutional layers with input of Xu for generating spatial-wise attention 

weights. The attention weight is normalized by the sigmoid function σ, such that the 

attention weights lie between 0 and 1. The spatial attention generated from the final output 

of UnNet helps the spatial-wise re-calibration of the UnNet finest scale’s feature which is 

used as part of the initial feature in the stage-2 restoration.

In the stage-2 restoration with FuNet, as illustrated in the top part of Figure 3, given the 

same input Xin and the self-attention feature Fatt, an initial feature can be built via:

Finit = Fatt, Pinit Xin , (4)

where {} denotes channel-wise concatenation operation, and Pinit consists of a convolutional 

layer followed by an RSEB. Then, Finit is input into three consecutive fully-complete 

restoration blocks (FRB) for restoration. The intermediate outputs of FRBs also fuse with 

the coarse-to-fine features from UnNet for restoration, such that the multi-scale features 

of UnNet is utilized to aid the original resolution feature recovery. The process can be 

formulated as:

Fo1 = Po1 Finit + Pe3 Fe3 + Pd3 Fd3 , (5)

Fo2 = Po2 Fo1 + Pe2 Fe2 + Pd2 Fd2 , (6)

Fo3 = Po3 Fo2 + Pe1 Fe1 + Pd1 Fd1 , (7)

where Po1, Po2, and Po3 are FRB which consists of multiple RSEB with residual connections 

between the block’s input and output. Pe3 and Pd3 consists of a ×4 upsampling operation 

followed by a convolutional layer (yellow lines in Figure 3), while Pe2 and Pd2 consists of 

a ×2 upsampling operation followed by a convolutional layer (green lines in Figure 3). Pe1 

and Pd1 only contains one convolutional layer (blues lines in Figure 3). Finally, The output 

of FuNet can be written as:

Xfinal = Xin1 + Pfo Fo3 , (8)
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where Pfo is a convolutional layer for reducing the number of feature channels to 1. The 

residual connection is added to reduce the vanishing gradient issue. Here, we set the number 

of RSEB to 6, where FuNet contains approximately the same number of RSEB as the 

UnNet, such that both subnetworks contain similar amounts of parameters.

Since the FuNet does not use any downsampling operation, it is able to maintain high-

resolution features. The multi-scale feature from stage-1 helps enrich the feature in stage-2, 

thus aiding the final restoration with fine details.

C. Dual-domain Learning Objective

Our DuDoUFNet learns to restore the low-dose image with metal artifacts in both 

sinogram and image domains. Our loss function consists of three parts, including sinogram 

progressive restoration loss, intermediate image loss, and image progressive restoration loss. 

As shown in Figure 2, the sinogram domain loss directly supervises the under-complete and 

fully-complete restoration outputs from the UFNet by:

Lsino = So − Sgt 1 + Su − Sgt 1, (9)

where Su and So are the under-complete and fully-complete restored sinograms. Sgt is 

the ground-truth full-dose sinogram without metallic implants. Then, the finest restored 

sinogram So is converted to the intermediate restored image Xo using a FBP layer. The 

intermediate image loss is computed via:

Lint = (1 − M) ⊙ Xo − Xgt 1, (10)

where M is the metallic implants segmentation mask in the image domain, and Xgt is the 

ground-truth full-dose image without metallic implants. With Xo fed into image domain 

UFNet, the image domain loss directly supervise the under-complete and fully-complete 

restoration outputs by:

Limg = (1 − M) ⊙ Xfinal − Xgt 1 + (1 − M) ⊙ Xu − Xgt 1, (11)

where Xfinal is the final restoration output of our DuDoUFNet. In the image domain losses, 

multiplying 1 − M in the loss allows the network to learn the restoration in the non-metal 

region since the metal is not our focus. Finally, the total loss function can be written as:

Ltot = α1Lsino + α2Lint + α3Limg (12)

where we empirically set α1 = 5 and α2 = α3 = 1 to achieve optimal performance. 

Higher weights are used for the sinogram domain restoration loss as compared to image 

domain restoration loss, since the dual-domain framework follows a sinogram to image 

domain progressive restoration, the image domain restoration relies on a reasonably restored 

sinogram from the sinogram restoration network. Our DuDoUFNet is trained in an end-to-

end fashion by optimizing the Ltot.

