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Abstract

Angular measurements are often modeled as circular random variables, where there are natural
circular analogues of moments, including correlation. Because a product of circles is a torus, a
a-dimensional vector of circular random variables lies on a ¢-dimensional torus. For such vectors
we present here a class of graphical models, which we call torus graphs, based on the full
exponential family with pairwise interactions. The topological distinction between a torus and
Euclidean space has several important consequences.

Our development was mativated by the problem of identifying phase coupling among oscillatory
signals recorded from multiple electrodes in the brain: oscillatory phases across electrodes
might tend to advance or recede together, indicating coordination across brain areas. The data
analyzed here consisted of 24 phase angles measured repeatedly across 840 experimental trials
(replications) during a memory task, where the electrodes were in 4 distinct brain regions,

all known to be active while memories are being stored or retrieved. In realistic numerical
simulations, we found that a standard pairwise assessment, known as phase locking value, is
unable to describe multivariate phase interactions, but that torus graphs can accurately identify
conditional associations. Torus graphs generalize several more restrictive approaches that have
appeared in various scientific literatures, and produced intuitive results in the data we analyzed.
Torus graphs thus unify multivariate analysis of circular data and present fertile territory for future
research.
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Introduction.

New technologies for recording electrical activity among large networks of neurons have
created great opportunities to advance neurophysiology, and great challenges in data analysis
(e.g., Steinmetz et al. (2018)). One appealing idea, which has garnered substantial attention,
is that under certain circumstances, long-range communication across brain areas may be
facilitated through coordinated network oscillations (Buzsaki and Draguhn (2004), Ching et
al. (2010), Fell and Axmacher (2011), Sherman et al. (2016)). To demonstrate coordination
among oscillatory networks, computational neuroscientists have examined phase coupling
across replications (trials) of the experiment. That is, when the phase of an oscillatory
potential at a particular location, and a particular latency from the beginning of the trial,

is measured repeatedly it will vary; phase coupling refers to the tendency of two phases,
measured simultaneously at two locations, to vary together, i.e., to be associated, across
trials. The data we analyze here consist of 24 phase angles recorded simultaneously, on
each of many trials, from several brain regions known to play a role in memory formation
and recall (Brincat and Miller (2015, 2016)), prefrontal cortex (PFC) and three sub-areas

of the hippocampus, the dentate gyrus (DG), subiculum (Sub) and CA3. Being angles,
phases may be considered circular random variables. A commonly-applied measure of
phase coupling, known as Phase Locking Value (PLV), is an estimator of the natural
circular analogue of Pearson correlation under certain assumptions (which we review).
PLV, however, like correlation, cannot distinguish between direct association and indirect
association via alternative pathways. Thus, a large PLV between PFC and DG does not
distinguish between direct coupling and indirect coupling via a third area, such as via CA3
(neural activity in PFC could be coupled directly with that in CA3, and that in CA3 with that
in DG). To draw such a distinction we need, instead, a circular measure that is analogous

to partial correlation. More generally, we wish to construct circular analogues of Gaussian
graphical models. Because key properties of Gaussian graphical models are inherited by
exponential families, and the product of circles is a torus, we consider exponential families
on a multidimensional torus and call the resulting models forus graphs. \We used torus
graphs to provide a thorough description of associations among the 24 repeatedly-measured
phases in the Brincat and Miller data and, in particular, we found strong evidence that the
association between activity in PFC and DG is indirect, via both CA3 and Sub, rather than
direct.

When circular random variables are highly concentrated around a central value, there is
little harm in ignoring their circular nature, and multivariate Gaussian methods could be
applied. However, in most of the neurophysiological data we have seen, including those
analyzed here, the marginal distributions of phases are very diffuse, close to uniform, so the
topological distinction between the circle and the real line is important. The torus topology
is consequential not only for computation of probabilities but also for the interpretation

of association. Figure 1 displays the inability of rectangular coordinates to preserve the
clustering of points around a diagonal line under strong positive association. Furthermore,
unlike the Gaussian case where a single scalar, correlation, describes both positive and
negative association, on the torus, positive and negative association each have both an
amplitude and a phase, so each pairwise association is, in general, described by 2 complex
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numbers. Also, in the Gaussian case, it is possible to interpret the association of two
variables without knowing their marginal concentrations. This is no longer true for torus
graphs.

After defining torus graphs and providing a few basic properties in Section 2, in Section 3
we consider several important alternative families of distributions for multivariate circular
data that have appeared in the literature, and show that they are all special cases of torus
graphs. In Section 4, we step through the interpretation of phase coupling in torus graphs by
considering in detail the bivariate and trivariate cases. In Section 5, we provide estimation
and inference procedures and, in Section 6, document via simulation studies the very good
performance of these procedures in realistic settings. Our analysis of the data appears in
Section 7 and we make a few closing remarks in Section 8.

2. Torus graph model.

Suppose X is a a-dimensional random vector with jth element Xjbeing a circular random
variable, which may be expressed as an angle in [0, 2), though other choices of angular
intervals, such as [-r, ), are equivalent. When d'= 2, X lies on the product of two circles (a
torus), and in general it lies on a multidimensional torus. When considering phase coupling
in neural data, X represents a vector of phase angle values extracted from oscillatory signals
for a single time point from each of d'signals, with repeated trials providing multiple
observations.

The torus graph model may be developed by analogy to the multivariate Gaussian
distribution, a member of the exponential family that models dependence between d'real-
valued variables. In general, for a random vector Y, an exponential family distribution

is specified through a vector of natural parameters 7 that multiply a vector of sufficient
statistics S(y) summarizing information from the data that is sufficient for the parameters
(Wainwright et al. (2008)) and has a density of the form:

pvim)  exp(n’ Sm)).

In the bivariate Gaussian distribution, Y € R? and the sufficient statistics corresponding to
the natural parameters are y and yy 7, which describe the first- and second-order behavior

of the variates. For a vector of angular variables X € [0, 277)2, we follow Mardia and
Patrangenaru (2005) by representing the angles using rectangular coordinates on the unit
circle as Y1 = [cos.Xy, sinXj] and Y, = [c0s X5, sinX3]. The first-order sufficient statistics are
y1 and y,. The second-order behavior is described by:

COS X1 COS X COS X] sin x)

Y2 = lin X1 cos xp sinxpsinxy|’

This choice of sufficient statistics leads to the following natural exponential family density
parameterized by = [n1, 7, M2l
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COS X1 COS X7

CoS X r]cos x2 7| cos x1 sin xp

p(x;m)  exp|ni (1)

sin xy 21 sin X 2l sin X1 COS X2

sin x1 sin xp

The first two terms correspond to marginal circular means and concentrations of each
variable, while the third term is a pairwise coupling term describing dependence between the
variables. In the absence of pairwise coupling, the marginal distributions are all von Mises
(Fisher (1993), p. 48), and if d= 1, the torus graph model is itself von Mises. Extending
Equation (2.1) to d> 2 yields

COS Xj COS Xy
d

p(x;m) o expl Y. nf
/=

Cos X CoS Xj S1n Xy

T
+ 2 : (22)
<k $in x; COS X

sin Xj
S Xj S1n Xy

The normalization constant is intractable, though numerical approximations may be used in
the bivariate case (Kurz and Hanebeck (2015)).

Applying trigonometric product-to-sum formulas to the pairwise coupling terms of Equation
(2.2) yields an equivalent, alternative parameterization in terms of natural parameters ¢

cos(x; — xi

xé) i o7 CoS x; Z o sin(x; — xy)
; il + i . 2.3
p(x ocexpj=1 i sinx, P chos(xj+xk) 23)

sin(xj + xk)

We define a d-dimensional torus graphto be any member of the family of distributions
specified by Equations (2.2) or (2.3). In the form of Equation (2.3), the sufficient statistics
involving only a single angle are

S}(x) = [COS(XJ'), sin(xj-)]T,

and the sufficient statistics involving pairs of angles are

S%k(x) = [COS(Xj - xk), sin(Xj - xk), COS(Xj + xk), sin(xj + xk)]T.

