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Abstract

Functional connectivity of the human brain, representing statistical dependence of

information flow between cortical regions, significantly contributes to the study of

the intrinsic brain network and its functional mechanism. To fully explore its potential

in the early diagnosis of Alzheimer's disease (AD) using electroencephalogram (EEG)

recordings, this article introduces a novel dynamical spatial–temporal graph convolu-

tional neural network (ST-GCN) for better classification performance. Different from

existing studies that are based on either topological brain function characteristics or

temporal features of EEG, the proposed ST-GCN considers both the adjacency matrix

of functional connectivity from multiple EEG channels and corresponding dynamics

of signal EEG channel simultaneously. Different from the traditional graph convolu-

tional neural networks, the proposed ST-GCN makes full use of the constrained spa-

tial topology of functional connectivity and the discriminative dynamic temporal

information represented by the 1D convolution. We conducted extensive experi-

ments on the clinical EEG data set of AD patients and Healthy Controls. The results

demonstrate that the proposed method achieves better classification performance

(92.3%) than the state-of-the-art methods. This approach can not only help diagnose

AD but also better understand the effect of normal ageing on brain network charac-

teristics before we can accurately diagnose the condition based on resting-state EEG.
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1 | INTRODUCTION

Alzheimer's disease (AD) is the most common form of dementia,

resulting in the loss of memory and cognitive impairments. Most com-

monly it occurs among elderly people over the age of 65, but it may

also occur earlier (Brookmeyer et al., 1998, 2007). According to the

World Health Organization, more than 55 million people are currently

diagnosed with some type of dementia (World Health

Organization, 2021). Due to increasing global ageing, the technologies

to diagnose AD more effectively and accurately are highly demanded.

Numerous studies have shown that synaptic dysfunction is an early

feature of AD and that decreased synaptic density in the neocortex
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and limbic regions could account for AD-associated disturbances in

brain function (Masliah et al., 2001; Scheff et al., 2006, 2007; Terry

et al., 1991). Being more extensive than the corresponding neuronal

loss when analysed in the same brain regions, synaptic dysfunction

has been proved to be the best neuropathological correlate of cogni-

tive impairment in AD patients (Davies et al., 1987; DeKosky &

Scheff, 1990; Scheff et al., 2007; Terry et al., 1991). The pathological

progression of AD leads to cortical disconnections and manifests as

functional connectivity alterations (Nobukawa et al., 2020). Electroen-

cephalography (EEG) is a noninvasive diagnostic method for studying

the bioelectrical function alterations and degeneration of the brain.

Consisting of scalp electric potential differences, EEG is one of the

first measurements that directly reflect the functioning of synapses in

real-time (Jelic, 2005; Michel et al., 2009). In contrast to functional

MRI or PET which detect indirect metabolic signals, EEG offers sev-

eral additional attractions: noninvasiveness, high time-resolution, wide

availability, low cost, and direct access to neuronal signalling (Michel

et al., 2009; Smailovic et al., 2018).

For the diagnosis of AD based on EEG, there are two main devel-

opment areas in recent years. The first area is statistically topological

brain function characteristics. Finding statistical biomarkers of AD is

based on analysing graph topographic or dynamic patterns. For graph

topography, Jalili (2017) constructed functional brain networks and

relevant graph theory metrics based on EEG for discriminating AD

from Healthy Controls (HC). Similarly, Tylová et al. (2018) proposed

the permutation entropy for measuring the chaotic behaviour of EEG

and observed a statistically significant decrease in permutation

entropy at all channels of AD. Fan et al. (2018) employed multiscale

entropy as the biomarker to characterize the nonlinear complexity at

multiple temporal scales to capture the topographic pattern of

AD. For dynamic patterns, Zhao et al. (2019) proposed a method to

measure nonlinear dynamics of functional connectivity for distinguish-

ing between AD and HC, and Tait et al. (2020) developed a biomarker

by combining microstate transitioning complexity and the spectral

measure. The second area is data-driven machine learning or deep

learning methods with various input features for the AD classification.

Researchers have proven that SVM (Nobukawa et al., 2020; Song

et al., 2018; Tavares et al., 2019; Trambaiolli et al., 2017), fuzzy model

(Yu et al., 2019), KNN (Safi & Safi, 2021), bagged trees (Oltu

et al., 2021), and artificial neural network (ANN) (Ieracitano

et al., 2020; Rodrigues et al., 2021; Triggiani et al., 2017) can help test

the validity of the input topographic or dynamic patterns or features,

such as multiscale entropy vector (Song et al., 2018), functional con-

nectivity (Nobukawa et al., 2020; Song et al., 2018; Yu et al., 2019),

cepstral distances (Rodrigues et al., 2021), Hjorth parameters (Safi &

Safi, 2021), coherence (Oltu et al., 2021), bispectrum (Ieracitano

et al., 2020), power spectral density (Oltu et al., 2021; Tavares

et al., 2019), frequency bands (Trambaiolli et al., 2017; Triggiani

et al., 2017), and wavelet transform (Ieracitano et al., 2020; Oltu

et al., 2021).