Zhou et al. Page 7

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D. Data Preparation

We used realistically simulated low-dose CT images with metallic implants for training and 

evaluation of our method. Specifically, we used a similar data preparation procedure as the 

previous MAR works [38]–[40], where we randomly picked 1200 full-dose CT 2D images 

with a size of 512×512 pixels from the DeepLesion dataset [49] and collected 100 manually 

segmented metal implants with various locations, shapes, and sizes from [34]. Then, we 

randomly selected 1000 CT images and 90 metal masks to synthesize the training data. The 

remaining 10 metal masks were paired with the remaining 200 CT images to generate 2000 

combinations for evaluation.

We used a similar x-ray projection protocol as in [15], [38]–[40] to simulate the low-

dose metal-affected sinogram and the corresponding reconstruction images, by inserting 

metallic implants into clean CT images. More specifically, we considered an equiangular 

fan-beam projection geometry with a 120 kVp polyenergetic x-ray source. We simulated two 

low-dose CT scenarios with Poisson noise in the sinogram, where we used the incident 

x-ray containing 2×105 photons for 1/2 dose level, and 1×105 photons for 1/4 dose 

level, respectively. For each image, the sinogram was generated via 360 projection views 

uniformly spaced between 0 – 360 degrees. The CT images were resized to 416 × 416 before 

the simulation, thus resulting in the sinogram with the size of 641 × 640.

E. Implementation Details

The DuDoUFNet is implemented using Pytorch1, and it is trained in an end-to-end manner 

with a differential filtered back-projection layer proposed in [45]. The Adam solver [50] was 

used to optimize our network with the parameters (β1, β2) = (0.5, 0.999) and a learning rate 

of 1e − 4. We trained 600 epochs with a batch size of 3 on an NVIDIA Quadro RTX 8000 

GPU with 48GB memory.

F. Evaluation Strategies and Baselines

For quantitative evaluation, we measured the reconstruction performance using three 

evaluation metrics, including Structural Similarity Index (SSIM), Root Mean Square Error 

(RMSE), and Peak Signal-to-Noise Ratio (PSNR) which are computed using the predicted 

reconstructions and the ground-truth reconstructions in the non-metal regions. SSIM focuses 

on the evaluation of structural recovery, while RMSE with a unit of Hounsfield unit 

(HU) and PSNR with a unit of dB stress the evaluation of intensity profile recovery. 

For comparative evaluation, we first compared our results against the classic deep learning-

based LDCT method, called REDCNN [15]. For a fair comparison, the REDCNN was 

trained with a modified image domain loss, as defined in the first term of Eq. 11, so 

that REDCNN focuses on image recovery in the non-metal regions. Second, we also 

compared against two of the previous state-of-the-art deep learning-based MAR methods, 

including DuDoNet++ [39] and DSPNet [40]. Lastly, since we consider simultaneous metal 

artifact reduction and low-dose CT denoising in this work, we also combined previous 

deep learning-based LDCT methods and deep learning-based MAR methods as an end-to-

end network for comparisons. Specifically, we created four combinations of denoising + 

1 http://pytorch.org/ 
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MAR or MAR + denoising methods, including 1) REDCNN followed by DSPNet, 2) 

DSPNet followed by REDCNN, 3) REDCNN followed by DuDoNet++, and 4) DuDoNet+

+ followed by REDCNN. The combined methods are trained jointly as an integrated 

model, with simultaneous optimization of the denoising loss functions and the MAR loss 

functions defined in the original methods during the training. For both quantitative and 

qualitative evaluations, we evaluated the performance under different dose levels and metal 

insertion settings. For the evaluation under different metal size settings, the metal sizes were 

calculated and ordered based on the number of pixel in the metal masks.

III. RESULTS

A. Experimental Results

The visual comparison between our DuDoUFNet and previous LDCT and MAR methods 

under different low-dose settings are shown in Figure 4. As we can see from the first 

example in the 1/2 dose experiment (1st row in Figure 4), the pelvic CT image from FBP 

reconstruction suffers from both non-local noise and metal artifacts. Structural distortions 

with a higher noise level can be observed in near-metal regions, especially near the iliac 

artery region. REDCNN and DuDoNet++ can reduce the global noise in the reconstructions, 

but they cannot fully correct the metal artifacts. DSPNet neither reduces the noise or 

the metal artifacts. As compared to previous methods, our DuDoUFNet can produce 

reconstruction with structure and intensity best matching with the ground-truth image. 