We will use gand S = [S1,52] to refer to the full vectors of parameters and sufficient
statistics for all angles. The natural parameter space is given by

o= [¢: [o ’ zﬂ)dexp(d)TS(x))dx < oo],
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2
which implies that ¢ € R?? (because each angle has two marginal parameters, and each
unique pair of angles has four coupling parameters, leading to 2d+ 4[a(d - 1)/2] = 2
parameters).

We prefer the parameterization of Equation (2.3) because it offers a simple interpretation:
the sufficient statistics containing phase differences correspond to positive rotational
dependence between the angles, while the sufficient statistics containing phase sums
correspond to negative rotational (or reflectional) dependence. Positive rotational
dependence occurs when phase differences are consistent across observations, that is, X

= Xi~ Eor Xj~ X+ &, for some angle £ Then conditionally on X = x;, X is

obtained by rotating from x;by approximately £ Reflectional dependence instead refers to
consistency in the phase sums so that Xy ~ —Xj+ £ meaning that conditionally on X;=

Xj, Xk is obtained by rotating from —x;by approximately £ To demonstrate how each type
of dependence might arise in repeated observations of neural oscillations, we show pairs of
phase angles under each type of dependence in Klein et al. (2020a), Figure S2; in addition,
bivariate torus graph densities dominated by each type of dependence are displayed in Klein
et al. (2020a), Figure S1. While we have observed both kinds of dependence in neural phase
angle data, rotational dependence appears to dominate in the data we analyze in this paper
(see Section 7).

2
Because the natural parameter space is R>¢ and the a-dimensional torus is compact, the
full 2c2-dimensional exponential family is regular (see Brown (1986), p. 2). We call the full
family a forus graph model and we summarize its properties, given above, in the following
theorem.

Theorem 2.1 (Torus graph model). The d-dimensional torus graph model is a regular full
exponential family. Equation (2.3) provides a reparameterization of the family in Equation
(2.2) in which the expectations of the sufficient statistics are the first circular moments and,
for d= 2, the second circular moments represent rotational and reflectional dependence

between pairs of variables. In Equation (2.3), the natural parameter has components ¢; R>
corresponding to the first circular moment of Xjand ¢ i € R* corresponding to the second
circular moments representing dependence between X; and Xj.

We prove Theorem 2.1 in Klein et al. (2020a), Section S1 by writing the angles as complex
numbers and considering the complex first moments and complex-valued covariances
between the variables.

Because the torus graph is an exponential family distribution with sufficient statistics
corresponding to first circular moments and to pairwise interactions between variables, it

is similar to the multivariate Gaussian distribution, and, as in a Gaussian graphical model,
the parameters correspond to a conditional independence graph structure. Specifically, as we
state in Corollary 2.1 and prove in Klein et al. (2020a), Section S3, the pairwise coupling
parameters g correspond to the structure of an undirected graphical model, where an edge
is missing if, and only if, the corresponding pair of variables are conditionally independent
given all the other random variables. This suggests that an undirected graphical model
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structure may be learned through inference on the pairwise interaction parameters, or by
applying regularization in high dimensions to shrink the pairwise interaction parameters.

Corollary 2.1 (Torus graph properties). The d-dimensional torus graph model has the
following properties.

1. It is the maximum entropy model subject to constraints on the expected values of
the sufficient statistics.

2. In the torus graph model, the random variables X and Xy are conditionally
independent given all other variables if and only if the pairwise interaction terms
involving X; and X vanish (that Is, if the entire vector ¢ = 0 in the density of
Equation (2.3)).

Another interesting property of the torus graph model, given in Theorem 2.2 and proven

in Klein et al. (2020a), Section S6, is that the univariate conditional distributions of one
variable given the rest are von Mises, enabling Gibbs sampling to be used to generate
samples from the distribution. In addition, Theorem 2.2 shows torus graphs are similar to
other recent work in graphical modeling in which the joint distribution is specified through
univariate exponential family conditional distributions (Chen, Witten and Shojaie (2015),
Yang et al. (2015)).

Theorem 2.2 (Torus graph conditional distributions). Let X_y be all variables except
Xy Under a torus graph model, the conditional density of Xy given X_y is von Mises,
specifically,

1
p(xg | X— s ) = WCXP(A cos(xg — 4)),

where 1, denotes the modified Bessel function of the first kind of mth order and Aand A\ are
defined as
A ) \/

A= arctan(

2

Z Ly, cos(Vm)) +

2
2 Ly, sin(Vy,)|
2m L sin(Vy,) "
2im L cos(V ) )

where

T

L=[kp.d. k], V= [uk,x—k,X—k+h2> - X_k —X—k"'%v

and ¢ denoting all coupling parameters involving index k; h;j= =1 ifj< kandh;=1
otherwise.
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Important subfamilies of the torus graph model.

In this section, we discuss some important subfamilies of the torus graph model that are
particularly relevant to the application to neural data. In particular, for neural phase angle
data, the marginal distributions are often nearly uniform, prompting consideration of a
uniform marginal model in which the parameters ¢, corresponding to the first moments of
each variable are set to zero, resulting in a model with uniform marginal terms. In addition,
while in our experience neural phase angle data exhibit both rotational and reflectional
covariance, in many data sets, the primary form of dependence is rotational, prompting

us to consider a submodel with parameters corresponding to reflectional dependence set
to zero, which we will call the phase difference submodel since all pairwise relationships
are described by the sufficient statistics involving x;— xx. A subfamily that combines
these two (that is, restricts the torus graph to have marginal uniform distributions and no
reflectional dependence) coincides with the models of Zemel, Williams and Mozer (1993)
and Cadieu and Koepsell (2010), which were developed from Boltzmann machines and
coupled oscillators, respectively.

The uniform marginal model, phase difference model, and a phase difference model with
uniform margins all correspond to affine restrictions on the parameter space. This implies
(see Klein et al. (2020a), Section S2) that each is itself a regular exponential family, so that
each inherits many nice properties, such as concavity of the loglikelihood function, as a
function of the natural parameter. Most previous work in multivariate circular distributions
has focused on the so-called sine model (e.g., Mardia, Taylor and Subramaniam (2007)),
which is again a subfamily, but it is not itself a full regular exponential family and does
not, in general, have a concave loglikelihood function. As a result, estimation and inference
are less straightforward than for either the torus graph model or the full regular exponential
family submodels (Mardia, Kent and Laha (2016)). We summarize properties of these
subfamilies in Theorem 3.1, which is proven in Klein et al. (2020a), Section S2.

Theorem 3.1 (Torus graph subfamilies). 7he uniform marginal model, the phase difference
model, and a model combining both parameter space restrictions, form full regular
exponential families but the sine model does not.

We note that the sine model may provide parsimonious fits to data for which the marginal
distributions appear unimodal. Even though the torus graph is a full regular exponential
family, and is therefore identifiable, when the data are highly concentrated it may be hard
to estimate all four coupling parameters, a phenomena we explore with simulations in

Klein et al. (2020a), Figure S3. Neural phase angle data, however, often tend to have low
concentrations while still exhibiting strong pairwise dependence (Figure 9). As shown in
Mardia, Taylor and Subramaniam (2007), when the concentration is low relative to the
pairwise interaction strength, the sine model fitted density enters a regime of multimodality.
In Section 7 we demonstrate lack of fit of the sine model to our neural data.
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4. Phase coupling in torus graphs.

In this section, we discusss the distinction between bivariate measures of phase coupling,
such as PLV, and multivariate measures. In Section 4.1, we briefly review bivariate phase
coupling measures based on the marginal distributions of pairwise phase differences. In
Sections 4.2 and 4.3 we investigate bivariate and trivariate examples analytically. We show
that when a trivariate distribution of angles follows a torus graph, the marginal distributions
of pairwise phase differences may be influenced by the marginal distributions of each
variable and by indirect coupling through other nodes. This fundamental limitation of
bivariate phase coupling measures can produce inaccurate phase coupling descriptions in
multivariate systems. For the special case of phase difference models with uniform margins,
in Section 4.4 we propose a transformation of the torus graph parameters that produces

a generalization of PLV to multivariate data (where coupling between two variables is
measured conditionally on all other variables), having the nice feature that, like PLV, it falls
between 0 and 1.