Among these machine learning methods, it has been proven that

deep learning has exceptional performance in terms of the accuracy

of classification. Convolutional neural networks (CNN), a leading deep

learning structure for data on Euclidean space, outperform the above

machine learning algorithms in classification accuracy (Craik

et al., 2019). Based on the fast Fourier transform for extracting spec-

tral features of EEG for AD diagnosis, Bi and Wang (2019) developed

a discriminative convolutional Boltzmann machine; Ieracitano et al.

(2019) and Deepthi et al. (2020) proposed a CNN model, respectively.

Based on combining latent factors output by the encoder part of vari-

ational auto-encoder of EEG, Li, Wang, et al. (2021) extracted charac-

teristics of AD. Based on the time-frequency analysis using CWT,

Huggins et al. (2021) proposed an AlexNet model for the classification

of AD, mild cognitive impairment subjects, and HC. With a connec-

tions matrix from EEG, Alves et al. (2021) presented a CNN for classi-

fying AD and schizophrenia. The above CNN applications on AD

classification (Bi & Wang, 2019; Deepthi et al., 2020; Huggins

et al., 2021; Ieracitano et al., 2019; Li, Wang, et al., 2021) focus more

on learning the locally and continuously changed multiscaled features

on the Euclidean space from the EEG signals, neglecting the functional

connectivity features. Although Alves et al. (2021) used the connec-

tion of EEG channels as the CNN input, it neglected the temporal EEG

channels features and the input connections topology feature cannot

be modelled effectively due to the arranged order of EEG channels.

The key convolutional filters on CNN structures in the above applica-

tions cannot fully mine the multiscale topological interactive informa-

tion of EEG channels.

Considering the complexity of EEG signals in the spatial and tem-

poral domain, how to extract more abstract geometric features for

better generalisation using the deep learning methods remains tre-

mendously troubling. The structure–function connectivity network of

EEG is non-Euclidean data because the channels are discrete and dis-

continuous in the spatial domain. Each EEG channel can be considered

as a node and there is a cross-channel interaction between nodes.

Instead, geometric graph-based deep learning methods would provide

a more suitable way to learn the cross-channel topologically associ-

ated features of EEG. Building neural networks under the graph the-

ory, graph convolutional neural networks (GCNs) have been

developed specifically to handle highly multirelational graph data by

jointly leveraging node-specific sequential features and cross-nodes

topologically associative features in the graph domain (Gallicchio &

Micheli, 2010; Gori et al., 2005; Scarselli et al., 2008; Sperduti &

Starita, 1997). In recent 2 years, GCNs have been applied in the diag-

noses of various brain disorders, such as children's ASD evaluation

(Zhang et al., 2021), detection of epileptic (Zeng et al., 2020; Zhao

et al., 2021), seizure prediction (Li, Liu, et al., 2021), and epilepsy clas-

sification (Chen et al., 2020). As far as we are concerned, there are no

AD diagnostic approaches based on GCN-related models.

To enable this application, an adjacency matrix, representing the

topological association between different EEG channels, must be con-

structed as the key input of GCN. EEG functional networks are widely

used in cognitive neuroscience, for example, decision making (Si

et al., 2019), emotion recognition (Li, Liu, et al., 2019), and Schizophre-

nia research (Li, Wang, et al., 2019). Traditional statistical functional

correlation measures include Pearson correlation (PC) (Chen

et al., 2020; Zhao et al., 2021), Tanh nonlinearity (Li, Liu, et al., 2021),
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average correlation coefficients (Zeng et al., 2020), and covariance

(Zhang et al., 2021), which cannot fully represent the complex brain

connectivity. Many advanced methods to measure functional connec-

tivity (FC) have been developed, such as phase locking values (PLV)

and phase lag index (PLI) in the time domain (Franciotti et al., 2019;

Mormann et al., 2000; Van Mierlo et al., 2014), magnitude squared

coherence (MSC) and imaginary part of coherence (IPC) in the fre-

quency domain (Al-Ezzi et al., 2021; Babiloni et al., 2005; Van Diessen

et al., 2015; Wendling et al., 2009), and wavelet coherence (WC) in

the time–frequency domain (Franciotti et al., 2019). These values can

measure the degree of synchronisation between different brain

regions and alterations in complex behaviours produced by the inter-

action among widespread brain regions (Babiloni et al., 2005;

Sakkalis, 2011; Tafreshi et al., 2019; Van Mierlo et al., 2014), which

have been proved important for AD classification using the statistical

(Jalili, 2017; Zhao et al., 2019), and machine learning methods

(Nobukawa et al., 2020; Song et al., 2018; Yu et al., 2019). However,

the research on the combination of FC and GCN is limited, especially

for AD-related research. Using these efficient FCs to construct the

input adjacency matrix of GCN may promisingly provide more insight-

ful information for the brain function interaction and lead to a higher

classification accuracy of brain-related disorders.

In this article, a novel spatial–temporal GCN (ST-GCN) is pro-

posed to classify AD from HC, benefiting from the adjacency matrix

constructed by a variety of FC measures and the raw EEG recordings.