Similar observations can be found for the second example in the 1/2 dose experiment 

(2nd row in Figure 4). With large metallic implants, the abdominal CT image from FBP 

reconstruction is heavily degraded by the metal artifacts along with noise, where the kidney 

structures are diminished due to these factors. While it is difficult for previous methods 

to recover these soft-tissue structures, our DuDoUFNet is able to recover general kidney 

structures that best match the ground truth. In the 3rd and last rows, we can see the noise 

and metal artifacts are further amplified with 1/4 dose level. As compared to other methods, 

our DuDoUFNet still achieves the best reconstruction performance where we are able to 

preserve the fine details in both bone and soft-tissue regions. For example, in the 3rd row 

of Figure 4, the soft-tissue structure of the pectoralis major muscle and the bone structure 

of the sternum are heavily distorted by previous methods, while our DuDoUFNet can 

maintain these subtle structures. Similarly, in the last row of Figure 4, the structural details 

of the spine are challenging for previous methods to reconstruct, while our DuDoUFNet 

can recover the bone signal with a high fidelity. Moreover, the visual comparison between 

our DuDoUFNet and the combined methods of denoising + MAR or MAR + denoising 

are shown in Figure 5. As we can observe, simply combining previous deep learning-based 

LDCT methods and MAR methods still generates reconstruction with residual artifacts and 

does not lead to superior structure recovery as compared to our DuDoUFNet.

The quantitative evaluation of different methods under two low-dose settings is shown in 

Table I. In the 1/2 low-dose experiment, compared to the original FBP reconstructions, 

our DuDoUFNet can significantly improve the image quality with SSIM increased from 

0.425 to 0.978 and RMSE decreased from 186.22 to 20.18, as well as outperforming 

the best previous method’s performance of DuDoNet++ and combined methods. Similar 
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observations can be found in the 1/4 low-dose experiment, where we maintain the SSIM 

over 0.970 and RMSE lower than 23.00 even with a reduced dose level.

Furthermore, we evaluated our DuDoUFNet’s performance when different sizes of metallic 

implants were presented. Figure 6 visualizes our DuDoUFNet’s reconstructions when 

metallic implants vary from small to large under both 1/2 and 1/4 low-dose settings. 

Our method can consistently reconstruct noise-reduced and artifact-suppressed high-quality 

images under different metal insertion and dose conditions. Table II outlines the quantitative 

results of DuDoUFNet’s performance under 1/2 dose setting when different sizes of metallic 

implants were introduced. In general, patients with large metal implants were harder to 

reconstruct as compared to small implants, thus resulting in a lower SSIM and a higher 

RMSE. However, our method consistently maintains the SSIM over 0.973 and RMSE lower 

than 26.16 across a range of metallic implants with varying sizes, outperforming previous 

methods in each metallic implant setting.

B. Ablative Studies

1. The impact of dual-domain learning: Our DuDoUFNet progressively restores 

signal in the sinogram domain, and then in the image domain. To study the 

effectiveness of progressive dual-domain learning, we also trained a network 

with image domain restoration only. Specifically, we used a network that has the 

same design as in the green box of Figure 2, but without the sinogram restoration 

input XO. An example of visual comparison is shown in Figure 7, where 

we can observe more residual artifacts when relying solely on image domain 

restoration, as compared to our DuDoUFNet with dual-domain restoration. The 

corresponding quantitative comparison is summarized in Table III. Consistent 

with visual observations, dual-domain-based learning achieves superior SSIM 

and RMSE performances as compared to single-domain-based learning method, 

increasing SSIM from 0.966 to 0.978 and decreasing RMSE from 24.36 to 20.18.

2. The impact of the sub-network structure: The UFNet deployed in the 

DuDoUFNet consists of two sub-networks, including an UnNet and a FuNet. 

