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Abstract

This study constructs machine learning algorithms that are trained to classify samples using

sound symbolism, and then it reports on an experiment designed to measure their under-

standing against human participants. Random forests are trained using the names of Poké-

mon, which are fictional video game characters, and their evolutionary status. Pokémon

undergo evolution when certain in-game conditions are met. Evolution changes the appear-

ance, abilities, and names of Pokémon. In the first experiment, we train three random forests

using the sounds that make up the names of Japanese, Chinese, and Korean Pokémon to

classify Pokémon into pre-evolution and post-evolution categories. We then train a fourth

random forest using the results of an elicitation experiment whereby Japanese participants

named previously unseen Pokémon. In Experiment 2, we reproduce those random forests

with name length as a feature and compare the performance of the random forests against

humans in a classification experiment whereby Japanese participants classified the names

elicited in Experiment 1 into pre-and post-evolution categories. Experiment 2 reveals an

issue pertaining to overfitting in Experiment 1 which we resolve using a novel cross-valida-

tion method. The results show that the random forests are efficient learners of systematic

sound-meaning correspondence patterns and can classify samples with greater accuracy

than the human participants.

Introduction

Natural language processing (NLP) is a field of study that combines computational linguistics

and artificial intelligence and is concerned with giving computers the ability to understand

language in much the same way humans can. The present study tests whether an NLP algo-

rithm can classify samples using sound symbolism, which has been a largely overlooked feature

of human language in NLP. While in modern linguistics, the relationship between sound and

meaning is generally assumed to be arbitrary [1], a growing number of studies have revealed

systematic relationships between sounds and meanings, some of which hold cross-linguisti-

cally. For example, speakers of many languages tend to associate words containing [i] with
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small objects, while words containing [a] are typically associated with larger objects [2–5].

Humans understand certain sound symbolic associations in infancy and these associations are

said to scaffold language development and facilitate word learning [6–9]. It is therefore impor-

tant for any NLP algorithm to understand sound symbolism if its goal is to understand lan-

guage in the same way that humans can. This study is concerned with the random forest

algorithm (further RF: [10]), which is an ensemble method machine learning algorithm typi-

cally applied to classification and regression tasks. It builds upon recent research by Winter

and Perlman ([11]; see also [12]), who used RFs to show that there is a systematic sound-sym-

bolic relationship between size and phonemes in English words.

In the following, we construct and test RFs using the fictional names of characters known

as Pokémon. Initially released in 1996 as a video game, Pokémon is an incredibly popular

mixed-media franchise, particularly in its country of origin, Japan [13]. The present study

measures the classification accuracy of RFs against that of Japanese university students. The

RFs are trained to classify Pokémon into pre-evolution and post-evolution categories using

only the sounds that make up their names. In Experiment 1, three RFs are constructed using

the sounds that make up the names of Japanese, Mandarin Chinese (hereafter: Chinese), and

South Korean (hereafter: Korean) Pokémon. These RFs are trained using a subset of each data-

set and then tested on the remaining data. While all RFs classify Pokémon at a rate better than

chance, the Japanese RF was found to perform the best, hence the remaining experiments are

conducted on Japanese participants and Japanese Pokémon names only. The Japanese RF is

then tested using the results of an elicitation experiment where Japanese participants were

asked to name previously unseen Pokémon presented next to a pre/post-evolution parallel. A

further RF is constructed using the responses from the elicitation experiment and tested both

on the elicitation responses and the official Japanese names. In Experiment 2, we retrain the

RFs presented in Experiment 1 to include name length. These retrained RFs uncover an issue

of overfitting caused by a lack of variability in decision trees. We resolve this issue through

cross-validation by constructing multiple random forests (MRFs) with different starting values

for the randomization of splitting the data into training and testing subsets. The mean accu-

racy of the RFs in the Japanese MRF is then compared to the results of a classification experi-

ment where Japanese participants were asked to classify the elicited responses from

Experiment 1 into pre- and post-evolution categories. The results of the human participants in

the categorization experiment are then measured against the results of the MRFs. To summa-

rize, Experiment 1 tests whether RFs can learn to make classification decisions using the

sounds that make up names and whether this learning is applicable to elicited samples, and

Experiment 2 measures the performance of MRFs against humans.