We tested six adjacency matrices based on PC, MSC, IPC, WC, PLV,

and PLI using EEG recordings from patients with AD and HCs. ST-

GCN can jointly leverage the cross-channel topological connectivity

features and channel-specific temporal features. To the best of the

authors' knowledge, this is the first attempt for GCN to distinguish

between AD and HC based on EEG recordings.

2 | METHODS

2.1 | Spatial–temporal graph convolutional
network

In 1997, Sperduti and Starita first adopted neural networks to direct

acyclic graphs (Sperduti & Starita, 1997), which motivated the early

studies on GCNs (Gallicchio & Micheli, 2010; Gori et al., 2005;

Scarselli et al., 2008). Currently, there are two basic approaches to

generalising convolutions to structure graph data forms: spatial-based

and spectral-based GNNs. Spatial-based GNNs define graph convolu-

tions by rearranging vertices into certain grid forms which can be pro-

cessed by normal convolutional operations (Niepert et al., 2016; Yu

et al., 2017). Bruna et al. (2013) presented the first prominent

spectral-based GCNs by applying convolutions in spectral domains

with graph Fourier transforms. Since then, there have been increasing

improvements, approximations, and extensions on spectral-based

GNNs (Defferrard et al., 2016; Henaff et al., 2015; Kipf &

Welling, 2016; Levie et al., 2018) to reduce the computational com-

plexity from O n2
� �

to O nð Þ (Defferrard et al., 2016; Kipf &

Welling, 2016). Visually, a graph convolution can handle the complex-

ity of graph data by generalising a 2D convolution, motivated by the

successful applications of CNNs in Euclidean space (Wu et al., 2020).

Being considered as special graph data, each pixel of an image can be

taken as a node whose neighbours are determined by a filter and a 2D

convolution takes the weighted average of adjacent pixel values of

each node. Similarly, graph convolutions can be performed by taking

the weighted average of a node's neighbourhood information, which

is unordered and variable in size, and different from images.

As shown in Figure 1a, the proposed architecture of ST-GCN is com-

posed of two spatial–temporal convolutional blocks (ST-Conv Blocks),

each of which is formed with one spatial graph convolution layer (Spatial

Graph-Conv) and two sequential convolution layers (Temporal 1D-Conv).

ST-Conv block can be stacked based on the complexity of specific cases.

Layer normalisation is utilised within every ST-Conv Block to prevent

overfitting. The EEG channels X with the adjacency matrix W are uni-

formly processed by ST-Conv Blocks to explore spatial and temporal

dependence coherently. A flattened layer integrates comprehensive fea-

tures to generate the final AD/HC classification.

For comparison, we designed a structure of a classical temporal

convolutional neural network (T-CNN) shown in Figure 1b, inspired by

some related works (Deepthi et al., 2020; Huggins et al., 2021; Li,

Wang, et al., 2021). The difference between these two model struc-

tures is that T-CNN only has EEG channels X at the input without the

adjacency matrix W, and no spatial graph convolution unit is used in

the feature layer in the middle of the T-CNN. Other aspects of T-

CNN are the same as ST-GCN. For brevity, we illustrate the structural

details of each part of ST-GCN in the following.

2.1.1 | Spatial Graph-Conv

Based on the concept of a spectral graph convolution, we introduce

the notion of a graph convolution operator “*G,” multiplying a signal

x�Rn in the spatial space with a kernel Θ,

Θ�Gx¼Θ Lð Þx¼Θ UΛUT� �
x¼UΘ Λð ÞUTx, ð1Þ

where the graph Fourier basis U�Rn�n is a matrix of eigenvectors of

the normalised graph Laplacian L¼ In�D�1
2WD�1

2 ¼UΛUT �Rn�n (In is

an identity matrix, D�Rn�n is the diagonal degree matrix with

Dii ¼
P

jWij, Λ�Rn�n is the diagonal matrix of eigenvalues of L, and fil-

ter Θ Λð Þ is a diagonal matrix). A graph signal x is filtered by a kernel Θ

with multiplication between Θ and the graph Fourier transform UTx

(Shuman et al., 2013).

We utilise Chebyshev polynomials and first-order approximations

(Kipf & Welling, 2016) here to reduce expensive computations of ker-

nel Θ in Equation (1) due to its O n2
� �

complex multiplications. Kernel

Θ can be restricted to a polynomial of Λ as Θ Λð Þ¼
PK�1

k¼0 θkΛ
k , where

θ�RK is a vector of polynomial coefficients and K is the kernel size

determining the maximum radius of the convolution from central

nodes. Chebyshev polynomial Tk xð Þ is traditionally used to approxi-

mate kernels as a truncated expansion of order K�1 as
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Θ Λð Þ≈
PK�1