To investigate the impact of individual sub-network structures, we analyzed the 

reconstruction performance when either only UnNet or only FuNet is used in 

our dual-domain framework. A visual comparison is shown in Figure 8. As 

we can observe, more residual artifacts are presented in the brachiocephalic 

vein and sternum regions when only UnNet or FuNet is used in the dual-

domain framework, as compared to our DuDoUFNet with both subnetworks 

integrated. The corresponding quantitative comparison is summarized in Table 

IV. Using only UnNet in the dual-domain framework provides slightly better 

reconstruction performance as compared to when using only FuNet in the 

dual-domain frameworks. However, using UFNet with both UnNet and FuNet 

integrated still yields superior performance as compared to when only UnNet is 

used, decreasing RMSE from 21.96 to 20.18 and increasing PSNR from 42.92 to 

43.62.
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3. The impact of the two-stage supervision: In our DuDoUFNet, the UFNet is 

trained with two-stage supervision in both sinogram and image domains. To 

validate the impact of the two-stage supervision applied on fully-complete 

restoration and under-complete restoration in both domains, we analyzed the 

reconstruction performance when different two-stage supervision settings are 

used. Table V outlines the reconstruction performance when loss supervision 

is used and not used on under-complete restoration outputs in the sinogram 

or the image domain of DuDoUFNet. As we can observe, when no two-stage 

supervision of UFNet is applied on both domains (1st row), it only achieves 

SSIM of 0.974 and RMSE of 22.56. Even though adding two-stage supervision 

in the image domain (2nd row) boosts the reconstruction performance, using 

two-stage supervision in the sinogram domain (3rd row) alone achieves even 

better performance since the image restoration relies on accurate sinogram 

restoration. Finally, using two-stage supervision in both domains, we are 

able to achieve the best reconstruction performance, with SSIM=0.978 and 

RMSE=20.18.

4. The influence of metal mask segmentation: DuDoUFNet uses both metal 

mask and metal trace as additional input to aid the dual-domain progressive 

restoration. An accurate metal mask (or metal trace equally) is important for 

the robust performance of our method. To study the impact of metal mask 

segmentation, we took different variants of the ground-truth metal mask as 

DuDoUFNet’s input and analyzed the reconstruction performance in the non-

metal region, i.e. regions outside of the ground-truth metal mask. Specifically, 

we created four different variants of metal masks using erosion and dilation 

operations by applying these operations 1 and 2 times (with a disk structure 

with a radius equal to 1), such that over-segmentation and under-segmentation 

scenarios were simulated. Figure 9 shows an example of DuDoUFNet’s 

reconstruction by taking the original ground-truth mask (a), the dilation metal 

masks (b & c), and the erosion metal masks (e & f) as input. As we can 

observe, while slight segmentation errors lead to perturbed bone structure 

recovery, the noise and metal artifacts in all reconstructions of DuDoUFNet 

are suppressed, generating reasonable reconstruction results. The quantitative 

analysis is summarized in Figure 10. While inaccurate metal masks generated 

by dilation and erosion operations degrade the image recovery performance, 

the SSIM only decreases from 0.9779 to 0.9724 when an over-segmentation is 

presented. Similarly, the SSIM only reduces from 0.9779 to 0.9748 when an 

under-segmentation is presented. Under small metal segmentation errors, the 

DuDoUFNet can still maintain reasonable reconstruction with SSIM over 0.97.

IV. DISCUSSION

In this work, we developed a novel network, called DuDoUFNet, for simultaneous metal 

artifact reduction and low-dose CT reconstruction. Specifically, we proposed progressive 

restoration in terms of both domain and network design, enabling satisfactory reconstruction 

when the conditions of low-dose acquisitions and metallic implants co-exist. First of all, 
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inheriting from the previous MAR method in a full-dose CT using dual-domain learning 

[38]–[40], we proposed to use progressive dual-domain restoration, where we first restore 

sinogram signal and then restore image signal. We first perform sinogram restoration 

because the reconstruction image noise and metal artifacts are primarily caused by the 

degraded projection data in the sinogram domain. A strong network that can restore 

sinogram signal maintaining the fine details is also a key for providing a good initial 

reconstruction for image domain restoration. Therefore, secondly, we proposed a progressive 

under-to-fully-complete restoration network, called UFNet, for each domain’s restoration. 

The UFNet combines two subnetworks, including FuNet containing no downsampling or 

upsampling operations and UnNet with encoding-decoding operations. The UnNet with 

downsampling and upsampling can generate restoration features at multiple scales, while 

FuNet operates on original resolution can generate restoration features focusing on the 

level of the original resolution. Then, combining the UnNet and FuNet via cross-stage 

connections enables us to generate spatial-enriched features for the final restoration. As we 

can observe from Figure 4 and Table I, as compared to DuDoNet++ relying on UNet [32] for 

sinogram restoration, our DuDoUFNet based on UFNet with fine detail restoration in both 

domains achieves superior reconstruction performance.

