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Abstract

This study investigated the systematic rise in cognitive ability scores over generations, known as 

the Flynn Effect, across middle childhood and early adolescence (7–15 years; 291 monozygotic 

pairs, 298 dizygotic pairs; 89% White). Leveraging the unique structure of the Louisville Twin 

Study (longitudinal data collected continuously from 1957 to 1999 using the Wechsler Intelligence 

Scale for Children [WISC], WISC–R, and WISC–III ed.), multilevel analyses revealed between-

subjects Flynn Effects—as both decrease in mean scores upon test re-standardization and increase 

in mean scores across cohorts—as well as within-child Flynn Effects on cognitive growth across 

age. Overall gains equaled approximately three IQ points per decade. Novel genetically informed 

analyses suggested that individual sensitivity to the Flynn Effect was moderated by an interplay of 

genetic and environmental factors.

In 1984, James Flynn found that American standardization samples, including children, 

scored systematically higher on older versions of IQ tests than they did on newer versions, 

reflecting a 13.8-point rise in mean IQ scores between 1932 and 1978 (approximately three 

points per decade; Flynn, 1984). The secular rise in standardized intelligence scores, now 

known as the Flynn Effect (FE), has since been replicated widely in children and adults 

(Pietschnig & Voracek, 2015). The FE is typically documented by giving the same sample 

two versions of a cognitive ability test and noting lower mean scores on newer versions than 

on older versions, as in Flynn’s original study (we refer to these as test version effects). 

Other evidence comes from studies of European military conscripts, in which cohorts from 

more recent generations scored systematically higher than previous cohorts on the same test 

version (cohort effects; e.g., Sundet et al., 2004; Teasdale & Owen, 2008).
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Meta-analytic estimates have been roughly consistent with Flynn’s original observation of 

an increase in three IQ points per decade, with measures of fluid intelligence (problem 

solving and abstract reasoning that do not rely on previous knowledge; measures include 

performance IQ [PIQ]) frequently showing greater gains over time than measures of 

crystallized intelligence (application of knowledge previously acquired through experience 

and education; measures include verbal IQ [VIQ] and vocabulary; Pietschnig & Voracek, 

2015). Studies from developing regions tend to yield even larger effects (e.g., children in 

rural Kenya; Daley et al., 2003), whereas IQ gains in developed regions appear to have 

decelerated over the past century (Pietschnig & Voracek, 2015), and evidence suggests that 

scores have even started to decline slightly (Sundet et al., 2004; Teasdale & Owen, 2005, 

2008). These results suggest that the FE is positively linked to societal modernization and 

development; scores appear to rise as regions develop until possibly reaching an asymptote.

The FE has had a profound impact on developmental researchers’ conceptualizations of 

cognitive ability. It provides evidence that broad changes to environments in which children 

are raised can influence cognitive development, which is driven by a dynamic interplay 

of genetic and environmental factors (Dickens & Flynn, 2001; Flynn, 2007; Pietschnig 

& Voracek, 2015). Findings regarding the relative strength of the FE at different stages 

of development have been inconsistent, with one meta-analysis observing larger effects in 

adults than in children (Pietschnig & Voracek, 2015) and another finding no differences 

across ages (Trahan et al., 2014).

Practical implications

In addition to informing theoretical perspectives on cognitive development, the FE 

has altered the day-to-day lives of individual children. Howard (2001) provided 

correlational evidence of real-world changes that may reflect rising cognitive ability. More 

disconcertingly, the FE influences outcomes that depend on falling above or below a set 

IQ score cutoff, especially for children. In the United States, intellectual disability is 

commonly identified in part as having an IQ score below 70 (e.g., American Psychiatric 

Association, 2013). Work by Kanaya, Ceci, and Scullin has demonstrated that rates of 

intellectual disability diagnosis drop steadily in the years prior to the introduction of a new 

IQ test version; due to the FE, the number of children scoring below the 70-point cutoff 

gradually decreases (Scullin, 2006). Upon the introduction of a new test version, intellectual 

disability diagnoses increase significantly because children who would have scored just 

above the cutoff on the older version score below it on the new one (Kanaya, Ceci, et 

al., 2003; Kanaya, Scullin, et al., 2003; Scullin, 2006). Since children with intellectual 

disability typically qualify for special education programs, this results in a large, rather 

sudden increase in the number of children in special education, creating a host of challenges 

for school districts (e.g., allocation of financial and teacher resources).

Kanaya and Ceci (2012) found that the FE also changes the prevalence of learning disability 

diagnosis among children. Diagnosis of a learning disability often requires a child’s IQ 

score to be markedly higher than their achievement score. By causing IQ scores to drop, 

test re-standardization can shrink the gap between IQ and achievement scores, significantly 

reducing the probability that a child previously diagnosed with learning disability using 
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an old test version will be re-diagnosed. This creates an opposite problem to that seen 

in intellectual disability: children who were once enrolled in special education programs 

become ineligible. Abruptly losing special education resources can be extremely difficult for 

children, forcing them to grapple with academic and social challenges without the supports 

on which they formerly relied.

Research implications

The FE poses a serious problem in cross-sectional studies of cognitive ability that include 

multiple generational cohorts or multiple test versions. In one striking example, the FE 

accounted for about 85% of supposedly age-related IQ disparities between 20- and 70-year 

olds (Dickinson & Hiscock, 2010). Even when comparing groups at a single age, failing 

to adjust for between-group differences in cohort or test version could make groups appear 

more dissimilar than they really are.