k¼0 θkTk Λ
~

� �
by rescaled Λ

~
¼2Λ=λmax � In, where λmax

denotes the largest eigenvalue of L (Hammond et al., 2011). Then the

graph convolution in Equation (1) can be rewritten as

Θ�Gx¼Θ Lð Þx≈
XK�1

k¼0

θkTk L
~

� �
x, ð2Þ

where Tk L
~

� �
�Rn�n is the Chebyshev polynomial of order k evaluated

at the scaled Laplacian L
~

¼2L=λmax � In. By recursively computing K-

localised convolutions through a polynomial approximation, the com-

putational cost of Equation (1) can be reduced to O K εj jð Þ as

Equation (2). By stacking multiple localised graph convolutional layers

with a first-order approximation of graph Laplacian, a layer-wise linear

formulation can be defined (Kipf & Welling, 2016). Further assump-

tion λmax ≈2 can be made, due to the scaling and normalisation in

neural networks. Thus, Equation (2) can be simplified to

Θ�Gx≈ θ0xþθ1
2

λmax
L� In

� �
x≈ θ0x�θ1 D�1

2WD�1
2

� �
x， ð3Þ

where θ0 andθ1 are two shared parameters of the kernel. θ0 and θ1

are replaced by a single parameter θ by letting θ0 ¼�θ1 ¼ θ to con-

strain parameters and stabilise numerical performances. By renorma-

lising W and D with W
~

¼Wþ In and D
~

ii
¼
P
j
W
~

ij
separately, graph

convolution can be expressed as

Θ�Gx¼ θ InþD�1
2 WD�1

2

� �
x¼ θ D

~

�1
2
W
~

D
~

�1
2

� �
x: ð4Þ

The graph convolution operator “�G” defined on x�Rn can be

extended to multidimensional tensors. For a signal with Ci channels

X�Rn�Ci , the graph convolution can be generalised to

yj ¼
XCi

i¼1

Θi,j Lð Þxi �Rn,1≤ j≤C0, ð5Þ

with the Ci�C0 vectors of Chebyshev coefficients Θi,j �RK (yj is the

output after graph convolution, Ci and C0 are the sizes of input and

output of the feature maps, respectively). A graph convolution for 2D

F IGURE 1 The flowchart of (a) the proposed ST-GCN framework and (b) the T-CNN framework for comparison. X is sized M*N (M = 25,
representing the length of the mini-epoch channel; N = 23, representing the 23 channels) and the input W is sized N*N. The (i,j)th entry of the
adjacency matrix W denotes spatial coupling correlation strength between the ith and jth of all the 23 different channels, the detailed calculation
of which is presented in section 2.2. Kt is the size of the temporal 1D-Conv filter, set as 3 here. Cl l¼1,2,…,6ð Þ is the number of filters in each
layer. The estimated computational complexity of ST-GCN and T-CNN are 54M and 52M, respectively
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variables is denoted as “Θ�GX” with Θ�RK�Ci�C0 . The input of ST-

GCN is composed of M frames of EEG channels graph as shown in

Figure 1a. Each frame Xt can be regarded as a matrix whose column i

is a Ci-dimensional value of Xt at the ith node in graph Gt, as X�Rn�Ci

(in this case, Ci ¼1). For each time step t of M, the equal graph convo-

lution operation with the same kernel Θ is imposed on Xt �Rn�Ci in

parallel. Thus, the graph convolution can be generalised to 3D vari-

ables, noted as “Θ�G χ” with χ �RM�n�Ci .

2.1.2 | Temporal 1D-Conv

Inspired by Gehring et al. (2017) that CNNs have the superiority of

fast training in sequential-series analysis, we employ an entire convo-

lutional structure on a temporal axis to capture sequential dynamic

behaviours of EEG recordings. As shown in Figure 1a, a sequential

convolutional layer contains a 1D convolution with a width Kt kernel

followed by ReLu (a rectified linear unit function) as a nonlinearity.

For each node in graph G, its corresponding sequential convolution

explores Kt neighbours of input elements, leading to shortening the

length of sequences by Kt�1 each time. Thus, an input of a sequen-

tial convolution for each node can be regarded as a length-M

sequence with Ci channels as Y �RM�Ci . The convolution kernel

Γ �RKt�Ci�C0 is designed to map the input Y to a single output

P�R M�Ktþ1ð Þ� C0ð Þ. Similarly, the temporal convolution can be general-

ised to 3D variables by employing the same convolution kernel Γ to

every channel node in G equally, noted as “Γ �T Y” with Y �RM�n�Ci .

The input and output of ST-Conv Blocks are all 3D tensors. For

input xl �RM�n�Cl of block l, the output xlþ1 �R M�2 Kt�1ð Þð Þ�n�Clþ1

is

computed by

xlþ1 ¼Γl
1 �T ReLU Θl �G Γl

0 �T xl
� �� �

, ð6Þ

where Γl
0 and Γl

1 are the upper and lower temporal kernels within

block l, respectively; Θl is the spectral kernel of a graph convolution;

ReLU �ð Þ denotes a rectified linear unit function. After stacking three

ST-Conv Blocks, the output features are fused as a flattened layer

(Figure 1a). We can obtain a final output Z�Rn�c from the fully con-

nected layer and calculate the classification result by applying a sig-

moid transformation as bCl¼ sig Zωþbð Þ, where ω�Rc is a weight

vector and b is a bias. We use the binary cross-entropy loss to measure

the classification performance.