4.1. Bivariate phase coupling measures.

The most common bivariate phase coupling measure between angles X;and Xj is the Phase
Locking Value (PLV) (Lachaux et al. (1999)), defined by

N
Pyo=y X exeli(? = x| 1)
n=

where x§") is the nth observation of ;.

We have used the notation ﬁjk to indicate it may be viewed as an estimator of its

theoretical counterpart FPj. In Klein et al. (2020a), Section S7, we show that Pj corresponds
to a measure of positive circular correlation under the assumption of uniform marginal
distributions. The value of Py falls between 0 and 1, with 0 indicating no consistency in
phase differences across trials and 1 indicating identical phase differences across trials.

One way to assess significance of ﬁjk is Rayleigh’s test for uniformity of the phase
differences (Kass, Eden and Brown (2014), p. 268); other assessments of significance
typically involve permutation tests or comparison to non-task recording periods (Rana, Vaina
and Hamaldinen (2013)).

A similar approach to characterizing bivariate phase coupling follows from considering
the univariate random variable Y= Xj— Xj. If Yjis distributed as von Mises with
concentration parameter x, then

~ (&)
T 42
where & is the maximum likelihood estimator for x (Forbes et al. (2011), p. 191). More
generally, any measure of the concentration of the marginal distribution of phase differences
around a mean direction may be used as a measure of bivariate phase coupling (Aydore,
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Pantazis and Leahy (2013)). We will refer to measures based on the marginal distribution of
phase differences as bivariate phase coupling measures.

4.2 Marginal distribution of phase differences in a bivariate torus graph.

Because bivariate phase coupling measures are based on the marginal distributions of phase
differences, we investigate here the form of the marginal phase difference distributions in a
bivariate torus graph model to determine how the torus graph parameters influence the phase
differences. For the most straightforward and analytically tractable exposition, we consider
the bivariate phase difference model. We will use the notation

)k = ajie B vk 6]

to refer to elements of the pairwise coupling parameter vector, and use trigonometric
identities to write the marginal terms as a function of xand u (see Klein et al. (2020a),
Section S2, for details). Then the bivariate phase difference model density is

2

p(x1,x2) x expf{ a2 cos(x] — x2) + 12 sin(x] — x2) + Z Kj cos(xj- - Mj) .
j=1

Let W= X1 — Xo(mod 2 ) be the phase differences wrapped around the circle so that
We [0, 2). As shown in Klein et al. (2020a), Section S4, the unnormalized theoretical
distribution of W is a product of two functions:

pw(w) « f(w;x, p) - g(w; aro, fi2). (43)

where

floix, p) = 10(\/K12 + K% + 2k1K2 cos(w — (41 — 12)))

and

g(w; ¢12) = exp[,/(a%z + ﬂ%z) cos(co - arctan(%))] ) (4.4)

The first factor, 7, is proportional to the density of the difference of two independent von
Mises random variables with concentrations «, x» and means 4, (6 (Mardia and Jupp
(2000), p. 44) and reflects the influence of the marginal distributions of X; and X5 on

the phase differences. Such convolved densities are unimodal on [0, 27) with mode 14 -
tb(mod 27z) and concentration increasing with the argument of /y(-). The second factor, g,
is proportional to a von Mises density that depends only on the phase difference and the
coupling parameters.

The functional forms of fand g show that the distribution of phase differences is
influenced both by the coupling parameters and by the marginal concentration parameters,
which implies that bivariate phase coupling measures reflect both coupling and marginal
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concentration. In Figure 2, we illustrate effects on ﬁjk of pairwise dependence and marginal

concentration. Even when the variables are independent, if the marginal distributions are not
uniform, the distribution of phase differences will have nonzero concentration due to the
influence of 7 Thus, PLV is only appropriate when the marginal distributions are uniform.
In contrast, torus graph parameters can separate the influence of marginal concentration and
phase coupling to provide a measure of the dependence between angles.

4.3. Marginal distribution of phase differences in a trivariate torus graph model.

While we have shown that torus graph models are preferable to bivariate phase coupling
measures in the bivariate case, the biggest advantage of using torus graphs comes from

the ability to work with multivariate data and determine unique associations between each
pair of variables after conditioning on the other variables. For instance, in a trivariate torus
graph model with direct coupling only from nodes 1 to 3 and nodes 2 to 3 (Figure 3(A)), if
we were to apply bivariate phase coupling measures to all pairwise connections, we would
likely infer a connection between 1 and 2 because we would be measuring the bivariate
association between phase angles without taking into account node 3.

To demonstrate analytically how this happens, we consider a trivariate phase difference
model with marginal concentrations equal to zero for simplicity, which has density

aj]T[cos(x; — xi)

Bik

], (4.5)

p(x1, x2, xs) X exp .
UOCE sin(x; — x)

where the edge set £={(1, 2), (1, 3), (2, 3)}. Letting W= X; — Xa(mod 27) be the phase
difference between nodes 1 and 2, we show in Klein et al. (2020a), Section S4, that the
unnormalized density of Wis given by the product of two factors:

pw(w) « g(w; P12) - h(w; P13, $23) - (4.6)

The first factor is the same as g in Equation (4.4) and reflects direct connectivity between
X1 and X; as it depends only on the coupling parameters for the pair, ¢;». The second
factor reflects indirect connectivity through the other nodes, as it depends on the coupling
parameters for the other pairs:

hw; ¢13. $23) x Io(/s + 2t cos(w — u)),

where

2 2

5= a%3 + B3+ 0(%3 + $23,
2 L 2\2 . 2

1= \/(“13 + ﬂ13)(“23 + ﬂ23),

( 13) ( 23)
u = arctan| —— | — arctan| —| .
a3 a3
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Therefore, /s proportional to the density of the difference of two independent von

Mises random variables with concentrations \/a%3 +ph and \/a%3 + 33 and mean directions

arctan(By3/a13) and — arctan(Bo3/ aps), respectively.

Equation (4.6) implies that the density of the phase differences for one pair of variables
depends on all of the coupling parameters, so a bivariate phase coupling measure such

as PLV will be unable to distinguish between the effects of direct coupling and indirect
coupling through other nodes. Consequently, bivariate phase coupling measures will
accurately represent the direct coupling between 1 and 2 only when there is no indirect path
between 1 and 2 through the other nodes. In the most extreme case, bivariate phase coupling
measures could indicate coupling even when there are only indirect connections between
two nodes through the rest of the network. In Figure 3, we show examples to demonstrate
how the phase difference distribution is affected by both direct and indirect connections,
which may result not only in contributions to the observed phase difference concentration
but also in shifts in the mean phase difference. This demonstrates that bivariate phase
coupling measures generally reflect both direct and indirect coupling; in contrast, torus
graph parameters identify direct coupling.

Interpreting phase difference model parameters.

An appealing feature of PLV is that it always falls between 0 and 1, so it is easy to interpret
its magnitude and to compare PLV values for different pairs of variables. Unfortunately,

the torus graph parameters lack these qualities. However, for the special case of the phase
difference model with uniform margins, we propose a generalization of PLV based on a
transformation of the torus graph model parameters that offers increased interpretability, and
that, unlike PLV, measures pairwise relationships conditional on the other nodes.

As shown in Equation (4.2), if the marginal phase difference is distributed according to

a von Mises distribution, then PLV corresponds to a function of the maximum likelihood
estimator of the marginal concentration parameter. Under the phase difference model with
uniform margins, we showed the marginal density of the phase difference X; — X5 factors
into terms corresponding to direct and indirect connections; the direct connectivity term
9w, ¢1») of Equation (4.4) has the form of a von Mises density depending only on the
parameters ¢1,. Therefore, in analogy to the definition of PLV for von Mises-distributed
phase differences, we propose the following transformation of the parameters:

[2 2
_ [1( ajk+ﬂjk)
Pp=—r— "7
Ik 2, 2
IO(\/“jk"'ﬂjk

Like PLV, the measure always falls between 0 and 1 and therefore may be used to compare
relative edge strengths in the phase difference model with uniform margins.
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5. Torus graph estimation and inference.