The FE may also confound longitudinal studies in which individuals take multiple IQ test 

versions, such as studies of cognitive growth in children. Consider a longitudinal analysis 

in which two different versions of the Wechsler Intelligence Scale for Children (WISC; 

commonly used to measure cognitive ability in children) were administered at ages 8 and 

16. If intra-individual changes in cognitive ability are observed over that span, how can one 

be sure that they reflect actual cognitive changes and not test version artifacts introduced by 

the FE? If changes are not observed, could test re-standardization have flattened effects that 

otherwise would have been observed? The FE could be particularly problematic in analyses 

of unstandardized raw scores, which change substantially as children grow intellectually.

What causes the FE?

Potential causes of the FE have been debated extensively (see Neisser, 1998). Although a 

comprehensive summary of that debate falls outside the current study’s scope, it is worth 

emphasizing that the FE is almost certainly driven by environmental, as opposed to genetic, 

influences. Indeed, as mentioned above, one of the FE’s most important implications is that 

environmental factors can substantially affect cognitive development at a population level 

(Dickens & Flynn, 2001; Flynn, 2007; Pietschnig & Voracek, 2015).

Various potential environmental mechanisms have been proposed, including improvements 

in education (Williams, 1998) and nutrition (Lynn, 2009), increasing environmental 

complexity (Schooler, 1998), technological advancement (Neisser, 1997), decreasing family 

sizes (Sundet et al., 2008), and reductions in exposure to harmful pathogens (Kaufman et al., 

2014) and disease (Eppig et al., 2010). No single environmental factor appears to be solely 

responsible for increasing mean IQ scores. Rather, the FE likely emerges from a complex 

combination of multiple factors, which may vary by cohort and environmental context (see 

Dickens & Flynn, 2001).

Some have argued that the FE is caused by neither genetic nor environmental influences 

on intelligence, but instead by measurement artifacts that alter the nature of IQ tests. 

Kaufman (2010), for example, asserted that the content, administration, and scoring of the 

Similarities subtest changed so substantially during the update from the original version 
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of the WISC (Wechsler, 1949) to the WISC–Revised (WISC–R; Wechsler, 1974) that any 

cross-test analysis amounts to comparing apples to oranges. Because the subtest itself 

changed, he argued, it is impossible to be sure that children’s gains on Similarities reflect 

actual improvement in abstract reasoning; the subtest could have just gotten harder, causing 

mean scores on Similarities (and therefore also IQ) to drop. The same logic could be applied 

to any other subtest for which test re-standardization resulted in a drop in scores. However, 

others have argued that test sophistication-related gains would not be large enough to explain 

a meaningful proportion of the FE (Ceci & Kanaya, 2010), and test sophistication cannot 

explain effects observed in cohort studies that used a single test version.

Changes in test-taking behavior have also been cited as a measurement artifact that could 

cause the FE, particularly in cohort studies. Brand (1987) speculated that test-takers have 

engaged in increasingly more guessing behavior over time, resulting in higher scores, 

particularly on fluid intelligence measures (which are often multiple-choice and therefore 

more amenable to guessing). The validity of Brand’s hypothesis has been debated, with 

some suggesting that guessing-related effects would be too small to explain the FE (Flynn, 

1990; Pietschnig & Voracek, 2015).

Within- and between-level FEs

The FE has usually been documented as a between-subjects phenomenon, either as mean 

increases in cognitive ability scores over generations or mean decreases between test 

versions. There is reason to suspect that environmental influences associated with between-

subjects FEs also influence cognitive ability at the individual level, boosting intellectual 

growth across development above and beyond typical age-related gains. Dickens and 

Flynn (2001), for example, proposed that environmental enrichment makes it easier for 

children to select into environments that match their cognitive ability. Cognitively beneficial 

environments, in turn, boost cognitive growth, which facilitates further self-selection into 

more positive environments, in turn boosting cognitive ability, and so on, creating a 

reciprocal cycle that makes individual children exhibit greater intellectual growth across 

development. The individual gains brought about by individual multipliers, as Dickens and 

Flynn (2001) called them, can be thought of as within-person FEs. If enough children in 

a given population show such within-person FEs, the group mean will also rise, eventually 

resulting in a between-subjects FE across cohorts. A reciprocal process of social multipliers, 

which is the between-subjects analog of the individual multipliers process, can compound 

mean cognitive ability gains over time.

Although the possible connection between within- and between-level FEs has been 

discussed for two decades, few studies have examined this empirically. Effective 

investigation of within-person FEs requires longitudinal data to model individual cognitive 

growth across age and isolate within-person FEs from age-related gains, as well as 

multilevel data across cohorts to distinguish within-level FEs from between-level FEs. 

Datasets meeting those criteria are rare and, perhaps because of this rarity, nearly all 

previous FE studies have performed solely cross-sectional, between-subjects analyses. Only 

two previous reports have investigated within-person FEs using a multilevel approach. In 

two distinct multilevel analyses of math scores collected longitudinally across childhood 
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between 1986 and 2012, O’Keefe and Rodgers (2017) observed significant within-person 

FEs, along with between-subjects gains. Later, O’Keefe and Rodgers (2020) performed 

a follow-up analysis of the same data. Results highlighted the utility of examining 

within-person FEs using longitudinal, multilevel approaches, to arrive at a more nuanced 

understanding of the FE.