All models were trained on the CPU of DELL DESKTOP-

D3UM3P9 with the Tensorflow platform in Microsoft Windows

10, and the optimiser used here is the Adam optimisation.

2.2 | Adjacency matrix

The spatial information carried by EEG signals plays an important role

in AD/HC classification (Babiloni et al., 2005; Sakkalis, 2011; Tafreshi

et al., 2019; Van Mierlo et al., 2014). The adjacency matrix W�Rn�n

of each mini-epoch, representing the spatial correlation along with the

channel signals X�Rn�M is one of the inputs of the ST-GCN model

shown in Figure 1a. In some studies on brain disorders based on GCN

(Chen et al., 2020; Li, Liu, et al., 2021; Zeng et al., 2020; Zhang

et al., 2021; Zhao et al., 2021), the relationship of different channels

of EEG is short of effective prior guidance and the adjacency matrix

cannot ensure the utilisation of the coupling information between

each channel. To address these issues, we first apply functional con-

nectivity, which has been proven to be useful in AD classification, to

construct the adaptive adjacency matrix to extract spatial coupling

features.

The raw EEG signals of each channel and the association of chan-

nels are modelled by a graph. The nodes of the graph denote the fea-

ture vector of EEG signals, which are the raw mini-epoch EEG data.

The adjacency matrix is constructed by Pearson correlation analysis

and five functional connectivities of the mini-epoch EEG channels

without any preset threshold to avoid the potential risk caused by

manual selection, such as in Chen et al. (2020), Zhang et al. (2021),

and Zhao et al. (2021). Specifically, the (i,j)th entry of the adjacency

matrix W denotes spatial coupling strength between the ith and jth

channels. Thus, W indicates that all channels are interconnected with

different weights. Pair-wise correlation analysis among these 23 differ-

ent channels is conducted using five functional connectivities and

Pearson correlation for comparison, the calculation of which is pre-

sented below.

2.2.1 | Pearson correlation

The most well-known functional connectivity measure is the correla-

tion, also called the Pearson correlation coefficient. It calculates the

instantaneous linear interdependency between two signals based on

the amplitudes of the signals in the time domain and it ranges from

�1 to 1. The Pearson correlation coefficient between signal X and Y

can be defined as follows:

ρxy ¼
E x�μxð Þ y�μy

� �� 	
σxσy

, ð7Þ

where E is the expected value, μx and μy are the mean values and σx

and σy are the standard deviations of X and Y time series.

2.2.2 | Magnitude squared coherence

MSC is a linear method to estimate the interconnections between the

PSD (power spectral density) of two signals in the frequency domain.

The MSC of signals X and Y can be written as

MSCxy fð Þ¼C2
xy ¼

Sxy fð Þ2

Sxx fð Þj j� Syy fð Þj j , ð8Þ

where Sxx fð Þ and Syy fð Þ are the PSD of signal X and Y, respectively,

and Sxy fð Þ is the cross PSD at frequency f.
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2.2.3 | Imaginary part of coherence

To avoid the volume conduction effects, instead of looking at the

magnitude squared coherency, the imaginary part of the coherency is

calculated by

ICxy ¼RCxyþ ICxy: ð9Þ

2.2.4 | Wavelet coherence

WC is generally acknowledged as a qualitative estimator that can rep-

resent the dynamic relations in the time–frequency domain between

signals (Tafreshi et al., 2019). The wavelet transforms is defined as the

convolution of the input x with a Wavelet family θ uð Þ,

Wx t, fð Þ¼
ðþ∞

�∞

x uð Þ �θ�t,f uð Þdu: ð10Þ

Given input signals x and y, wavelet cross-spectrum around time

t, and frequency f can be derived by the Wavelet transforms of x

and y,

CWxy t, fð Þ¼
ðtþδ=2

t�δ=2

Wx τ, fð Þ �W�
y τ, fð Þ, ð11Þ

where * defines the complex conjugate and δ is assumed as a

frequency-depending time scalar. WC at the time t and frequency f is

derived as

WCxy t, fð Þ¼ CWxy t, fð Þj j
CWxx t, fð Þ�CWyy t, fð Þj j1=2

: ð12Þ

2.2.5 | Phase locking value

Phase synchronization assumes that two oscillation signals without

amplitude synchronization can have phase synchronization. The PLV

is high-frequently utilised to obtain the strength of phase synchronisa-

tion (Van Mierlo et al., 2014). The instantaneous phase of a signal x is

given by

;x tð Þ¼ arctan
x
~
tð Þ

x tð Þ , ð13Þ

where x
~
tð Þ is the Hilbert transform of x tð Þ, defined as

x
~
tð Þ¼1

π
PV

ðþ∞

�∞

x τð Þ
t� τ

dτ, ð14Þ

where PV refers to the Cauchy principal value. The PLV for two sig-

nals is then defined as

PLV¼ 1
N

XN�1

j¼0

ej ;x jΔtð Þ�;y jΔtð Þð Þ












, ð15Þ

where Δt defines the sampling period and N indicates the sample

number of each signal. The range of PLV is between 0 and 1, where

0 shows a lack of synchronization and 1 indicates strict phase

synchronization.