Sound symbolism

One of the standard assumptions of modern linguistic theory is that the relationship between

sound and meaning is arbitrary [1,14]. While language is undoubtedly capable of associating

sounds and meanings in arbitrary ways, the last few decades have seen a growing number of

studies that reveal systematic relationships between sounds and meanings [15–17]. One well-

known example is the takete-maluma effect [18] which is the observation that voiceless obstru-

ents are typically associated with jagged-shaped objects, while names with sonorant sounds are

more often associated with round-shaped objects. This effect has been shown to hold cross-lin-

guistically [19–23]. While relationships between sound and meaning can be systematic, they

are typically stochastic in nature [24]; that is, sound-meaning relationships manifest them-

selves as a probability distribution that show statistical skews but may not be hold in all lexical

items. For example, English adjectives like tiny, mini, and itsy bitsy adhere to the high front
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vowel equates to smallness pattern discussed above, while the English adjective small is a clear

exception to this generalization [11]. Sound symbolism is demonstrably important for lan-

guage acquisition processes [21,25]; symbolic words are more common in both child-directed

speech and early infant speech [26,27], and indeed, research has shown that infants are sensi-

tive to sound symbolism [6–9].

Pokémonastics is a relatively new subfield of sound symbolism that examines sound sym-

bolic relationships between the names of video game characters known as Pokémon and their

attributes. In the video games, the player character collects Pokémon, which they use to battle

other players. As Pokémon earn experience, many have the option to evolve. Pokémon evolu-

tion permanently changes the Pokémon, they typically grow larger and stronger, and their

names change. Pokémonastic studies have shown that Pokémon evolution status can be sig-

naled via some sound symbolic means in English and Japanese by an increase in name length,

increased use of voiced obstruents, and in vowel use where the high front vowel [i] is typically

associated with pre-evolution Pokémon [28–31]. Based on these established relationships and

the likelihood that the participants would be familiar with the subject, Pokémon evolution was

determined to be a suitable test case for measuring the ability of RFs against humans in under-

standing sound symbolism (see also [11]).

Random forests

RFs, first introduced by Breiman [10], are ensemble method machine learning algorithms that

are typically applied to classification and regression tasks. Since their inception, RFs have been

a popular tool in machine learning, and several recent review articles attest to their efficacy

[32–34]. Typically, RFs work by constructing many decision trees using a two-thirds subset of

the data, they are then tested on the remaining data. Decision trees themselves are non-

parametric supervised machine learning algorithms that resemble flow charts where each

internal node represents a test of features. The decision tree splits at each node based on how

important each feature is in the task. Splits eventually lead to a terminal node in the decision

tree, which depicts the outcome of the decision-making process. Decision trees can be

extremely useful; they are scale-invariant, robust to irrelevant features and inherently inter-

pretable. However, decision trees are sensitive to noise and outliers, and are thus prone to

overfitting data which limits their ability to generalize to unobserved samples [35,36]. Overfit-

ting is a modelling error that occurs when a function is too closely aligned to a limited set of

data points. This results in a model that performs well for the trained dataset but may not gen-

eralize well to other datasets. To address the issue of overfitting, RFs use bootstrap aggregating

(bagging: [37]) and the random subspace method [38]. Bagging involves using many decision

trees to improve the stability and accuracy of the algorithm by averaging voting (in classifica-

tion) or the output (in regression). In bagging, samples are randomly allocated to trees, typi-

cally with replacement, which raises the issue of duplication. The random subspace method

resolves this issue by randomly selecting a subset of features at each internal node, which

allows the model to better generalize by introducing variability into the decision trees. In other

words, bagging randomly selects samples while the subspace method randomly selects fea-

tures. By randomizing the decision trees across both dimensions, random forests resolve the

issue of overfitting inherent in decision trees.