From our experimental results, we demonstrated the feasibility of using our DuDoUFNet 

for simultaneous metal artifact reduction and low-dose CT reconstruction under different 

acquisition settings and a variety of metallic implants. First of all, as we can see from Figure 

4 and Table I, our method can consistently outperform previous LDCT and MAR methods, 

including REDCNN, DuDoNet++, and DSPNet, where we are able to maintain SSIM over 

0.974 and RMSE under 23.00, under different dose settings. Please note while DSPNet is 

considered the state-of-the-art method for full-dose MAR, it reconstructs non-ideal results 

(Table I and Figure 4) where it neither reduces the noise or the metal artifact. It is mainly 

due to the non-metal sinogram replacement operation in the last part of DSPNet’s design, 

where they assume the non-metal sinogram is noiseless and should be kept, thus not suitable 

for MARLD. Moreover, while combining the previous deep learning-based MAR and 

LDCT methods also achieved reasonable reconstruction performance (Figure 5 and Table 

I), simply concatenating these methods together with complex models created, i.e. a large 

number of model parameters, does not necessary yielded better performances. For example, 

under the 1/2 low-dose setting (Table I), REDCNN→DuDoNet++ achieves PSNR=42.25 

and DuDoNet++→REDCNN achieves PSNR=42.46, which are both better than REDCNN 

alone with PSNR=41.37. It implies that combining the previous denoising method and 

MAR method indeed helps the MARLD task when compared to the denoising method 

alone. However, both REDCNN→DuDoNet++ and DuDoNet++→REDCNN generate an 

even worse reconstruction performance than the DuDoNet++ alone. Accoding to this 

obervation, we believe using a simple image domain-based denoising method, such as 

REDCNN, may not be sufficient for a complex image restoration task, i.e. MARLD. 

Adding the MAR method, such as DuDoNet++, to the denoising method increase the 

model complexity, as well as enables the learning in the dual domain, thus providing better 

performance. However, the combined models with increased model complexity are also 

prone to overfitting which could degrade the reconstruction performance. Thus, DuDoNet+

+ alone with slightly lower model complexity and with learning in dual-domain could 
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potentially generate even better performance than the combined methods. On the other 

hand, our DuDoUFNet with a slightly reduced model complexity, as compared to the 

combined methods, still provided significantly better reconstruction results. Second, as we 

can observe from Table II and Table I, our DuDoUFNet’s reconstruction performance is 

gradually degraded either when increasing the size of the metallic implant or reducing 

the x-ray dose level. For instance, the RMSE value increases from 16.80 to 26.16 when 

increasing the size of the metal implants (Table II). Similarly, the RMSE value increases 

from 20.18 to 22.96 when lowing the dose level from 1/2 to 1/4 (Table I). Even though our 

DuDoUFNet achieves the lowest RMSE values among the previous methods across different 

sizes of metal implants and different low-dose settings, we think a proper level of x-ray dose 

needs to be considered to balance the trade-off between image quality, radiation exposure, 

and metal size. For example, a higher dose level or even near-full-dose level should be 

considered when a large metal implant is known in a patient.

Our current work also has potential limitations. First, our DuDoUFNet consists of 4 

subnetworks with 2 subnetworks in the sinogram domain and 2 subnetworks in the image 

domain, thus the computation complexity and the number of parameters increase nearly 4 

times as compared to when using only one subnetwork for restoration. Even though the 

computation complexity and the number of network parameters are higher than previous 

stand-alone MAR and LDCT methods, the average inference time of our DuDoUFNet is < 

0.5s, which still achieves reasonable speed for high-quality reconstruction, and the model 

complexity is still slightly lower than the combined method of MAR+LDCT with a better 

performance. Second, because it is infeasible to collect real metal-inserted low-dose CT 

and metal-free CT data for training and there is no public real projection data, we used 

a realistic CT simulation to produce synthesized training pairs from clinical metal-free 

full-dose CT images [49], which is a common data preparation method utilized in full-dose 

CT MAR [38]–[40] and LDCT [15]. However, the quality of the simulated data may 

affect the reconstruction performance on real data, due to factors such as limited variability 

of metal sizes/shapes/locations, varied low-dose x-ray spectrum, and inconsistent x-ray 

exposure settings, causing domain shifts. In the future, we will investigate the DuDoUFNet’s 

performance and generalizability on real low-dose CT patients with metallic implants, as 

well as explore how to build a better simulation dataset to further improve the reconstruction 

performance on real patient data. Finally, our DuDoUFNet, similar to the previous works of 

DuDoNet++ [39] and DSPNet [40], requires the metal mask as one of the network inputs. 