2.2.6 | Phase lag index

Similarly to the calculation of PLV, PLI captures the asymmetry of the

distribution of phase differences between two signals and is calcu-

lated based on the relative phase difference between the two signals

PLI¼ E sign ;x jΔtð Þ�;y jΔtð Þð Þ½ �j j, ð16Þ

where ;x jΔtð Þ�;y jΔtð Þ is the phase difference between two signals,

sign stands for signum function, E is the expected value, and jj indi-
cates the absolute value. PLI values range between 0 and 1, where

0 can indicate possibly no coupling and 1 refers to perfect phase

locking.

2.3 | Data set and preprocessing

All patients and healthy controls included in this work were

recruited in the Sheffield Teaching Hospital memory clinic and all

provided written informed consent. The EEG study underwent

ethics approval by the Yorkshire and The Humber (Leeds West)

Research Ethics Committee (reference number 14/YH/1070). AD

patients had their diagnosis confirmed between 1 month and up to

2 years before recording their EEG while they had mild to moderate

cognitive deficits, according to their Mini-mental state examination.

All AD subjects had brain MRI scans to eliminate other alternative

causes of dementia. For the aged and gender-matched HC cohort,

normal MRI brain scans and cognitive assessments were required

before their EEG recordings. Further details about recruitment, diag-

nostic criteria, and study design can be found in the previously pub-

lished work (Blackburn et al., 2018).

All participants were younger than 70 years old, including 19 AD

patients and 20 HC participants. EEG recordings were undertaken

with an XLTEK 128-channel headbox (Optima Medical Ltd.) and

Ag/AgCL electrodes at a sampling frequency of 2 kHz by implement-

ing a modified 10–10 overlapping a 10–20 international system of

electrode placement, with a referential montage (linked earlobe refer-

ence). Thirty-minute resting state (task-free – participants were

instructed to rest and refrain from thinking anything specific) EEG

recordings were obtained from each participant including sustained

periods of keeping their eyes closed (EC) alternating with periods dur-

ing which they kept their eyes open (EO). The recordings obtained

were subsequently reviewed by a neurophysiologist—on an XLTEK
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review station. For each participant, three 12-s artefact-free epochs

of EC and EO were selected. To avoid volume conduction effects

related to the common reference electrode, 23 bipolar derivations

were created: F8–F4, F7–F3, F4–C4, F3–C3, F4–FZ, FZ–CZ, F3–FZ,

T4–C4, T3–C3, C4–CZ, C3–CZ, CZ–PZ, C4–P4, C3–P3, T4–T6, T3–

T5, P4–PZ, P3–PZ, T6–O2, T5–O1, P4–O2, P3–O1, and O1–O2.

F IGURE 2 The adjacency matrices of one mini-epoch of AD from six FC methods
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For both EO and EC of 19 ADs and 20 HCs, there are three

artefact-free epochs, each of which lasts 12 s. We first applied the

Butterworth filter for every epoch to subsample the EEG signals at

100 Hz and obtained the corresponding six bands (Delta, Theta,

Alpha, Beta, Gamma, and Full band of 0–48 Hz). Then, data segmenta-

tion is utilised to obtain 5472 mini-epochs for ADs and 5760 mini-

F IGURE 3 The adjacency matrices of one mini-epoch of HC from six FC methods
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epochs for HCs with a window size of 25 data points without overlap-

ping. For each mini-epoch signal, six functional connectivities (PC,

MSC, IPC, WC, PLV, and PLI) were calculated to obtain the

corresponding adjacency matrices. Finally, for each measure of EC or

EO, 3744 samples (1824 for ADs and 1920 for HCs) were selected

randomly covering two-thirds of each 12 s epoch and split for

TABLE 1 Classification accuracy for
HC and AD in EC and EO states within
six bands by ST-GCN with different
adjacency matrices

Eye states FC Delta Theta Alpha Beta Gamma Full

EC PC 72.1 78.2 78.3 82.5 81.2 90.3

MSC 72.2 78.1 78.9 81.9 80.8 90.2

IPC 73.8 78.4 80.2 82.3 82.1 90.7

WC 73.9 78.7 81.0 83.2 82.5 92.3

PLV 73.0 78.6 79.8 82 82.2 91.1

PLI 73.9 78.2 79.6 82.3 81.1 92.1

EO PC 70.9 75.6 76.8 77.4 75.5 88.1

MSC 71.3 75.7 75.4 77.8 75.5 88.3

IPC 71.0 76.0 77.4 78.1 75.6 88.7

WC 71.2 76.8 78.2 78.5 76 89.4

PLV 71.0 75.8 76.0 78.1 75.9 87.2

PLI 70.3 75.0 75.6 76.5 75.8 87.9

Abbreviations: IPC, imaginary part of coherence; MSC, magnitude squared coherence; PC, Pearson

correlation; PLI, phase lag index; PLV, phase locking value; WC, wavelet coherence.