Experiment 1: Elicitation

Material and methods

The data, an explanation of the data, and a detailed annotated script for the following algo-

rithms are available under the OSF repository.
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Official Pokémon name data. All data were obtained from Bulbapedia ([39], last accessed

in June 2022). As of June 2022, Bulbapedia has completed (mainspaced in the parlance of the

website) lists for Japanese, Chinese, Korean, English, German, and French Pokémon. Japanese,

Chinese, and Korean names were selected for this experiment on the basis that Japanese kata-

kana, Chinese pinyin, and Korean McCune-Reischauer romanisation are reasonably phonetic

scripts. An algorithm was created for each language to count the number of times each sound

occurs in each name. The algorithms and a detailed explanation for their implementation are

included in the above OSF repository. This resulted in an almost entirely phonemic analysis

except in the case of tones in Chinese, which are counted as separate features, and voicing on

plosives in Korean. In Korean [40] and Chinese [41], there is no phonological opposition

between voiced and voiceless plosives. However, Korean plosives are systematically voiced

when they occur intervocalically [40], and this is reflected in the McCune-Reischauer romani-

sation of Korean. Given that voiced plosives have been shown carry information pertaining to

Pokémon evolution in other languages [29,31], intervocalic plosives were counted separately

in Korean.

As of June 2022, there are 905 Pokémon that span eight generations. This study only exam-

ines the names of pre-evolution and post-evolution Pokémon. Some Pokémon do not evolve

and are therefore not included in the current study. The sixth generation of the core video

game series saw the introduction of a mechanic known as Mega Evolution that temporarily

transforms certain Pokémon. Mega evolution is not considered by the present study because

this is a temporary transformation that has little effect on Pokémon names other than the addi-

tion of prefixes like mega. Other Pokémon that were excluded from the analysis are mid-stage

evolutionary variants. An example of a mid-stage Pokémon is Electabuzz which was intro-

duced in the first generation of the video game series. Its pre-evolution variant, Elekid, was

introduced in the second generation, and its post-evolution variant, Electivire, was introduced

in the fourth generation. In the present study, we exclude Electabuzz from the analysis because

it is considered the mid-stage variant, despite other Pokémon being added to the evolutionary

family retroactively. Kawahara and Kumagai [28] analysed the relationships between the

sounds in the names of Pokémon and Pokémon evolution where they did not exclude mid-

stage Pokémon. To achieve this, they had four categories based on evolution level rather than

binary pre- and post-evolution categories. RFs are capable of multiclass classification; however,

we opted for binary classification for the current analysis because, while the data is technically

count data, it is almost entirely binary (e.g., 96.7% of all data points in the Japanese dataset are

either 0 or 1). Therefore, it made sense to use a binary classifier given that the sound symbolic

patterns are likely scalar across mid- and final-stage categories. The removal of mid-stage

Pokémon and Pokémon with no evolutionary family resulted in 628 unique Pokémon names,

303 of which are pre-evolution and 325 of which are post-evolution. The reason for the distri-

bution skew is because certain pre-evolution Pokémon may evolve into multiple post-evolu-

tion variants.

Elicitation experiment. This experiment received ethics approval from the Nagoya Uni-

versity of Business and Commerce. ID number 21048.

The elicitation experiment has two main goals. The first is to determine whether an RF con-

structed using the official Pokémon name data can be used to classify names elicited from par-

ticipants and vice versa. In other words, is there enough overlap between the official names

and names provided by participants for each model to be useful in classifying Pokémon from

the alternate dataset. The second goal is to provide stimuli for a categorization experiment

(Experiment 2) designed to measure the performance of human participants against the

machine learning algorithms. To get a fair measurement of classification accuracy, it was
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important to test both humans and the machine learning algorithms on data that they had not

previously been exposed to, hence the need for elicited samples.

The elicitation experiment was conducted using Google Forms. Each Google form con-

sisted of a short instructional paragraph, followed by twenty Pokémon-like images. Following

the method outlined in Kawahara & Kumagai [28], these images were not of existing Pokémon

and had likely not been previously viewed by the participants. The instructions noted that only

native Japanese speakers were to take the survey. Participants were informed that they were to

name twenty new Pokémon. It was made clear to participants that they would be shown

images of pre- and post-evolution Pokémon. Participants were asked to provide names for

Pokémon in katakana which is the script used for Pokémon names and nonce words in Japa-

nese. Participants were instructed not to use existing words (Japanese or otherwise) to name

the Pokémon. Participants were given no further instructions (such as length limitations)

regarding naming the Pokémon. Participants were not asked if they were familiar with the

Pokémon franchise prior to completing the survey. All instructions were written in Japanese.