In our ablation studies, we show that the DuDoUFNet can provide reasonable reconstruction 

under slight metal segmentation errors (Figure 9 and Figure 10). In real applications, since 

the HU values in the metal region often consist of high values, we believe it is feasible 

to use semi-automatic methods, such as thresholding with manual adjustments, to obtain 

a reasonably accurate metal mask. On the other hand, fully automatic metal segmentation 

methods could also be applied to assist the generation of metal masks [51], [52].

Our work also suggests a few interesting directions for future studies. First, the radiation 

dose in CT is commonly reduced by either decreasing the projection x-ray flux or decreasing 

the number of projections. In this work, we only investigated the simultaneous metal artifact 

reduction and low-dose CT using full-view sinogram with reduced projection x-ray flux. 

While there were previous works on simultaneous metal artifact reduction and sparse-view 
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CT reconstruction [53], combining the low-dose/low-current CT with sparse view settings 

could further reduce the radiation dose. Thus, investigation on how to simultaneously 

reduce metal artifacts and reconstruct low-current sparse-view CT would be an interesting 

direction. Second, CT is commonly acquired along with PET and SPECT for the purposes 

of attenuation correction and medical diagnosis. Radiation dose and artifact reduction 

methods have been extensively investigated for stand-alone modalities, while multi-modal 

low-dose reconstructions, such as low-dose PET-CT and low-dose SPECT-CT, remains 

under-explored. In fact, information from multi-modalities under low-dose settings could 

be mutually beneficial. Since our DuDoUFNet could be applied to different tomographic 

imaging modalities, investigations on how to extend our DuDoUFNet into a joint multi-

modal low-dose reconstruction framework would also be an interesting direction. For 

example, FDG PET/CT scans for device-induced infection usually suffers from metal 

artifact-induced attenuation correction errors, which could be addressed by extending 

this work [54]. Finally, our DuDoUFNet is an open framework with flexibility in each 

subnetwork. Even though we used RSEB as our basic block in the UnNet and FuNet, we 

do not claim the optimality of the subnetwork design. Other feature extraction blocks, such 

as Swin Transformer block [55], could be adapted in our DuDoUFNet which may produce 

even better performance. As a matter of fact, image restoration networks based on the Swin 

transformer block [55] with U-shape design [56] and with no dowmsampling operation 

[57] have been proposed. Using them as our UnNet and FuNet may produce improved 

performance and could also be an interesting topic to investigate. Furthermore, adding other 

advanced fine detail recovery loss functions, such as SSIM loss [58] and gradient loss [59], 

may also help further improve the DuDoUFNet’s reconstruction performance.

V. CONCLUSION

We proposed a dual-domain under-to-fully-complete progressive restoration network, called 

DuDoUFNet, for simultaneous metal artifact reduction and low-dose CT reconstruction. Our 

DuDoUFNet aims to reconstruct a noise- and artifact-reduced CT image by progressive 

sinogram to image domain restoration with a two-stage progressive restoration network. Our 

experimental results demonstrate that our method can provide high-quality reconstruction, 

superior to previous LDCT and MAR methods under a wide range of settings.
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Fig. 1. 
An example of CT image with metallic implants under low-dose acquisition condition. 

Left: metal-free full-dose CT image. Middle: full-dose CT image overlaid with metal 

segmentation (red mask) for simulation. Right: low-dose CT image with metallic implants 

(1/4 dose). The display window is [−1000 1000] HU.
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Fig. 2. 
Framework of our dual-domain under-to-fully-complete progressive restoration network 

(DuDoUFNet) for simultaneous metal artifact reduction and low-dose CT reconstruction. 