Gaps in the existing literature

Hundreds of studies on the FE have been conducted to date. Nevertheless, several substantial 

gaps in the literature remain. First, no study of which we are aware has examined both 

test version and cohort effects simultaneously within a single sample. Test version studies 

and cohort studies each face limitations: the former could be affected by measurement 

artifacts (Kaufman, 2010), whereas the latter (historically conducted in adult, European, 

almost entirely male military conscript samples) may not generalize to other populations, 

including children. Analyzing test version and cohort effects together in the same sample 

could improve researchers’ ability to address these limitations. Observing both types of 

effects simultaneously would increase confidence that a genuine FE exists above observing 

one or the other alone. Furthermore, the magnitude of FE estimates may vary depending 

on whether the test version or cohort approach is used (Weiss et al., 2016). Estimating test 

version effects while controlling for cohort effects, and vice versa, would clarify the relative 

magnitude of each type of FE.

Second, given concerns about the representativeness of military conscript samples, the extent 

to which previously observed cohort FEs generalize to other populations remains unclear. 

Few previous studies have examined cohort effects in children or adolescence (see Bocéréan 

et al., 2003; Graves et al., 2019; Must et al., 2009; Rodgers & Wänström, 2007; Weiss et al., 

2016). Similarly, although test version effects have been well documented in U.S. samples, 

studies of cohort FEs in U.S. samples of any age are relatively rare. The closest American 

analog to large, European military conscript IQ datasets is the Armed Services Vocational 

Aptitude Battery, but it is arguably more of a literacy test than an IQ test (Marks, 2010) and 

has been updated periodically.

Third, as mentioned above, only two previous studies, the second of which was an extension 

of the first (O’Keefe & Rodgers, 2017, 2020) have examined FEs on within-person growth 

in cognitive ability across development. That study analyzed math performance, a measure 

of fluid intelligence, but the presence of within-person FEs on other cognitive domains is 

unknown. Furthermore, O’Keefe and Rodgers (2017) used the cohort design; within-person 

FEs have never been examined in studies that included multiple test versions. Along with 

enabling within-person FE analyses, longitudinal models yield more stable estimates of 

differences between cohorts (Schaie et al., 2005) and offer more statistical power than 

cross-sectional models (Giangrande et al., 2019).

Finally, although the FE is at the crux of debates over the relative influence of genetic and 

environmental factors on cognitive development, genetically informed studies of cognitive 

ability gains across generations have never been conducted. This, again, may be due to 

a lack of studies with the necessary data structure (i.e., family data on cognitive ability 
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collected longitudinally across cohorts). O’Keefe and Rodgers (2017) included siblings 

in their multilevel FE analyses, but did not conduct genetically informed analyses. The 

FE is likely caused by environmental factors, but the extent to which a given individual 

receives an environmental boost may be moderated by genetic factors, as is true of any 

trait (Turkheimer, 2000). Returning to the theory of individual and social multipliers, 

Dickens and Flynn (2001) hypothesized that complex gene–environment interplay results 

in a positive association between children and beneficial environments, boosting individual 

cognitive ability across development (within-person gains) and ultimately group means 

(between-subject FEs) as well. Genetically informed FE studies may help clarify this sort of 

gene–environment interplay, both in the context of the FE and cognitive development more 

generally.

Current study

In this study, we examined the FE in data from the Louisville Twin Study (LTS), an 

intensive longitudinal study of cognitive development (Rhea, 2015; Wilson, 1983). Analyses 

focused on middle childhood and early adolescence (ages 7–15 years). Several features of 

the LTS data make them particularly well-suited for FE analyses and for addressing the 

gaps in the literature described above. First, initial data were collected continuously from 

1957 to 1999, making it possible to test for rising IQ scores across generational cohorts 

of U.S. boys and girls over a long time span. Second, three versions of the WISC were 

administered over the course of the study (WISC, WISC–R, and WISC, 3rd ed. [WISC–

III]). This allowed us to examine whether test re-standardization resulted in systematic 

drops in mean IQ scores. Third, children were followed longitudinally, with some taking 

multiple versions of the WISC over the course of their participation. This enabled us to 

test for FEs not only between subjects (i.e., rises in mean scores), but also within children 

(i.e., rate of within-person cognitive growth), all while taking advantage of the statistical 

benefits offered by longitudinal models (e.g., distinguishing age effects from cohort effects, 

increased power). Finally, because the LTS is a twin study, we were able to partition 

the variance of the within-person FE into genetic and environmental components (also 

referred to as biometric components) and examine the relative influence of genetic and 

environmental factors on individual sensitivity to the FE. In doing so, we performed the 

first-ever genetically informed analyses of the FE.

Thus, the unique structure of the LTS data enabled us to examine the FE as both cohort 

effects and test version effects simultaneously in a single sample. This data structure 

also made it possible to analyze FEs both within children and between children, and 

to examine the relative influence of genetic and environmental factors on within-person 

FEs. By modeling all of these elements, we were able to isolate specific aspects of the 

FE while controlling for alternate effects (i.e., cohort vs. test version effects, within- vs. 

between-level effects, genetic vs. environmental components). At the between-subjects level, 

we hypothesized that we would observe evidence of the FE in two ways: (1) for a given age 

and test version, children who participated more recently in the LTS testing period would 

have higher cognitive ability scores on average than previous cohorts; (2) for a given age and 

cohort, children who took newer WISC versions would score lower on average than children 

who took older versions. Within individual children, we expected that within-person FEs 
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would boost the rate at which children grew intellectually between ages 7 and 15 beyond 

expected age-related growth. Because this was the first genetically formed study of the FE, 

we treated our biometric analyses as exploratory.