Participants were informed that their participation was entirely voluntary, that they may quit

the survey at any time. Consent was obtained verbally and it was explained to participants that

their participation also constituted consent. No personal data were collected other than stu-

dent email addresses which were collected to ensure that students were not completing the sur-

vey twice. These were discarded prior to the analysis.

Each image contained a pre-evolution and a post-evolution Pokémon presented side by

side. The pre-evolution Pokémon was always located to the left of the post-evolution Pokémon

and was always presented as substantially smaller (see Fig 1) than its post-evolution counter-

part. In each image, there was an arrow pointing to the Pokémon that was to be named. Images

with arrows pointing to the pre-evolution Pokémon were always followed by an identical

image, except the arrow would be pointing to the post-evolution Pokémon. Trials were not

randomized, and the pre-evolution image was always followed by the post-evolution image.

Pre-evolution Pokémon were always presented on the left and post-evolution Pokemon were

always presented on the right. The images were created by a semi-professional artist (Devian-

tArt user: Involuntary-Twitch), and samples are presented in Fig 1. The images very closely

resemble the pixelated images used to represent Pokémon in the earlier generations of Poké-

mon games.

Participants were recruited from the Nagoya University of Commerce and Business via a

post on the student bulletin board. Students were not compensated for their time monetarily

or otherwise. The human participants needed to be somewhat familiar with the subject matter

because sound-symbolic relationships in fictional names may not adhere to those found in nat-

ural languages. Given the popularity of Pokémon in Japan and that the participants were Japa-

nese university students, Pokémon was determined to be a good test case for assessing the

accuracy of RFs against that of humans. Forty-nine students responded to the survey. In total,

980 responses were recorded; however, some responses were blank and other responses con-

tained duplicate names, the distribution of which suggested that participants had possibly con-

ferred while taking the survey. These were discarded, resulting in 967 unique names (482 pre-

evolution; 485 post-evolution). Elicited names were transcribed using the same algorithm used

for the official Japanese Pokémon names. None of the names collected in the elicitation experi-

ment were names of existing Pokémon.

Random forests. Random forests were constructed and tested using the ranger package

0.13.1 [42]. The number of trees included in each RF was manually tuned by constructing nine

RFs at different tree number values with different starting points for randomization (set.seed).

Optimal values were determined by examining mean out of bag (OOB) accuracy and its stan-

dard deviation. OOB error refers to incorrectly classified samples. For all RFs, 20,000 trees
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were determined to be a suitable size because we observed no reduction in OOB error with

increased trees and because calculating feature importance using the Altmann method [43] at

20,000 trees approached the processing capability of the computer the RFs were constructed

upon. Hyperparameters pertaining to the number of features examined at each node, the sam-

ple fraction, and node size were tuned using the tuneRanger package 0.5 [44]. Essentially, the

tuning process determines how much variability there is between trees. Highly variable trees

Fig 1. Sample stimulus pairs of pre- and post-evolution Pokémon characters used in Experiment 1. These images

are reproduced with the permission of the artist.

https://doi.org/10.1371/journal.pone.0279350.g001
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will produce highly variable results but might encounter issues with datasets that contain

many unimportant features or null values. Low variability in decision trees results in more sta-

ble algorithms but may mask the importance of weaker features because they will often be

paired with strong features. The accuracy of the RF is determined by feeding the testing data

into the model and assessing the OOB error. The OOB error gives an overall representation of

the accuracy of the algorithm but does not communicate which features are important in clas-

sification, which is instead determined by feature importance. There are several ways to calcu-

late feature importance, the present study uses permutation. In permutation, each feature is

randomized individually, and then the algorithm is reconstructed with all other features

remaining the same. Feature importance is calculated on the increase of OOB error due to ran-

domization. One issue with the interpretability of RFs is that feature importance does not com-

municate directionality. For example, those sounds that are important to classification may be

considered as “pulling” each sample into one category or the other, while feature importance

communicates the strength of the “pull”, it does not communicate whether that “pull” is in the

direction of the pre- or post-evolution category. In the present study, we report on the distri-

bution of speech sounds to pre- and post-evolution categories.to indicate directionality,

though it should be noted that they are not necessarily the same measure.