Because the normalization constant is intractable for the torus graph density and it cannot
easily be approximated even for moderate dimension, estimation and inference are not
straightforward. In particular, maximum likelihood estimation is not feasible. Instead, we
turn to an an alternative procedure for estimation and inference called score matching. In
Section 5.1, we establish the applicability of the score matching estimator, originally defined
for densities on RY, to multivariate circular densities like torus graphs, then give the explicit
form of the objective function and derive closed-form estimators that maximize the objective
function. Section 5.2 discusses two main approaches for determining a graph structure, one
based on the asymptotic distributions of score matching estimators and the second based on
regularization, which is particularly relevant for high-dimensional problems.

5.1. Estimation.

Score matching is an asymptotically consistent estimation method that does not require
computation of the normalization constant and is based on minimizing the expected
squared difference between the model and data score functions (gradients of the log-density
functions), which leads to a tractable objective function for estimating the parameters
(Hyvérinen (2005)). It can be seen as analogous to maximum likelihood estimation,

which uses the negative log likelihood as a scoring rule; score matching instead uses the
gradient and Laplacian of the log density (with respect to the data) as a scoring rule

(Dawid and Musio (2014)). In addition, for real-valued exponential family distributions,

the estimator comes from an unbiased linear estimating equation, so asymptotic inference
is straightforward (Forbes and Lauritzen (2015), Yu, Drton and Shojaie (2019)). However,
the original score matching estimator requires the density to be supported on R? and the
proof of consistency relies on tail properties of such densities. We show that score matching
estimators applied to circular densities such as the torus graph model retain the same form
and therefore remain consistent. Score matching estimators have been considered previously
for the phase difference model with uniform margins (Cadieu and Koepsell (2010)) and

the sine model (Mardia, Kent and Laha (2016)), where the procedure requires modification
because the sine model is a curved exponential family distribution (Theorem 3.1).

The score matching objective function is the expected squared difference between the log
gradients:

5@ =5 [ 01| Vxlog atxi ) = Vi log pxcoa. 5

The objective function depends on the unknown data density px(x) in a nontrivial way,

but we show in Theorem 5.1, using techniques similar to Hyvarinen (2005, 2007), that

the objective function may be simplified to depend on the data density only through an
expectation, allowing it to be estimated as an average over the sample (proof in Klein et al.
(2020a), Section S5).
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Theorem 5.1 (Score matching estimators for torus graphs). Under some mild regularity
assumptions (given in Klein et al. (2020a), Section S5), the score matching objective

function for the torus graph model takes the form

I = Ex{ 54" T0 - $THE0.

where

Hex) = |80, 282"

is a vector with dimension 22 that is a simple function of the sufficient statistics and

I(x) = DEDX)!,

where

D(x) = VxS(x)

is the 2P x d Jacobian of the sufficient statistic vector. Specific expressions for the Jacobian
elements are given inKlein et al. (2020a), Section S5.

Theorem 5.1 shows that the score matching objective may be estimated empirically by
averaging over NV observed samples. The empirical objective function is

)= 16T~ ¢"H. 52

where

=1

H(X("))

N
LY ™), H=+
=1 1
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n
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n

with x(") denoting sample 7. Taking the derivative of Equation (5.2) with respect to the
parameter vector yields an unbiased estimating equation (Dawid and Musio (2014)), which
has a unique solution when T is invertible:

The number of parameters for a g-dimensional torus graph is 2¢? so sample sizes may not be
sufficient for T to be invertible. In particular, T is a sum with AMd/terms, so A/must be greater
than 2dfor T to be invertible. In practice, the variance of estimated parameters will be high
if MVis not much larger than 24, leading to less accurate point estimates and inference. We
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investigate the effect of sample size on the resulting inferences, using simulated data, in
Section 6.

For higher-dimensional problems, Equation (5.2) is a convex objective function that may

be minimized numerically with regularization. In torus graphs, a group 4 penalty may be
placed on the groups of pairwise coupling parameters ¢, to enforce sparsity in the estimated
edges, yielding the following objective function:

Ty =J@+4 Y ldjil,.
k

J <

Here, A is a tuning parameter that may be selected by criteria such as cross-validation or
extended BIC (Lin, Drton and Shojaie (2016)). Other structured penalties may be used to
encourage the model toward specific submodels (such as the phase difference model or
the uniform marginal model). For instance, separate group 4 penalties could be applied
to the pairs of coupling parameters corresponding to positive and negative dependence, or
an 4 penalty on the marginal parameters ¢, could encourage low concentration. This type
of penalization may improve behavior of the objective function, and could be especially
useful when certain subfamilies appear reasonable based on exploratory data analysis.

The computational burden of calculating ! may be reduced using the conditional
independence structure of the graph, as we may estimate each four-dimensional group of
parameters g using score matching on the conditional distribution p(xj, xxX- ), which
involves only 8(d - 1)-dimensional sufficient statistics and thus uses only a subset of the
rows of D(x), lessening the computational burden of matrix inversion (Yu, Kolar and Gupta
(2016)).

Inference.

In our setting, the goal of inference is to determine a graph structure by determining which
pairs of variables {/, K} have nonzero g, indicating an edge between nodes jand k. As
shown in previous work, score matching estimators are asymptotically normal (Dawid and
Musio (2014), Forbes and Lauritzen (2015), Yu, Drton and Shojaie (2019)), that is,

IN@ - &) 5 1(0,5), (53)
where the asymptotic variance is given by

1 1

£=Tg Voly

with

o= ET®]. Vo= E[Tx¢-Hx)T®$—Hx)!|.
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Sample averages may be substituted for the expectations to obtain an estimate of the
asymptotic variance, and because the true value of ¢ is unknown, we may substitute either
our estimate ¢ or a null hypothetical value.

By considering the marginal Gaussian distribution of each element of ¢, confidence intervals
may be constructed in a standard way. However, in the torus graph model, there are four
parameters per edge, so individual parameters are not of primary interest. In addition,

we may be interested in testing hypotheses about groups of edges (for example, the

null hypothesis might be that there are no edges between regions A and B). Fortunately,
inference on groups of edges is also straightforward, as specified in the following lemma.

Lemma 5.1 (Asymptotic distribution for groups of torus graph parameters.). A vector of
parameters indexed by an index set E of size |£, denoted ¢g, satisfies

IN(oE- o) % 4 0.2E),

where X g Is the corresponding submatrix of the asymptotic variance X. of Equation (5.3). We
also have

N(be-5) =5 (bE- bE) S L2OED.

Lemma 5.1 enables computation of p-values for single edges (if £ indexes the four
parameters for a single edge) or for groups of edges. In particular, if £indexes the four
parameters corresponding to a single edge, then under the null hypothesis that g==0,

~T—1~ d
XE=NOEEE ¢S @),

so for an observed value of the test statistic )?% the probability statement P(X% > )?%)

which gives a p-value for the edge, may be evaluated using the /1/2 distribution with 4
degrees of freedom. Similarly, a /1/2 distribution with two degrees of freedom may be used
to test for only rotational or only reflectional covariance, or to test for nonzero marginal
parameters.

Inference after regularization is less straightforward. Recent work has addressed inference
for score matching estimators when using an 4 penalty on each parameter (Yu, Kolar

and Gupta (2016)), which could potentially be extended to torus graphs with a group 4
penalty. Other approaches for inference in high dimensions include the bootstrap or stability
selection (Meinshausen and Biihimann (2010)). One parametric bootstrap approach is as
follows. Assume we are interested in testing the null hypothesis that some particular subset
of edges is missing from the graph. We may first fit a null torus graph model in which the
coupling parameters corresponding to the edge set of interest are set to zero, selecting the
regularization parameter by cross-validation of the score matching objective function. Next,
Btimes, we would draw samples of the same size as the data from the null torus graph
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model, re-select the regularization parameter by cross-validation, and fit the unrestricted
torus graph model to the samples using this regularization parameter. By computing the
distribution of a suitable statistic (such as the number of nonzero edges or the maximal
edgewise parameter vector norm) from these fitted null models, we obtain an empirical
estimate of the null distribution of the statistic, which can then be used to judge the size of
the same statistic computed on the original data.