METHOD

Participants

All participants were from in and around Louisville, Kentucky in the United States. 

The sample was predominately White (89%) and of average IQ (Table 1). The entire 

distribution of socioeconomic status (SES) was represented, with comparable numbers of 

low, average, and high SES children included: lower quartile, median, and upper quartile 

for scores on the Hollingshead Index (a continuous 0- to 100-point scale collected at initial 

registration, with higher scores indicating higher SES) were 24, 49, and 70, respectively 

(Hollingshead, 1975). We analyzed data from 589 twin pairs (291 monozygotic [MZ], 298 

dizygotic [DZ]; 241 same sex female, 219 same sex male, 129 opposite sex). Zygosity 

was determined by blood serum analysis. Twins were enrolled in the LTS shortly after 

birth, and then followed prospectively until age 15. Data were collected continuously, with 

new participants registered on a rolling basis. The present study analyzed longitudinal 

cognitive data collected at ages 7, 8, 9, 12, and 15 years (3838 individual cognitive 

measurements). Typically, twins were tested within 1 week of their birthdays. Table 2 

summarizes longitudinal data coverage. In the earlier years of the LTS, age 12 data were not 

collected systematically, resulting in fewer observations than other ages. Average number of 

observations per twin was 3.25 (SD = 1.23). 12.87%, 10.41%, 32.35%, 27.60%, and 16.77% 

of the sample were tested at one, two, three, four, and five ages, respectively.

Measures

We analyzed WISC, WISC–R, and WISC–III IQ scores (Wechsler, 1949, 1974, 1991). 

WISC IQ scores are age-standardized to a mean of 100 and standard deviation of 15. We 

divided IQ scores by 10 to facilitate model fitting. Full-scale IQ (FSIQ) is a measure of 

general cognitive ability, while VIQ and PIQ measure crystallized and fluid intelligence, 

respectively. For age, we used the earliest participants’ date of birth (DOB; in May, 1956) 

as an anchor. All other children’s dates of birth were then defined as the number of days 

between their actual birthdays and the anchor DOB. To simplify interpretation, we rescaled 

DOB in decades. Neither test version nor DOB varied within twin pairs; twins in a pair 

always took the same test version at a given age and, obviously, had the same DOB.

Procedure

We used R (R Core Team, 2020) to prepare the data, calculate descriptive statistics, create 

plots, and compare the fit of nested models, and fit all models in Mplus Version 8 (Muthén 

& Muthén, 2017). Missing data were handled using full information maximum likelihood.

To estimate the FE as both between-subjects gains in cognitive ability across generations 

(indexed by test version and cohort effects) and within-person cognitive growth relative 

to age-based norms, we developed a three-level multilevel model of cognitive growth. We 

describe the model below; a path diagram is presented in Figure 1. Repeated measures of 
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cognitive ability between ages 7 and 15 (Level 1) were nested within individual children 

(Level 2). Individual children, in turn, were nested within twin pairs (Level 3). For person i 
in pair j at age t, administered test Vjt (i.e., WISC, WISC–R, or WISC–III; test version was 

coded as −1, 0, 1, assuming linearity across versions for simplicity; members of a twin pair 

were always administered the same version at a particular age), we first estimated the test 

version effect b1.

Y ijt = b0t + b1V jt + σt2

We modeled test version effects on observed scores at each age (rather than on latent 

intercept and slope) because some children took more than one WISC version over the 

course of their participation in the LTS. Test version effect magnitude was held constant 

across ages, and all test version parameters covaried with each other and with DOB. We 

predicted that test version effect estimates would be negative, as this would indicate that 

mean scores decreased upon the introduction of a new WISC version.

Next, we fit a latent growth model to the cognitive ability scores residualized on test version. 

Intercepts of the observed cognitive ability scores were fixed to 0 at ages 7 and 8, and 

estimated freely at other ages.

Y ijt = Iij + Sij Age − 7 + σt2

Two latent growth factors were estimated for each twin. The first, intercept (I), pooled 

information from all available time points to estimate a twin’s performance at the initial 

measurement occasion. The second, slope (S), estimated the rate of change from that initial 

performance over time. We fixed I at age 7. Loadings on S were weighted to account for 

different time gaps between measurement occasions (e.g., 1 year between ages 7 and 8; 

8 years between 7 and 15). Between-pair I and S covaried with each other. Because test 

version varied across time, between-pair I and S covaried with test version at each age, and 

these covariances were constrained to be equal across ages.

Within pairs, I and S had means of 0 and variances (σIw
2  and σSw

2 , respectively), estimated 

separately for MZ and DZ pairs. Between pairs, I and S had means I
!!

 and S. S, the average 

slope of individual IQ scores as a function of age, is the within-person estimate of the FE. 

We will refer to this within-person estimate as sensitivity to the FE, as it measures the extent 

to which a given individual shows FE-related gains. The between-pair variances of I and S 
were modeled as linear functions of date of birth (DOB).