In total, there were six RFs constructed for Experiment 1. The first three RFs presented in

the results section were trained using a randomly sampled subset consisting of two-thirds of

the Japanese, Chinese and Korean Pokémon names. The fourth RF is trained using two-thirds

of the results of the elicitation experiment. All four RFs are then tested using the remaining

one-third subset of each dataset. We then calculate feature importance for each RF to examine

potential cross-linguistic patterns, and patterns between the Japanese Pokémon data and the

elicited data. The remaining two RFs are constructed using the entirety of the official Japanese

Pokémon names and the entirety of the samples collected in the Elicitation experiment. These

two RFs are then tested using the alternate dataset. In other words, one RF is constructed

using all the official names and tested on the elicited responses, while the other is constructed

using all the elicited samples and tested on the official names. This is done to determine

whether there is enough overlap in the two datasets for the algorithms to be useful in classify-

ing the opposite dataset.

Results

The three RFs trained and tested on the official Pokémon names all classified Pokémon at a

rate better than chance. Given that there is an uneven distribution of pre- and post-evolution

Pokémon, any model that naïvely classified to the majority category would achieve an accuracy

of around 52% (OOB error 48%) depending on the split of the training and testing subsets.

The Japanese RF was the most accurate (OOB error 29.05%), followed by the Chinese RF

(OOB error 39.05%), and finally, the Korean RF (OOB error 40.95%). A confusion matrix for

the Japanese RF is presented in Table 1 and feature importance for the Japanese RF is pre-

sented in Table 2. Note here that in Experiment 2, we report on the results of MRFs with differ-

ent starting values for the randomization of both splitting the data in the training and testing

Table 1. Confusion matrix for the Japanese RF.

Classification

Pre-evolution Post-evolution

Sample Pre-evolution 69 38

Post-evolution 23 80

https://doi.org/10.1371/journal.pone.0279350.t001
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subsets, and the RFs themselves. The results of the MRFs (OOB error: M = 34.07%,

SD = 2.48%) suggest that this result was an outlier caused by a particularly advantageous split

between training and testing subsets. This process was conducted for the Chinese (OOB error:

M = 40.85%, SD = 3.35%) and Korean (OOB error: M = 43.28%, SD = 3.09%) datasets as well.

The RF trained and tested on the elicited names (Elicited RF) classified samples at a rate better

than chance. As with the official datasets, there was an uneven distribution to categories, a

naïve model would accurately classify samples in the elicited data 50.16% (OOB error 49.84%)

of the time. The Elicited RF achieved an OOB error of 30.96%. Feature importance was calcu-

lated for each model to determine which sounds contributed to classification. Feature impor-

tance and significance is calculated using the Altmann [43] permutation method on the

training subsets. Permutation involves randomizing features individually; the random forest is

then reconstructed for each feature. Feature importance is the increase in OOB error for the

feature being randomized. The Altmann permutation method involves running multiple per-

mutations to estimate more precise p values. Feature importance significance is calculated by

normalizing the biased measure based on a permutation test. This returns a significance result

for each feature, not for the random forest itself [43]. All RFs in the present study use the Alt-

mann permutation method with the number of iterations set at 100. Directionality was deter-

mined by the distribution of features in the training subsets of the data. The distribution of

features in the Japanese training subset is presented in Fig 2. In the Japanese RF, the most

important features were the bilabial nasal (/m/), the coda nasal (/ɴ/), long vowels (/:/), and the

voiced velar plosive (/g/). Of these features, only /m/ occurs more frequently in the pre-evolu-

tion samples.

As with the Japanese RF, the distribution of most features that were important in the Chi-

nese RF skewed towards the post-evolution category. A confusion matrix for the Chinese RF is

presented in Table 3 and feature importance scores for its features are presented in Table 4,

and distribution is presented in Fig 3. Tones are an important feature in the RF; where the fall-

ing tone occurs more frequently in the post-evolution samples, the neutral tone occurs more

frequently in the pre-evolution samples. The velar nasal (/η/) was also found to be an impor-

tant feature in the Chinese RF.

Table 2. Feature importance (Importance) and p values for features that achieved a feature importance greater

than 0.1% in the Japanese RF.