6. Simulation study.

As our analytical results of Section 4 show, torus graphs can separate the effects of pairwise
coupling and marginal concentration and have pairwise coupling parameters that represent
direct connections between nodes. In contrast, bivariate phase coupling measures like PLV
are sensitive to the marginal distribution of the variables and can reflect not only direct
connections but also indirect paths through the other nodes. We conducted simulations to
demonstrate these results. In addition, we explored the performance of torus graphs in
recovering graph structures in simulated data similar to real data to determine how well we
expect torus graphs to perform in the real data. Section 6.1 gives the simulation details and
Section 6.2 provides the results.

6.1. Simulation methods.

When comparing PLV to torus graphs, we chose to generate data using the notion of

positive rotational dependence discussed in Section 2. This was done to demonstrate that
torus graphs recover interactions of this type even when data were not directly generated
from a torus graph model. To generate bivariate data with rotational dependence and nearly
uniform marginal distributions, we first drew A/trials of phase angles x; from a von Mises
distribution with low circular concentration x7. Then, for each trial, we let xo = x3+ £ +e
where £is a fixed phase offset and e is noise drawn from a concentrated mean-zero von
Mises distribution with concentration x. (where, on a small number of trials, we used less
concentrated noise to emulate the noisiness present in real data). Extending to more than two
nodes follows a similar process, where data for an additional node is generated based on data
from a neighbor in the graph.

We generated synthetic data with two ground truth phase coupling structures that are
intended to reflect realistic scenarios (and with parameters chosen to produce samples

that emulate real neural phase angle data; Klein et al. (2020a), Figure S10 compares

the simulated data to real data, showing similar first- and second-order behavior and

similar observed pairwise PLV values). First, we constructed five-dimensional data meant to
emulate the effects of spatial dependence, such as dependence between electrodes on a linear
probe situated within a single functional region, which, under a nearest-neighbor Markov
assumption, would induce sparse conditional independence graph structures (because each
node would be directly dependent only on its nearest neighbors on the probe). We coupled
nodes in a linear chain and chose & = /100 and x. = 40 (with 15 of 840 trials contaminated
with extra noise with concentration 0.1). Second, we constructed three-dimensional data
meant to emulate the effects of indirect connections, which may occur when electrodes are
in different regions, but not all of the regions are communicating directly. In particular, x,
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was concentrated at x, = 0.01, x; and x3 had phase offsets of £ = 7/6 and & = /100,
respectively, from x,, and the coupling noise had concentration x.= 2 (with 75 of 840 trials
contaminated with extra noise with concentration 0.1). For each scenario, we simulated data
of sample size 840 (to match the sample size of the real data). Then, for each data set, we
fitted a torus graph and selected edges based on Lemma 5.1; we also used the Rayleigh test
of uniformity to construct a graph based on PLV (Kass, Eden and Brown (2014), p. 268). For
both tests, we used an alpha level of a = 0.001 with Bonferroni correction for multiple tests.

To gain intuition on how well torus graphs could be expected to perform in the real LFP data
we analyze in Section 7, we investigated how well torus graphs recover the edges for varying
dimensions, sample sizes, and underlying levels of sparsity in the edges. For this simulation,
we generated data from a torus graph model of varying dimension with zero marginal
concentration and with either 25% or 50% of edges present in the generating distribution.

By varying the threshold on the edgewise X2 statistics (Lemma 5.1), we computed an ROC
curve for each simulated data set. The ROC curves were averaged across 30 data sets, then
the area under the curve (AUC) was calculated as a measure of performance.

6.2. Simulation results.

For the first set of simulations, Figure 4 shows that in both the three-dimensional and
five-dimensional cases, the torus graph recovered the correct structure while the PLV graph
recovered a fully connected graph. Although the performance of PLV may be better for
other graph structures, our analytical results in Section 4 suggest that graph structures with
indirect paths between nodes are likely to induce excess edges in the PLV graph. To follow
up on this result, we further explored the False Positive Rate (FPR) and False Negative
Rate (FNR) for PLV and torus graphs by repeating the simulations. We found that PLV
graphs have low FNR (near 0), but also have a very high FPR (near 1), so PLV likely will
not miss a true edge but will also add many additional edges (Klein et al. (2020a), Figure
S11). This result agrees with the notion that hypothesis testing based on PLV, even when
corrected for multiple comparisons, cannot be reliably used to control FPR for multivariate
graphs because PLV measures both direct as well as indirect connectivity and thus tends to
overestimate connectivity. In contrast, torus graphs are more conservative in assigning edges
and control the FPR at the nominal level (though they tend to have higher FNR, especially
for low sample sizes).

Figure 5 displays the results of the second set of simulations, which investigated the ability
of torus graphs to recover the true structure as a function of true edge density, sample size,
and data dimension. Importantly, for simulated data of dimension 24 and sample size of 840
(matching the real LFP data), the torus graph model is able to achieve 0.9 AUC as long as
the graph is sufficiently sparse (around 25% of all possible edges present). In the real data
results of Figure 8(B), we in fact observe approximately 25% of edges present, suggesting
that this graph density may be reasonable for the real data. A more detailed investigation

of the ROC curves and precision curves by dimension with fixed sample size 840 is given

in Klein et al. (2020a), Figure S4, which again demonstrates that for a sufficiently sparse
underlying graph structure, the torus graph method is expected to perform well for the
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sample size and dimension in the real LFP data. However, prior beliefs about the sparsity of
the underlying graph will play a role in judging the likely accuracy of results.

7. Analysis of neural phase angles.

We demonstrate torus graphs in a set of local field potentials (LFPs) collected from 24
electrodes in the prefrontal cortex (PFC) and hippocampus (HPC) of a macaque monkey
during a paired-associate learning task. Previous analysis of these data in Brincat and Miller
(2016) found that beta-band (16 Hz) phase coupling between PFC and HPC peaked during
the cue presentation and also increased with learning after the subject received feedback on
each trial. Here, we sought a more fine-grained description of the phase coupling between
PFC and HPC during the cue presentation period, and focused on describing relationships
between PFC and three distinct subregions of HPC: subiculum (Sub), dentate gyrus (DG),
and CA3.

First, we applied torus graphs to two different low-dimensional subnetworks: (i) a
subnetwork consisting of five electrodes arranged linearly along a probe within CA3 and

(ii) a collection of all trivariate subnetworks consisting of an electrode in each of the regions
Sub, DG, and PFC. The five-dimensional subnetwork was chosen as a proof of concept,
because electrodes in the same region and with a linear spatial arrangement ought to exhibit
a nearest-neighbor conditional independence structure. We chose to examine connectivity
between Sub, DG, and PFC because the patterns of connectivity between these three regions
could be informative about whether hippocampal activity is leading prefrontal activity

and because torus graphs should be able to disentangle the effect of direct and indirect
connections to give a more informative connectivity structure than could bivariate phase
coupling measures. Second, we applied torus graphs to the full 24-dimensional data set by
first testing for the presence of any cross-region edges between PFC, Sub, DG, and CA3,
and then following up with post-hoc tests of individual cross-region and within-region edges
to construct a full 24-dimensional graph. Finally, we used a subset of the PFC electrodes to
examine the goodness-of-fit of the torus graph model to the data and to investigate whether
any torus graph subfamilies appeared to be appropriate for this data set.

We describe the data and preprocessing in Section 7.1 and give an outline of our data
analysis methods in Section 7.2. Section 7.3 presents the results and we discuss implications
of the results in Section 7.4.