Ij = b0IB + b1IBDOB + σIB
2
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Sj = b0SB + b1SBDOB + σSB
2

b1IB, the unstandardized regression of the between-pair intercept on DOB, is the between-

pair estimate of the FE (specifically, cohort FEs). We hypothesized that the gain per year 

in mean IQ across cohort (b1IB) would be roughly equivalent to the average gain per year 

across age in individual twins (S; Figure 2). Therefore, we set b1IB equal to S. We predicted 

the resultant estimate would be positive, as this would provide evidence that the FE not 

only increases mean cognitive ability scores across generations, but also boosts cognitive 

ability growth within individual children across middle childhood and early adolescence. 

Covariances were modeled among DOB and test version at each age.

Because the individual-level slopes (Sij) were modeled as a random effect within and 

between twin pairs, we were able to compute intraclass correlations for MZ and DZ 

twin pairs (who share roughly 100% and 50% of their genetic material, respectively) 

and use them to estimate biometric components of the within-person FE. Following the 

classical twin study design, we computed unstandardized estimates of the proportions 

of variance in individual-level sensitivity to the FE associated with additive genetic (A; 

“heritability”), shared environmental (C), and non-shared environmental (E) variance, and 

then algebraically transformed those into standardized ACE estimates.

To examine the validity of constraining the between-pair cohort effect to be equal to the 

within-person FE, we used the Satorra–Bentler scaled chi-square difference test (Satorra 

& Bentler, 2010) to compare the fit of two nested models: one in which b1IB and S were 

held equivalent, as described above, and a second in which those parameters were estimated 

freely. Individual tests were performed for FSIQ, VIQ, and PIQ.

RESULTS

Descriptive results

Before reviewing the results of our analyses, we will summarize descriptive FSIQ results 

to give the sense of the LTS data structure as it relates to the FE. Sizeable samples were 

available for all three WISC versions at ages 7, 8, and 9 (Figure 3; Table S1). Age 12 data 

were not collected systematically in the early years of the LTS, resulting in a smaller sample 

size than other ages, and a lack of early cohort and original WISC data at that age. By the 

time even the earliest LTS participants reached age 15, the WISC was no longer in use.

Descriptive results provided preliminary evidence of the hypothesized between-level FEs. 

Although mean FSIQ scores were roughly 100 at each age (Table 1), plots of the raw FSIQ 

data suggested that this stability was a product of mean scores increasing over time (a 

possible cohort effect) until the introduction of a new WISC version, at which point mean 

scores decreased suddenly (possible test version effects; Figure 3). Age 8, for which we 

had the largest sample, showed the clearest preliminary evidence of this pattern of FEs. The 

consistency of the pattern fluctuated somewhat across the other ages. Scores appeared to 

increase across cohorts for the WISC at ages 7, 8, and 9, and for the WISC–R at ages 7, 8, 9, 
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and 12. Although WISC–III scores appeared to rise with cohort at ages 12 and 15, WISC–III 

scores did not appear to change substantially across cohort at ages 8 and 9 and possibly 

decreased across cohort at age 7. We observed clear decreases in mean cognitive ability 

scores between the WISC and WISC–R. While mean FSIQ scores decreased modestly 

between the WISC–R and WISC–III at ages 8 and 12, possible test version effects due to the 

switch from the WISC–R to the WISC–III were not clearly observable at other ages.

Multilevel latent growth curve model results

Results of multilevel twin analyses are presented in Table 3. The model fit the data well 

(Table S2). Overall, results supported our hypotheses, and we observed clear evidence of 

FEs across ages 7–15. Test version effects on the IQ scores were all significantly negative 

(ps < .001).

Constraining the unstandardized regression of the between-pair intercept on DOB (b1IB) 

to be equal to the average individual slope across age S  yielded a significant, positive 

parameter for FSIQ, VIQ, and PIQ (ps < .001). This constraint did not affect model fit— 

scaled chi-square difference tests comparing the fit of constrained and unconstrained models 

were not significant (ps > .25 for all cognitive measures)—and did not alter other parameter 

estimates substantially (Tables S3 and S4). Furthermore, in models where b1IB and S were 

allowed to differ, the within-person FE estimate S  was significantly positive (ps < .001), 

indicating that the within-person FE was present independent of between-level FEs (Table 

S3). Thus, consistent with our hypotheses and the theory of individual and social multipliers 

(Dickens & Flynn, 2001), both between-pair cohort effects and within-person FEs were 

present in our sample, and were roughly equivalent. FSIQ, VIQ, and PIQ all showed gains of 

approximately three points per decade.

Biometric results are presented in Table 4. Individual-level sensitivity to the FE on 

FSIQ, VIQ, and PIQ were all associated with substantial proportions of additive genetic, 

shared environmental, and non-shared environmental variance. Given that not all biometric 

estimates reached statistical significance and some standard errors were large, some restraint 

should be exercised when interpreting the magnitudes of the observed ACE components, 

or how they might differ across cognitive domains. That being said, sensitivity to the FE 

on FSIQ scores showed the highest heritability, with 64% of the variance associated with 

additive genetic factors (A; SE = 0.22). The remaining variance was associated with smaller, 

but sizeable shared (C = 0.26, SE = 0.20) and non-shared environmental and error (E = 0.10, 

SE = 0.06) components. For sensitivity to the FE on VIQ and PIQ, just under half of the 

variance was associated with additive genetic factors (VIQ: A = 0.48, SE = 0.18; PIQ: A = 

0.45, SE = 0.42). The remaining variance associated with shared environmental (VIQ: C = 

0.35, SE = 0.17; PIQ: C = 0.48, SE = 0.38) and non-shared environmental and error variance 

(VIQ: E = 0.17, SE = 0.05; PIQ: E = 0.08, SE = 0.13).