TABLE 2 Classification accuracy for
HC and AD in EC and EO states within
six bands by T-CCN with different

adjacency matrices

Eye states FC Delta Theta Alpha Beta Gamma Full

EC PC 69.0 76.7 77.3 80.3 75.9 88.1

MSC 70.4 76.1 74.0 80.7 74.8 86.8

IPC 69.4 77.8 77.1 78.2 77.5 88.8

WC 71.0 78.0 76.7 80.3 80.5 89.0

PLV 71.4 78.2 76.9 77.9 77.4 88.1

PLI 68.5 76.6 78.7 80.6 75.5 87.4

EO PC 67.9 75.3 77.2 71.3 74.3 85.6

MSC 67.0 74.8 76.9 75.0 69.8 85.9

IPC 65.0 76.1 76.5 72.9 74.1 86.4

WC 70.1 75.9 77.9 76.2 73.7 86.3

PLV 65.8 74.5 75.9 71.5 73.5 85.0

PLI 67.3 74.9 76.9 71.6 71.9 85.7

Abbreviations: IPC, imaginary part of coherence; MSC, magnitude squared coherence; PC, Pearson

correlation; PLI, phase lag index; PLV, phase locking value; WC, wavelet coherence.

F IGURE 4 Training and convergence process for Full band data with WC connectivity by the ST-GCN model
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10-folder cross-validation to generate the training data set and validation

data set. The remaining 1872 samples (912 for ADs and 960 for HCs)

were considered as the testing data set. The purpose of the validation

data set during training is to obtain the model loss on the validation data

set after the optimization of each epoch. If the loss of the validation data

set is decreasing, we save the optimised model until the end of all training

epochs, which can prevent the model from overfitting.

3 | RESULTS

3.1 | Adjacency matrix from different functional
connectivities

To compare the adjacency matrices calculated by six functional con-

nectivities, we take the Full band of one mini-epoch of AD (Figure 2)

and HC (Figure 3) as an example to see their difference. For the mini-

epoch signal of both AD and HC, PC generates higher coupling

between channels than the five functional connectivity methods. The

adjacency matrix calculated by MSC is relatively lower than the others

and WC and PLV show similar coupling distribution with PC but with

overall lower strength. IPC produces the most uniform connection dis-

tribution. PLI produces the sparsest connection distribution, and there

are some strong connection points close to 1. Therefore, adjacency

matrices from the six calculation methods have differences in the cou-

pling analysis between EEG channels, which may have an impact on

the classification performance of the ST-GCN method.

3.2 | Overall classification performance

We conducted a direct comparison of classifying AD and HC participants

using the extracted six adjacency matrices by training the ST-GCN and T-

CNN methods on the EO and EC states and six frequency bands inde-

pendently. Tables 1 and 2 show the corresponding testing accuracies

from ST-GCN and T-CNN models, respectively. For both methods, the

classification accuracy of all frequency bands and adjacency matrix calcu-

lation methods in the EC state is higher than the corresponding EO state,

which is consistent with previous research results (Barry et al., 2007;

Wan et al., 2019). For different frequency bands, when the 1–48 Hz full-

F IGURE 5 The averaged WC adjacency matrices of ADs and HCs
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band signal and the corresponding adjacency matrix are used as the input,

the mean classification accuracies are about 91.1% by ST-GCN and

88.0% by T-CNN, respectively, which are higher than all sub-bands data.

For ST-GCN, the mean classification accuracy of Beta band data is the

highest (about 82.3% for EC and 77.7% for EO), and the mean classifica-

tion accuracy of Delta band data is the lowest (about 73.1% for EC and

71.0% for EO). For T-CCN, the mean classification accuracy of Alpha

band data is the highest (about 76.8% for EC and EO), and the mean clas-

sification accuracy of Delta band data is the lowest (about 68.6% for EC

and EO). Overall, ST-GCN outperforms T-CNN on both eye states and

almost all sub-band data, which indicates that spatial topology constraints

can indeed mine EEG features, resulting in improved classification

accuracy.

It is worth noting that for different adjacency matrix calculation

methods, the classification accuracy of the WC method is better than

all other methods, which proves the effectiveness of time–frequency

analysis for extracting coupling features. For ST-GCN, the overall

accuracy of the five functional connection methods is higher than that

of the PC method, indicating that the usage of functional connectivity

as the adjacency matrix can improve the performance of the ST-GCN

model to a certain extent.

The training and convergence process for Full band data with WC

connectivity by the proposed ST-GCN model is shown in Figure 4.