7.1 Experiment and data details.

The experimental design and data collection procedures are described thoroughly in Brincat
and Miller (2015, 2016). We use data from a single animal in a single session comprising
840 trials in which a correct response was given. (The sample size here is 840; a very

small number of animals, usually 1 or 2, is standard practice in nonhuman primate
neurophysiology because, even though there is large subject-to-subject variability in the
fine details of brain structure and function, the overall structure and function of major

brain regions is conserved, as are, typically, the primary scientific conclusions, though it

is common to replicate in a second animal results found in a single animal; we also note
that while part of the purpose of the original experiment involved learning, we are here
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ignoring any transient learning effects, which take place rapidly.) Briefly, four images of
objects were randomly paired; the subject learned the associations between pairs through
repeated exposure to the pairs followed by a reward for correctly identifying a matching pair.
In each trial, the pairs of images were presented sequentially with a 750 ms delay period
between the images, during which a fixation mark was shown. All procedures followed the
guidelines of the MIT Animal Care and Use Committee and the US National Institutes of
Health. (The experimental procedures were painless to the animals, as all forms of sensation
originate outside the brain.) The data used in this paper contain 8 single-channel electrodes
in PFC and a linear probe with 16 channels in HPC, with HPC channels categorized

based on neural spiking characteristics into three subregions: dentate gyrus (DG), CA3, and
subiculum (Sub). Recording regions and data processing steps are depicted in Figure 6. We
focus on a time point at 300 ms after initial cue presentation, as PLV pooled across all
sessions identified phase coupling peaking near 16 Hz at this time point (Brincat and Miller
(2016), Supplementary Figure 5); we verified that the session we used showed the same
overall phase coupling relationship. After downsampling the data to 200 Hz and subtracting
the average (evoked) response, we used complex Morlet wavelets with 6 cycles to extract the
instantaneous phase of each channel at 16 Hz in each trial.

7.2 Data analysis methods.

To examine whether torus graphs could recover the spatial features we would expect along
the linear probe, we first applied torus graphs to the 5-dimensional network containing
channels on a linear probe that are all within CA3, likely to exhibit strong spatial
dependence between neighboring channels, and used a hypothesis test for each edge with

a =0.0001. We chose a stringent threshold because, based on the first simulation study of
Section 6, we expected PLV to add extraneous edges, yet we wanted to demonstrate that
torus graphs and PLV give very different results even when a small threshold is used. Then,
to examine whether torus graphs appeared to disentangle the effects of direct and indirect
edges, we focused first on a trivariate network containing Sub, DG, and PFC where there

is a simple interpretation of direct edges because CA3 and Sub send output signals from
hippocampus while DG receives input signals to the hippocampus. Therefore, prominent
connections between CA3 and PFC and/or Sub and PFC would suggest hippocampal activity
may be leading PFC activity during this period of the task, while dominance of connections
between DG and PFC would suggest the opposite. Because there are multiple channels in
each of the three regions, we aggregated results across all possible triplets of channels from
the three regions by inferring edges by majority vote across all possible trivariate graphs
(using an alpha level of p< 0.0001 for each edgewise test).

We also investigated the graphical structure between the four regions (PFC, DG, CA3,

and Sub) using a 24-dimensional torus graph on all electrodes; based on model selection
techniques described in the next paragraph, we used a phase difference model. First, we
assessed between-region connectivity between each pair of regions using the results of
Lemma 5.1 to test the set of null hypotheses that there were no edges between each pair

of regions. For example, there are 40 total possible edges between CA3 and PFC with two
parameters for each edge, so the hypothesis test for the existence of any edges between CA3
and PFC was based on a /1/2(80) distribution. For each pair of regions, we obtained a p-value
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for the entire group of edges between the two regions under the null hypothesis that there are
no edges between the two regions. Because we were interested only in further investigating
cross-region interactions with strong evidence, for this set of hypothesis tests, we chose a
stringent alpha level of a = 0.001 with a Bonferroni correction across all 6 between-region
tests to control for multiple tests. To better understand the individual connections driving
this cross-region connectivity, and to investigate within-region connectivity patterns, we then
applied post-hoc tests on the individual edges. That is, for each possible edge between pairs
of regions that were identified as having some connection by the first step, we obtained

a p-value using a ;(2(2) distribution. Similarly, we calculated a p-value for each possible
edge connecting electrodes within the same region. In this case, we assigned edges using a
less stringent alpha level of a = 0.05 without correcting for multiple tests, as we expected
the evidence for any specific edge would be weaker than the evidence for cross-region
connections and because multiple comparisons were already taken into account in the first
set of between-region tests.

To assess the appropriateness of torus graphs for this data set and to assess whether any
submodels were appropriate, we explored the first- and second-order behavior of the LFP
phase angles. To determine whether the uniform marginal model should be fitted, we tested
for uniform marginal distributions using a Rayleigh test on each electrode, marginally,

then obtained an overall decision regarding the null hypothesis that all distributions were
uniform using Fisher’s method to combine p-values (Kass, Eden and Brown (2014), p.
301). Equation (4.6) showed that the marginal distribution of phase differences in a torus
graph model depends on the coupling parameters for all possible direct and indirect paths
between two nodes, so that any observed concentration of phase differences, marginally,
could indicate the presence of sorme nonzero coupling parameters (possibly corresponding
to indirect paths). Therefore, we applied the Rayleigh test to the observed phase differences
for each pair of variables, then combined p-values using Fisher’s method to test the null
hypothesis that all marginal phase difference distributions were uniform; we also performed
a similar procedure on the observed pairwise phase sums. For these exploratory tests, we
used a p-value threshold of p< 0.05 so that we would be sensitive to departures from
uniformity in either the marginal distributions or the distributions of phase differences/sums.
Finally, after fitting the chosen model, we used Kolmogorov—Smirnov (KS) goodness-of-fit
tests to determine whether there was any evidence that LFP angles were drawn from a
different distribution than the fitted theoretical model. In particular, we tested for differences
in the marginal distributions of the angles, then tested for differences in the marginal
distributions of pairwise phase differences and pairwise phase sums, and used Fisher’s
method to combine p-values within each of the three groups of tests. We used an alpha level
of 0.05 for each test.

7.3. Dataresults.

In the low-dimensional subnetworks, we found that the torus graph recovered a structure
consistent with nearest-neighbor coupling along the linear probe (Figure 7, top panel), while
PLV suggested a fully-connected graph; Klein et al. (2020a), Figure S7.B, shows p-values
for the five-dimensional graph for both torus graphs and PLV. In addition, the top panel

of Figure 7 shows that torus graphs appear to capture an interesting trivariate network
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with no coupling between PFC and DG, but with each of PFC and DG coupled with Sub.
Klein et al. (2020a), Figure S7.C, shows p-values for all of the individual trivariate graphs,
indicating that in the majority of individual trivariate graphs, there was no evidence for an
edge between PFC and DG, while again, PLV suggested a fully connected graph.

For the 24-dimensional torus graph applied to all electrodes, we found, first, using the
overall tests for the presence of any edges between each pair of regions, that there

was apparent connectivity between all hippocampal subregions (CA3, DG, and Sub) and
connectivity from CA3 to PFC and Sub to PFC (Figure 8(A)). In the follow-up post-hoc
tests of individual edges, we observed dense connectivity within regions and somewhat
sparser connectivity between regions (as judged by the number of edges out of the possible
number that could be present; graph and adjacency matrix shown in Figure 8 panels B
and C). Interestingly, none of the individual CA3 to Sub connections were significant (the
smallest p-values were around 0.1), suggesting that the aggregate effect of several weak
edges led to the edge between CA3 and Sub in Figure 8(A). In the adjacency matrix
corresponding to the 24-dimensional graph, which is ordered to respect the position of
channels on the hippocampal linear probe, entries are colored by p-value (with white
indicating non-significant entries at level a = 0.05); notably, torus graphs recovered the
linear probe structure across the entire hippocampus without prior knowledge of this
structure being used in the model or estimation procedure.

In our investigation of the appropriateness of submodels and goodness-of-fit, we show
results for three electrodes from PFC (results on the full data set were similar). Based on a
visual analysis of the marginal and pairwise behavior of the data, the phase difference model
appeared to be a reasonable candidate for these data. We found evidence that neither the
marginal distributions nor the phase differences were uniform (Rayleigh/Fisher’s method,
p<0.001); however, there was no evidence for concentration in the phase sums (Rayleigh/
Fisher’s method, p> 0.05). As a result, we selected the phase difference model to investigate
goodness-of-fit. In Figure 9(A), we show data from three PFC electrodes along with their
theoretical (fitted) phase difference model; along the diagonal, histograms for the real data
(blue bins) are shown with theoretical model densities (solid red traces), indicating similar
marginal distributions. Below the diagonal are two-dimensional histograms from the real
data and above the diagonal are two-dimensional theoretical model densities, demonstrating
that the torus graph appears capable of accurately representing the first- and second-order
behavior present in the real data. Figure 9(B) shows histograms of sufficient statistics

from the real data (phase angles along the diagonal, phase sums for each pair above the
diagonal, and phase differences for each pair below the diagonal), along with kernel density
estimates (solid red traces) for the statistics from the theoretical model. There is visual
similarity between the distributions of sufficient statistics, and, in both cases, we observed
the concentration of the pairwise phase differences indicating a prevalence of rotational
dependence; this pattern held in the observed sufficient statistics for all 24 LFP channels
shown in Klein et al. (2020a), Figure S9. The KS tests comparing the sufficient statistics

of the fitted torus graph model to the data failed to reject the null hypothesis (KS/Fisher’s
method, p > 0.05, for each group of statistics), indicating no evidence that the data were
drawn from a different distribution than the fitted model.
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7.4. Summary and discussion of results.