DISCUSSION

In this study, we conducted a multifaceted investigation of the FE across middle childhood 

and early adolescence (ages 7–15). Compared to previous studies, which have documented 
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the FE between-subjects either as increases in mean cognitive ability scores across 

generations (cohort effects) or as sudden decreases in mean scores upon the introduction 

of a newer WISC version (test version effects), we performed a relatively comprehensive 

analysis of the FE by leveraging the unique data structure of the LTS (longitudinal twin 

data collected prospectively over four decades, using three WISC versions) and a multilevel 

approach. Results indicated that the FE was present in the LTS data in a variety of forms. 

Consistent with our hypotheses, we observed between-subjects FEs as both cohort effects 

and test version effects, suggesting that LTS participants from more recent cohorts scored 

systematically higher on measures of cognitive ability than those born earlier. We also 

observed evidence of significant within-individual FEs, which were roughly equivalent in 

magnitude to between-pair cohort effects. Effect sizes were consistent with Flynn’s original 

finding of three IQ points per decade in gains (Flynn, 1984). Results from novel biometric 

analyses suggested that individual-level sensitivity to the FE emerged from both genetic and 

environmental factors.

Developmental changes in cognitive ability can be difficult to observe when cohort, test 

version, and age are all varying simultaneously. To our knowledge, this was the first study 

to document cohort and test version FEs together in a single sample. Studies that use either 

the cohort or test version approach face major limitations inherent in each method (limited 

representativeness of military conscripts in the former, vulnerability to changes in content 

between test versions in the latter). The fact that we documented both types of effects 

substantially increases our confidence that the FE is robust in the LTS sample. Furthermore, 

modeling both cohort and test version effects enabled us to document the full manifestation 

of the FE in the LTS, which otherwise might not have been apparent. Although mean IQ 

scores were approximately 100 at each age (Table 1), this apparent stability was the result 

of a complex process in which gains across cohorts and within individuals across age were 

balanced out by decreases in scores due to test re-standardization. Analyzing one type of FE 

without controlling for the other would have revealed only half of the story.

Using longitudinal data to model the individual-level slope of cognitive ability enabled us 

to control for age effects when measuring cohort effects, thereby yielding more stable FE 

estimates (Schaie et al., 2005). We did not observe any significant cohort effects on between-

pair slope, suggesting that within-individual gains in cognitive ability across age remained 

relatively stable over the 40-year span of the sample. It is possible that our use of age-scaled 

scores (rather than raw scores) impeded our ability to detect between-pair slope effects, 

should they exist; by definition, scaling scores results in means and standard deviations 

that remain constant across ages, which flattens intra-individual change in unstandardized 

cognitive ability across childhood. LTS raw scores are unavailable at this time (originally, 

only scaled scores were entered into electronic databases), but the LTS team is currently 

working to enter item-level WISC data, which will enable deeper investigation of possible 

slope effects. Alternatively, our null between-pair slope findings may indicate that the rate 

at which children develop cognitive ability has not changed across cohorts. Additional 

longitudinal studies are needed to resolve these possibilities.

The longitudinal, multilevel data structure of the LTS also enabled us to examine the extent 

to which the FE manifests not only as between-subjects gains across generations, but also 
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within-person, consistent with Dickens and Flynn’s (2001) theory of individual and social 

multipliers. The average of each child’s rate of cognitive change (slope) was significant in 

unconstrained models, and we were able to equate this estimate of the within-person FE with 

the between-level cohort effect. These results suggest that the FE boosted both individual 

cognitive growth between ages 7 and 15 relative to age-based norms and mean cognitive 

ability scores across generations. Our results provide novel evidence of within-person FEs 

not only on fluid intelligence, as documented previously (O’Keefe & Rodgers, 2017), but 

also crystallized and general cognitive ability (as measured by VIQ and FSIQ, respectively). 

Moreover, our within-person FE findings speak to the importance of modeling the FE at 

multiple levels of analysis, where possible. By capturing both within- and between-level 

FEs, multilevel models offer a more nuanced understanding of how the FE operates across 

development. At least in our sample, the FE was not only a population-level phenomenon 

that drives broad gains in mean cognitive ability across generations. The FE also appeared 

to influence the cognitive development of individual children, boosting their intellectual 

growth beyond what would have occurred without positive environmental inputs. Had we 

only measured between-level FEs, as is traditionally done in FE research, we would have 

missed this important aspect of cognitive development.