3.3 | Wavelet coherence as adjacency matrix

To further explore the effectiveness of WC which has the best classi-

fication performance as the adjacency matrix, we conduct a statistical

analysis of the WCs of all AD and HC. By averaging the WC adjacency

matrices of the full band of all EO and EC mini-epochs for AD and HC,

respectively, as shown in Figure 5, we can analyse their statistical

characteristics. For ADs, the EC state has a slightly higher coupling

strength than EO in the temporo-occipital area (the middle part of the

adjacency matrix), while for HCs, the EC state has a bit higher overall

coupling strength than EO. For both EO and EC, the strongest inter-

channel correlation of AD is less than 0.8 (the middle part of the left

two images of Figure 5 – temporo-occipital area), while HC has some

F IGURE 6 Threshold of averaged WC adjacency matrices of ADs and HCs

5204 SHAN ET AL.



F IGURE 7 The 3D brain mapping of averaged WC adjacency matrices for EO state of ADs

F IGURE 8 The 3D brain mapping of averaged WC adjacency matrices for EO state of HCs
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F IGURE 9 The 3D brain mapping of averaged WC adjacency matrices for EC state of ADs

F IGURE 10 The 3D brain mapping of averaged WC adjacency matrices for EC state of HCs
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interchannel correlations close to 1 (the upper-left frontocentral and

bottom-right posterior area of the right two images of Figure 5). For

both EO and EC, the connectivity between ADs channels is lower

than that of HCs in the bottom-right corner (posterior area).

To visually show the connectivity between the channels in the

bottom-left corner for both EO and EC states, we thresholded the left

two AD adjacency matrices in Figure 5 to screen out the channels

with connectivity below 0.15. Figure 6 reports the corresponding

cross-channel indexes for HCs. Through the software BrainNet, the

3D connectivity distributions in the brain of ADs and HCs are visually

displayed for EO (Figures 7 and 8) and EC (Figures 9 and 10), respec-

tively. Comparing Figures 7 and 8 for EO, the connectivities of HCs

between the channels at the front and back parts of the brain are

much higher than those of ADs. P4-O2 to T6-O2 and F4-Fz to Fz-Cz

have the highest coupling strengths (close to 0.6) for channel pairs of

HCs, and the corresponding coupling strengths of ADs are close to

0. Comparing Figures 9 and 10 for EC, the connectivity of HCs

between the channels at the back of the brain is much higher than

that of ADs. C3-Cz to P3-O1 and P3-O1 to T6-O2 have the highest

coupling strengths (close to 0.6) for channel pairs of HCs, and the cor-

responding coupling strengths of ADs are as low as 0.1.

4 | CONCLUSIONS

We proposed a Spatial–temporal Graph Convolutional Network (ST-

GCN) for classifying Alzheimer's disease and Healthy Controls groups

by jointly leveraging cross-channel topological association features

and channel-specific temporal features of EEG recordings. Different

from the currently leading GCN applications for diagnosing brain dis-

orders, this method utilises brain functional connectivity methods for

exploring the complex interactive information between EEG channels

as well as the single-channel-based dynamic information. The main

goal of this work was to determine whether the cross-channel topo-

logically associated features constrained by the functional connectiv-

ity can reveal more hidden information in data and extend the

applicability of the GCN-based algorithm. For the clinical AD and HC

EEG recordings, ST-GCN has exhibited superior performance in

achieving the highest classification accuracy with wavelet coherence

as the adjacency matrix. For the tested data set, the overall classifica-

tion accuracy of ST-GCN is higher than the classical T-CNN method

on both eye states and different frequency bands, which suggests that

spatial topology constraints can indeed mine brainwave features and

thereby improve the classification accuracy. Different from existing

studies for AD diagnosis that are based on either topological brain

function characteristics of EEG (Fan et al., 2018; Jalili, 2017; Tait

et al., 2020; Tylová et al., 2018; Zhao et al., 2019) or temporal

dynamic features (Bi & Wang, 2019; Deepthi et al., 2020; Huggins

et al., 2021; Ieracitano et al., 2019; Li, Wang, et al., 2021), the pro-

posed ST-GCN considers both the adjacency matrix of functional con-

nectivity from multiple EEG channels and corresponding dynamics of

signal EEG channel simultaneously. It has the potential to pick up the

anomaly of AD not only in the frequency response of local areas but

also in the functional connectivity across different regions. Further-

more, the visualisation of wavelet coherence adjacency matrices

increases the transparency of this solution by providing evidence of

brain anomaly in terms of functional connectivity. This investigation is

important as it will increase the trust in the developed AI-based solu-

tion. This algorithm lays a potentially effective strategy for the appli-

cations of other brain disorders.

In the present study, due to the limited number of subjects in the

data set, the Leave-One-Subject-Out or cross-subject validation is not

discussed to avoid biased conclusions caused by data insufficiency.

The accuracy of a hand-out cross-subject validation by ST-GCN and

T-CNN can be found in Tables S1 and S2, Supporting Information. In

this case, 65% of the subjects were used for training and the remain-

ing 35% were used for testing. Although the overall accuracy is

dropped significantly for both methods, the proposed ST-GCN still

outperforms T-CNN.

To reduce volume conduction effects from a common reference,

bipolar derivations were used to assess the degree of differences

between various pairs of electrodes for two different cohorts of sub-

jects. With this approach—the use of bipolar pairs of electrodes—the

effects of volume conduction are reduced but not eliminated. We rec-

ognise that this work is based on a sensor level scalp EEG analysis,

and we do not claim to be able to precisely localise the spatial charac-

teristics underpinning the EEG sensor findings.
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