In the 24-dimensional analysis, PFC to hippocampal connections appeared to be driven by
a relatively small number of significant connections from Sub to PFC and CA3 to PFC.
However, the results did not show evidence for connections between PFC and DG, which
coincides with the analysis of the trivariate subnetwork. In contrast, the PLV edgewise
adjacency matrix (shown in Klein et al. (2020a), Figure S8) was very densely connected
and shows little resemblance to the structure recovered by torus graphs; for any reasonable
p-value threshold, the PLV graph would be nearly fully connected, suggesting that PLV was
unable to distinguish between direct and indirect connections.

Because the patterns of connectivity between hippocampal subregions and PFC recovered by
these analyses suggested that hippocampal activity was leading prefrontal activity during
this time period in the task, as a follow-up analysis, we considered whether lead-lag
relationships could be detected in the distribution of phase differences between PFC and
hippocampus (specifically, CA3 and Sub). Since most of the edgewise dependence in this
data set appears to correspond to positive rotational dependence (as judged by the relative
magnitude of the torus graph coupling parameters and the concentration of phase differences
but not phase sums in the observed sufficient statistics shown in Klein et al. (2020a),

Figure S9), the distributions of phase differences between PFC and Sub and between PFC
and CA3 can summarize the overall PFC-hippocampus coupling. Figure 10(A) displays

a circular histogram of the PFC to hippocampus phase differences with the mean phase
difference and a 95% confidence interval, pooling across all significant (o < 0.05) pairwise
phase differences to compute an overall circular mean phase offset. These phase differences
were centered at —8.5° (95% ClI: [-10.4°, —6.6°]), indicating that on average, hippocampal
phase angles led PFC phase angles, providing more evidence that hippocampal activity

was leading PFC activity. The phase differences agree with those displayed in Brincat and
Miller (2015), Figure 5.a (though we examined a different time period of the trial and
pooled only across significant PFC to hippocampus connections). In contrast, Figure 10(B)
displays within-region phase differences tightly clustered around 0° (mean: —0.04, 95%

Cl: [-0.2°, 0.2°]), indicating that within-region phase coupling may be driven mostly by
spatial correlations in the recordings. These results suggest that due to the CA3 to PFC

and Sub to PFC connections identified in both the trivariate and 24-dimensional analyses
and the overall negative phase difference (PFC-hippocampus), hippocampal activity leads
PFC activity during this period of the task. Importantly, while aggregated pairwise phase
differences may have given some evidence of directionality, torus graphs provided detailed
information about direct connections between hippocampal output subregions and PFC.

In the low-dimensional subnetworks, we found that torus graphs yielded intuitive results
while PLV did not. In particular, for the five-dimensional subnetwork consisting of
electrodes along a linear probe, torus graphs inferred a nearest-neighbor conditional
independence structure which we would expect for electrodes arranged linearly in space,
while PLV inferred a fully connected graph. In the trivariate subnetworks, torus graphs
suggested connectivity between PFC and Sub and DG and Sub, but not between PFC and
DG, while again, PLV inferred a fully connected graph. Based on our analytic derivations
in Section 4 and simulation study in Section 6, PLV is likely not reflecting the correct
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dependence structures in either low-dimensional network, and is instead reflecting both
direct and indirect connections between the nodes.

When we investigated possible use of submodels, we found that a phase difference model
appeared reasonable due to the lack of concentration in the phase sums, but that a uniform
marginal model was not warranted. While we used the phase difference model on the full
24-dimensional data set, we found that we would have obtained nearly the same results
using the full torus graph model, with discrepancies for only a few edges in the post-hoc
edgewise test results shown in Figure 8(B) (which do not change the overall conclusions).
We found that torus graphs appeared to fit the data reasonably well, with both visual
summaries and KS tests suggesting that the marginal distributions of each angle and of the
pairwise sum and difference sufficient statistics were similar in the data and the fitted model.
In contrast, when we followed up by fitting a sine model to the same data (using code from
Rodriguez-Lujan, Larrafiaga and Bielza (2017)), we observed multimodality in the bivariate
densities of the fitted model and a poor correspondence between the fitted and observed
sufficient statistics, leading us to conclude that, as discussed in Section 3, the sine model
fails to match the second-order dependence structure in the neural data due to low marginal
concentration (Klein et al. (2020a), Figure S6). KS tests comparing the fitted sine model
phase sums and differences to the data also suggested the data distribution does not match
the sine model distribution (KS/Fisher’s method, p < 0.0001, for both phase sums and phase
differences).

Torus graphs provided a good description of the neural phase angle data and provided
substantive conclusions that could not have been obtained using bivariate phase coupling
measures like PLV.

8. Discussion.

We have argued that torus graphs provide a natural analogue to Gaussian graphical

models: Theorem 2.1 and Corollary 2.1 show that starting with a full torus graph, which

is an exponential family with two-way interactions, setting a specific set of interaction
coefficients g to zero results in conditional independence of the jth and Ath circular random
variables. We provided methods for fitting a torus graph to data, including identification

of the graphical structure, i.e., finding the non-zero interaction coefficients, corresponding
to edges in the graph (code, tutorial, and data provided in the supplements (Klein et al.
(2020b)) and at https://github.com/natalieklein/torus-graphs). We also demonstrated that
previous models in the literature amount to special cases, and therefore make additional
assumptions that may or may not be appropriate for neural data. In particular, while the
uniform marginal model or the phase difference model may be reasonable for neural phase
angle data, the most widely studied model in multivariate circular statistics, the sine model,
is less well-behaved and does not appear to be capable of matching the characteristics

of neural phase angle data. In addition, we showed that PLV is a measure of positive
circular correlation under the assumption of uniform marginal distributions of the angles,
but that PLV is unable to recover functional connectivity structure that takes account of
multi-way dependence among the angles. In our analysis of LFP phases 300 ms after cue
presentation in an associative memory task, the fitted torus graph correctly identified the
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apparent dependence structure of the linear probe within CAS3; it suggested Sub may be
responsible for apparent phase coupling between PFC and DG; and it led to the conclusion
that, at this point in the task, hippocampus phases lead those from PFC (by 8.5° with SE =
0.95°).

Here, our torus graphs were based on phases of oscillating signals, with no regard to

their amplitudes. This is different than phase amplitude coupling in which the phase of
one oscillation may be related to the amplitude of an oscillation in a different frequency
band (Tort et al. (2010)). Also, like other graph estimation methods, interpretations based
on torus graphs assume that all relevant signals have been recorded, while in reality, they
could be affected by unmeasured confounding variables (e.g., activity from other brain
regions). In addition, in applications such as phase angles in LFP, several preprocessing
steps (referencing, localization, and filtering) are needed to extract angles from the signals.
The torus graph implementation we have described here ignores these steps, and takes
well-defined angles as the starting point for analysis. Furthermore, local field potentials tend
to be highly spatially correlated, suggesting that inclusion of spatial information might be
helpful for identifying structure.

Future work could include further investigation and theoretical analysis of how well torus
graphs perform when the sample size is smaller relative to the dimension of the data.