Unique to the LTS, a multilevel approach also set the stage for twin analyses. Theories 

about the relative role of genetic and environmental factors in the FE have been debated for 

decades, but no previous study has examined this empirically. By partitioning the variance 

in within-pair sensitivity to the FE, we were able to perform the first-ever genetically 

informed investigation of the FE. As Dickens and Flynn (2001) hypothesized, individual 

differences in sensitivity to the FE were associated with variance in both genetic and 

environmental background, suggesting that the FE reflects a complex interplay of genetic 

sensitivity and environmental change that unfolds across cognitive development. Our finding 

that sensitivity to the FE on FSIQ, VIQ, and PIQ all showed substantial heritability (A) 

serves as a fascinating example of gene–environment interplay—the extent to which a 

child’s growth in cognitive ability received a boost from the environment was influenced 

by genetic factors. The environment also plays an important role, as variance in shared 

(C) and non-shared (E) environmental factors were both associated with individual-level 

sensitivity to the FE. Given the magnitudes of the observed standard errors, interpretations 

about possible biometric differences across cognitive domains should be made with some 

caution. That being said, results suggested that sensitivity to the FE on FSIQ may be more 

heritable than sensitivity to the FE on more specific cognitive domains (i.e., crystallized 

intelligence and fluid intelligence as estimated by VIQ and PIQ, respectively). If robust, 

this variability speaks to the utility of analyzing the FE in multiple cognitive domains, as 

biometric results from FE analyses of general intelligence (e.g., IQ) may not apply directly 

to more specific measures of cognitive ability.

Our findings have important methodological implications for cognitive development 

researchers. Although the FE is often ignored in developmental studies of cognitive 

ability, our results show that the FE can confound studies of cognitive development in a 

variety of ways. Cohort effects can muddy analyses that include participants from multiple 

generations. Test version effects create difficulties in studies that administered multiple 

cognitive assessments. Perhaps most challengingly, within-person FEs can alter estimates of 
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individual cognitive growth, making it difficult to parse gains in childhood due to age from 

environmental boosts. We observed evidence of within-person FEs on scaled scores beyond 

age-related gains, suggesting that age-standardization may not sufficiently correct for the 

FE. Of course, few datasets besides the LTS include multiple cohorts, multiple test versions, 

and longitudinal data, so it will rarely be necessary for a researcher to correct for all of these 

types of FEs. Nevertheless, even in studies where only type of FE is present, researchers 

must correct for it in order to obtain accurate estimates of cognitive growth. Because the FE 

itself may vary considerably depending on context, the exact analytic steps needed to correct 

for it may vary across studies.

Strengths of the present study include simultaneous analysis of cohort and test version 

effects in a single sample; the ability to test for the FE across a long time span 

(four decades) and three test versions; data from across middle childhood and early 

adolescence, an important developmental period for which cohort effects have been rarely 

documented; a high proportion of participants with longitudinal data, facilitating within-

person analyses; twin data, which made it possible to conduct genetically informed analyses; 

and a socioeconomically diverse sample, which is useful when studying a putatively 

environmental effect such as the FE. This study also faces several limitations. First, 

our results do not rule out the possibility that artifacts of test sophistication could have 

contributed to observed test version effects (Kaufman, 2010). However, the cohort effects 

we observed provide independent evidence that cognitive ability scores did indeed rise, and 

suggest that test version effects at least partially reflected FE gains. Second, we assumed 

linear FEs. This is common practice in the FE literature, but some evidence suggests 

that IQ gains across generations may have been nonlinear (Pietschnig & Voracek, 2015). 

Third, as mentioned above, our use of scaled scores may have limited our ability to detect 

FEs on between-level rate of change in cognitive ability over time (between-pair slope). 

Finally, given that the most recent data were collected over 20 years ago using WISC 

versions that are outdated today, results do not speak to the FE’s current status, and they 

do not necessarily generalize beyond children from the generational cohorts we examined. 

Relatedly, although the LTS sample is diverse socioeconomically, almost 90% of twins were 

White, and all twins were reared in the United States. The extent to which our results would 

replicate in more diverse sociodemographic samples is unclear. FE research using more 

diverse samples is needed, particularly given previous evidence that the magnitude of the FE 

varies considerably depending on environmental context.

Now that we have documented evidence of the FE in the LTS, our group is pursuing 

several avenues of future research. As mentioned above, the LTS team is in the process of 

entering previously unanalyzed item-level WISC data, which will enable more sophisticated 

modeling of within-person change. Soon, it will be possible to extend LTS analyses of the 

FE across much of the life span; cognitive ability data are available starting at 3 months of 

age, and a current project is collecting adult cognitive ability data on the twins at midlife 

(Beam et al., 2020). These efforts will further the field’s understanding of the FE and how to 

measure and control for it, both in the LTS and other studies of cognitive development.
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Abbreviations:

DOB date of birth

DZ dizygotic

FE Flynn Effect

FSIQ full-scale IQ

LTS Louisville Twin Study

MZ monozygotic

PIQ performance IQ

SES socioeconomic status

VIQ verbal IQ

WISC Wechsler Intelligence Scale for Children

WISC–III Wechsler Intelligence Scale for Children, 3rd ed.

WISC–R Wechsler Intelligence Scale for Children–Revised
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FIGURE 1. 
Path diagram of multilevel latent growth curve model. Note. DOB: date of birth. I: latent 

intercept factor. S: latent slope factor. IQ: placeholder for the specific WISC IQ score we 

analyzed (FSIQ, VIQ, or PIQ). V: test version (WISC, WISC-R, WISC-III). Parameters in 

the dotted box were estimated both within- and between-pairs, separately for MZ and DZ 

twin pairs. The unstandardized regression of I on DOB (b1IB) was constrained to be equal 

to the mean of the individual-level slopes S . Covariances among DOB and V7–15, as well 

as covariances among between-pair I, between-pair S, and V7–15, were modeled, but are not 

depicted for the sake of clarity.
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FIGURE 2. 
Schematic diagram of the hypothesized association between cohort effects and within-

person Flynn Effects. Note. Solid line: unstandardized regression of the between-pair 

intercept on date of birth (b1IB), which is an estimate of the between-pair cohort effect. 