Our DuDoUFNet consists of a sinogram progressive restoration network Gsino and an image 

progressive restoration network Gimg. Given an input low-dose sinogram with metallic 

implants Sldma, it is concatenated with metal trace Mproj and goes through Gsino to 

progressively restore signal in sinogram domain. The sinogram restoration output SO is then 

converted to image XO via the FBP layer, and concatenated with the low-dose metal artifact 

image Xldma and metal mask M for progressive restoration in image domain via Gimg.
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Fig. 3. 
The network architecture of under-to-fully-complete progressive restoration network 

(UFNet) used for the sinogram restoration network Gsino and the image restoration network 

Gimg in DuDoUFNet (Figure 2). Our UFNet consists of a under-complete network (stage 1) 

and an fully-complete network (stage 2) with cross stage feature fusions (blue, yellow, and 

green lines). Supervision is applied on both stages’ outputs.
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Fig. 4. 
Visual comparison of low-dose reconstructions with metallic implants under 1/2 and 1/4 

dose levels. The metal regions are overlaid with the red masks. The zoom-in regions (blue 

boxes for metal-proximal regions and green boxes for metal-distant regions) are annotated 

on the ground-truth images. RMSE and SSIM values are computed for individual images 

(orange). The display window is [−1000 1000] HU.
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Fig. 5. 
Visual comparison of low-dose reconstructions with metallic implants under 1/2 dose level. 

The metal regions are overlaid with the red masks. The zoom-in regions (blue boxes) are 

annotated on the ground-truth images. RMSE and SSIM values are computed for individual 

images (orange). The display window is [−1000 1000] HU.
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Fig. 6. 
Visual comparison of low-dose reconstructions with small to large metallic implants (top to 

bottom) under 1/2 and 1/4 low-dose settings. The metal regions are overlaid with the red 

masks. RMSE and SSIM values are computed for individual images (orange). The display 

window is [−1000 1000] HU.
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Fig. 7. 
Visual comparison of reconstructions under 1/2 low-dose setting. The bottom row compares 

the reconstructions from the image-domain-only network against our DuDoUFNet. The 

display window is [−1000 1000] HU.
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Fig. 8. 
Visual comparison of reconstructions under 1/2 low-dose setting when different sub-network 

is used in the DuDoUFNet. Our dual domain framework with UnNet only and FuNet only 

are compared against DuDoUFNet with UFNet. The display window is [−1000 1000] HU.
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Fig. 9. 
Visual comparison of reconstructions from DuDoUFNet with different segmented metal 

masks as input (1/2 low-dose setting). The reconstruction with ground-truth segmentation 

(a) is compared against the reconstruction with dilated metal mask (b & c) and the 

reconstruction with eroded metal masks (e & f). The display window is [−1000 1000] HU.
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Fig. 10. 
Quantitative analysis of the impact of metal segmentation mask in DuDoUFNet. The number 

of metal mask erosion and dilation iteration is annotated on the x-axis. 1/2 low-dose setting 

is considered here.
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TABLE III

Quantitative analysis of the dual-domain learning used in our DuDoUFNet. Image vs dual-domain-based 

learning is evaluated under 1/2 low-dose condition.

Setting SSIM RMSE PSNR

Image-Domain Only .966 ± .007 24.36 ± 5.82 42.03 ± 1.95

Dual-Domain .978 ± .004 20.18 ± 4.30 43.62 ± 1.76
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TABLE IV

Quantitative analysis of the network structure used in our DuDoUFNet. DuDoUFNet with unnet vs funet vs 

ufnet is evaluated under 1/2 low-dose condition.

Setting in DuDoUFNet SSIM RMSE PSNR

UnNet .975 ± .006 21.96 ± 5.09 42.92 ± 1.92

FuNet .974 ± .005 22.19 ± 5.67 42.87 ± 2.08

UFNet .978 ± .004 20.18 ± 4.30 43.62 ± 1.76
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TABLE V

Ablation studies on utilizing different supervisory loss functions of under-complete network output in 

sinogram and image domains. 1/2 low-dose setting is considered here. ✓ And X means supervisory loss 

function(s) used and not used on under-complete restoration outputs in the sinogram or the image domain of 

DuDoUFNet, respectively.

Image Sinogram SSIM RMSE PSNR

X X .974 ± .006 22.56 ± 5.72 42.73 ± 2.07

✓ X .976 ± .005 21.03 ± 4.67 43.28 ± 1.82

X ✓ .976 ± .005 20.86 ± 4.62 43.35 ± 1.82

✓ ✓ .978 ± .004 20.18 ± 4.30 43.62 ± 1.76
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