In some data sets, the full torus graph with 2¢? parameters may be overparameterized,

and estimation and inference may be more accurate using one of the subfamilies; we
demonstrated a model selection approach that indicated that the phase difference submodel
would be reasonable for this data set. Furthermore, even when a full torus graph model is
used, interpretability of the results could be enhanced by assessing evidence for reflectional
and rotational dependence separately; that is, instead of putting a single edge based on the
test of all four coupling parameters, we could construct a graph based only on the two
parameters corresponding to rotational (or reflectional) dependence. Finally, in the uniform
marginal phase difference model, the strength of coupling for each type of dependence could
be quantified using the measure we introduced in Section 4.4, which falls between 0 and 1,
facilitating comparison of relative strengths of the connections.

By extending existing models, torus graphs are able to represent a wide variety of
multivariate circular data, including neural phase angle data. Extensions to this work could
study changes in graph structure across time or across experimental conditions, and could
investigate latent variable models involving hidden states, or a spatial hierarchy of effects.
We anticipate a new line of research based on torus graphs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Rgcz‘angu/ar coordinates are unable to accurately represent strong positive association
between two circular random variables. (A) Scatter plot of simulated observations from

a pair of dependent circular variables in rectangular coordinates, with three observations
highlighted in red, black, and blue (simulated plot is similar to real data plots, but somewhat
more concentrated for visual clarity, see Klein et al. (2020a), Figure S5). The highlighted
observations are shown on circles at the top of the figure (one angle as a dashed line, one as
a solid line, positive dependence implies a consistent offset between the angles). While the
black and blue points follow the diagonal line, the red point falls near the upper left corner
aue to conversion to rectangular coordinates. (B) Probability density representing the two
variables, plotted both in rectangular coordinates and on the torus, with the same three points
marked. On the torus, there is a single band with high probability, which wraps around and
connects to itself as a Mdbius strip, and all three points fall on this strip.
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Fig. 2.
Examples of bivariate torus graph densities and the resulting marginal distributions of phase

differences upon which bivariate phase coupling measures would be based. As shown in
Equation (4.3), the density of phase differences, p, is affected not only by coupling (through
9) but also by marginal concentration (through f). As a result, bivariate phase coupling
measures like PLV could give misleading results. (A) Left. bivariate torus graph density
with independent angles and non-uniform marginal distributions, density is shown on the
torus and flattened on [- i, | with marginal densities on each axis. Right. analytical phase
difference density (p, solid) which is a product of a direct coupling factor (g, dashed) and a
marginal concentration factor (1, dotted). Here, p is concentrated solely through the marginal
concentration factor 1, implying bivariate phase coupling measures would indicate coupling
despite the independence of X1 and Xo. (B) Similar to A, but with coupling between angles
and uniform marginal distributions, only in this case does p correctly reflect the coupling.
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Fig. 3.

E)gamp/es of trivariate torus graph densities and the resulting densities of phase differences
for each pair of variables. As shown in Equation (4.6), in general, the density of phase
differences, p, is affected not only by direct coupling (through g) but also by indirect
connections (through h). As a result, bivariate phase coupling measures like PLV will
generally reflect both direct and indirect coupling. (A) Left. ground truth graphical model,
with no direct connection between Xy and X, but an indirect connection through Xs. Right.
analytical phase difference densities for each pair of angles (p, solid) which are each a
product of a direct coupling factor (g, dashed) and an indirect coupling factor (h, dotted).
The concentration in the phase difference X1 — X5 arises solely due to indirect connections.
(B) Similar to A, but with direct connection only between Xy and Xo; in this case, p reflects
the direct coupling. (C) Similar to A, but with direct connections between all nodes. Notice
that indirect connections (h) still influence the distribution of phase differences X1 — X, by
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multiplying with the direct connection term (g), which increases the concentration of p and
shifts the mean (compared to g).
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Fig. 4.
The torus graph recovers the ground truth graph structures (top panel) from realistic

simulated data sets while a bivariate phase coupling measure, phase locking value (PLV),
aoes not (edges shown for corrected p < 0.001). Left. a 3-dimensional simulated example of
cross-area phase coupling where regions X, and X are not directly coupled, but are both
coupled to region Xs. Right. a5-dimensional simulated example of a graph structure that
could be observed for channels on a linear probe with nearest-neighbor spatial dependence.
In both cases, PLV infers a fully-connected graph due to indirect connections.
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Fig. 5.

lngsimulaz‘ea’ adata with two different underlying edge densities, the average ROC curve area
under the curve (AUC) was computed across 30 simulated data sets as a function of sample
size (shown along the horizontal axis). The dimension of the data is indicated by line color
and different markers. Panel A demonstrates that if the true underlying graph has only

25 % of all possible edges present, then even for 24 dimensional data (diamond markers), a
sample size of 840 (the size of our real LFP data sel) is sufficient to reach AUC above 0.9.
While performance degrades when the underlying graph is more dense, panel B shows that
performance is still reasonable (AUC near0.8) for 24 dimensional data with 840 samples.
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Fig. 6.

(A) Depiction of recording sites in ventrolateral prefrontal cortex (PFC) and hippocampus.
(B) Preprocessing to obtain phase angles. local field potential (LFP) signals are filtered
using Morlet wavelets to extract phase angles from 16 Hz oscillations at a time point of
Interest (two signals are shown for a single trial: repeated observations of phase angles are

collected across repeated trials).
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Fig. 7.
Torus graphs and PLV graphs from low-dimensional networks of interest in LFP data. Left.

cross-region connectivity between dentate qyrus (DG), subiculum (Sub), and PFC, where the
torus graph (top panel) indicated that DG and PFC are each coupled to Sub; in contrast, PLV
(bottom panel) inferred a fully-connected graph. Right. within-region connectivity in CA3,
where the torus graph indicated a spatial dependence structure which reflects the placement
of channels along a linear probe, while PLV inferred a fully-connected graph.
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Fig. 8.

Tgrus graph analysis of coupling in 24-dimensional LFP data with four distinct regions.
CA3 (req), dentate gyrus (DG, blue), subiculum (Sub; green), and prefrontal cortex (PFC,
grey). (A) Cross-region tests indicated evidence for edges between DG and CA3, DG

and Sub, CA3 and Sub, PFC and CA3, and PFC and Sub (determined by testing the

null hypothesis that there were no edges between a given pair of regions, corrected p <
0.001). (B) For the significant cross-region connections, a post-hoc edgewise significance
test examined the specific connections between regions, with the 24-dimensional graph
containing edges for p < 0.05. Compared to the cross-region graph in A, notice that no
edges from Sub to CA3 were individually significant at p < 0.05. (C) The 24-dimensional
adjacency matrix (with hippocampal electrodes ordered by position on linear probe) with
non-significant cross-region connections in white and other entries colored by edgewise p-
value (with p > 0.05 in white). Despite having no built-in knowledge of spatial information,
the torus graph recovered the linear probe structure within hippocampus.
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Comparison between phase angles from three LFPs located in PFC and the theoretical torus
graph distribution demonstrates that torus graphs capture the salient first- and second-order
behavior present in the LFP phase angles. In contrast, the sine model fails to fit the data
accurately (Klein et al. (2020a), Figure S6). (A) Along the diagonal are the marginal
distributions of the phase angles. The real data are represented by blue histograms and the
theoretical marginal densities from the torus graph model are overlaid as solid red traces.
Two-dimensional distributions (off-diagonal) show bivariate relationships, with theoretical
densities above the diagonal and real data represented using two-dimensional histograms
below the diagonal. (B) Plots along the diagonal same as panel A. Below the diagonal

are distributions of pairwise phase differences and above the diagonal are distributions of
pairwise phase sums, represented by histograms for the real data and by solid red density
plots for the theoretical torus graph model. Both the real data and theoretical distributions
exhibit concentration of phase differences but not phase sums, suggesting prevalence of
rotational covariance, and the sufficient statistics are very similar for the theoretical and real
gata.
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Fig. 10.

Circular histograms of phase differences, in degrees, from 24-dimensional LFP data for (A)
significant connections between PFC and hippocampus (specifically, CA3 and Sub) and
(B) significant PFC, CA3, and Sub within-region connections, The mean phase offset with
95% confidence interval is shown as a black dot with a narrow gray interval. Observations
were pooled across all significant edges within or between the regions. The within-region
phase differences were tightly concentrated around zero while the PFC-hippocampus phase
differences were centered below zero, indicating a possible lead-lag relationship with
hippocampus leading PFC.
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