Dashed lines: individual-level slopes (Sij) indexing within-person cognitive growth related to 

the FE between ages 7 and 15. We hypothesized that the FE resulted in both between-pair 

IQ gains across cohort and within-person gains across age such that average individual-level 

slope S  is roughly equivalent to b1IB.
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FIGURE 3. 
Descriptive scatterplots. Note. FSIQ: full scale IQ.

Giangrande et al. Page 19

Child Dev. Author manuscript; available in PMC 2023 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Giangrande et al. Page 20

TA
B

L
E

 1

D
em

og
ra

ph
ic

 a
nd

 d
es

cr
ip

tiv
e 

in
fo

rm
at

io
n

A
ge

 (
ye

ar
s)

M
Z

/D
Z

 p
ai

rs
SS

 f
em

al
e/

SS
 m

al
e/

O
S

%
 W

hi
te

/B
la

ck
/“

O
th

er
”/

M
ul

ti
ra

ci
al

SE
S

F
SI

Q
%

 W
IS

C
/W

IS
C

–R
/W

IS
C

–I
II

7
23

9/
24

2
20

7/
17

3/
10

1
89

/1
0/

1/
1

47
.8

9 
(2

5.
89

)
98

.1
8 

(1
4.

12
)

23
/5

6/
21

8
25

4/
25

7
21

6/
19

0/
10

5
90

/8
/1

/0
47

.5
3 

(2
6.

40
)

10
1.

85
 (

14
.0

2)
31

/5
1/

17

9
19

4/
20

0
16

1/
13

9/
94

88
/9

/1
/1

46
.6

8 
(2

7.
15

)
10

2.
80

 (
14

.4
5)

12
/6

7/
22

12
71

/8
4

55
/5

9/
41

81
/1

7/
1/

1
44

.3
2 

(2
8.

91
)

10
0.

79
 (

14
.4

3)
1/

59
/4

0

15
19

2/
18

6
16

4/
14

1/
73

93
/6

/1
46

.4
8 

(2
6.

30
)

99
.8

8 
(1

4.
06

)
0/

81
/1

9

A
ll 

ag
es

29
1/

29
8

24
1/

21
9/

12
9

89
/9

/1
/1

47
.7

4 
(2

6.
61

)
10

0.
65

 (
14

.2
7)

17
/6

2/
21

N
ot

e:
 R

ac
e 

da
ta

 w
er

e 
m

is
si

ng
 f

or
 f

ou
r 

tw
in

 p
ai

rs
. “

O
th

er
” 

is
 th

e 
de

si
gn

at
io

n 
us

ed
 in

 th
e 

ar
ch

iv
al

 L
ou

is
vi

lle
 T

w
in

 S
tu

dy
 d

at
a;

 m
or

e 
de

ta
ile

d 
ra

ce
 in

fo
rm

at
io

n 
w

as
 u

na
va

ila
bl

e.
 S

om
e 

to
ta

l p
er

ce
nt

ag
es

 a
re

 n
ot

 
ex

ac
tly

 1
00

 d
ue

 to
 r

ou
nd

in
g.

 S
E

S 
an

d 
FS

IQ
 p

re
se

nt
ed

 a
s 

m
ea

n 
(S

D
).

A
bb

re
vi

at
io

ns
: D

Z
, d

iz
yg

ot
ic

; F
SI

Q
, f

ul
l-

sc
al

e 
IQ

; M
Z

, m
on

oz
yg

ot
ic

; O
S,

 o
pp

os
ite

 s
ex

; S
E

S,
 s

oc
io

ec
on

om
ic

 s
ta

tu
s;

 S
S,

 s
am

e 
se

x;
 W

IS
C

, W
ec

hs
le

r 
In

te
lli

ge
nc

e 
Sc

al
e 

fo
r 

C
hi

ld
re

n;
 W

IS
C

–R
, W

IS
C

–
R

ev
is

ed
; W

IS
C

–I
II

, W
IS

C
, 3

rd
 e

d.

Child Dev. Author manuscript; available in PMC 2023 January 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Giangrande et al. Page 21

TABLE 2

Longitudinal data coverage

Age (years) 7 8 9 12 15

7 0.82 — — — —

8 0.71 0.86 — — —

9 0.53 0.63 0.67 — —

12 0.25 0.24 0.24 0.26 —

15 0.52 0.62 0.49 0.19 0.64

Note: Diagonal values indicate the proportion of the total sample that had cognitive data at each age. Off-diagonal values represent the proportion 
of the total sample available to calculate a covariance between cognitive measures at two ages.
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TABLE 3

Multilevel latent growth curve model results

Measure b1IB / S S on DOB IQ on V

FSIQ 0.32 (0.03)
*** −0.01 (0.01) −0.49 (0.04)

***

VIQ 0.28 (0.03)
*** −0.01 (0.01) −0.33 (0.05)

***

PIQ 0.27 (0.04)
*** −0.01 (0.01) −0.56 (0.05)

***

Note: Presented as estimate (SE).

Abbreviations: S, mean of the individual-level slopes; b1IB and S were constrained to be equal; b1IB, unstandardized regression of between-pair 

intercept (I) on date of birth; DOB, date of birth; FSIQ, full scale IQ; PIQ, performance IQ; S, between-pair slope; V, test version; VIQ, verbal IQ.

***
p < .001.
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