Feature Importance p value

/m/ 0.78% 0.030

/ɴ/a 0.63% 0.020

/:/b 0.45% 0.049

/g/ 0.40% 0.049

/a/ 0.39% 0.139

/ɾ/ 0.35% 0.089

/Q/c 0.24% 0.059

/ɸ/ 0.20% 0.079

/ʈ ͡ɕ/ 0.19% 0.069

/d ͡ʒ/ 0.19% 0.129

/d/ 0.19% 0.228

a /ɴ/ represents the coda nasal.
b /:/ represents the second portion of long vowels.
c /Q/ represents the initial portion of geminate consonants.

https://doi.org/10.1371/journal.pone.0279350.t002
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In the Korean RF, vowels /ɯ/, /a/, /ʌ/, and /u/ were important, as was the voiced labial-

velar approximant /w/. Interestingly, while the close back unrounded vowel, /ɯ/ was present

more often in post-evolution samples, the close back rounded vowel /u/ was present more

often in pre-evolution samples. Table 5 presents a confusion matrix for the Korean RF, Table 6

presents the feature importance and p values, and Fig 4 presents the distribution.

Fig 2. Distribution of features to pre- and post-evolution categories in the Japanese training subset. Features

appear in order of importance from left to right. Asterisks denote significant features.

https://doi.org/10.1371/journal.pone.0279350.g002

Table 3. Feature importance (Importance) and p values for features that achieved a feature importance greater

than 0.1% in the Chinese RF.

Classification

Pre-evolution Post-evolution

Sample Pre-evolution 53 50

Post-evolution 29 78

https://doi.org/10.1371/journal.pone.0279350.t003
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Table 4. Feature importance (Importance) and p values for features that achieved a feature importance greater

than 0.1% in the Chinese RF.

Feature Importance p value

Falling tone 0.88% 0.020

/η/ 0.87% 0.010

/ʈ ͡ɕ/ 0.20% 0.089

/ɕ/ 0.14% 0.109

/e/ 0.13% 0.238

/o/ 0.13% 0.257

Neutral tone 0.13% 0.188

https://doi.org/10.1371/journal.pone.0279350.t004

Fig 3. Distribution of features to pre- and post-evolution categories in the Chinese training subset. Features

appear in order of importance from left to right. Asterisks denote significant features.

https://doi.org/10.1371/journal.pone.0279350.g003
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Table 5. Confusion matrix for the Korean RF.

Classification

Pre-evolution Post-evolution

Sample Pre-evolution 57 50

Post-evolution 36 67

https://doi.org/10.1371/journal.pone.0279350.t005

Table 6. Feature importance (Imp.) and p values (p) for features that achieved a feature importance greater than

0.1% in the Korean RF.

Feature Importance p value

/ɯ/ 2.558% <0.001

/a/ 1.326% 0.0297

/w/ 0.226% 0.0693

/ʌ/ 0.207% 0.1287

/u/ 0.113% 0.1782

https://doi.org/10.1371/journal.pone.0279350.t006

Fig 4. Distribution of features to pre- and post-evolution categories in the Korean training subset. Features appear

in order of importance from left to right. Asterisks denote significant features.

https://doi.org/10.1371/journal.pone.0279350.g004
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Most of the features that were important in the Japanese RF were also important in the Elic-

ited RF. These include voiced plosives (/g/ & /d/), the open front unrounded vowel (/a/), the

coda nasal (/ɴ/), and long vowels (/:/). Interestingly, all the features that achieved a feature

importance greater than 0.1% in the Elicited RF occurred more frequently in post-evolution

Pokémon. The confusion matrix for the RF constructed and tested on the data from the elicita-

tion experiment are presented in Tables 7 and 8 presents the feature importance scores, and

Fig 5 presents the distribution chart.

Given that the Japanese RF and the Elicited RF feature importance patterns are reasonably

similar, we wanted to test whether these RFs would be able to accurately classify samples from

their opposite dataset. Important features that are shared between the two models are non-

labial voiced obstruents such as /d/ and /g/, coda nasals, long vowels, and the low front vowel

/a/. Interestingly, the distributional skew for all of these features is towards the post-evolution

category. We tested each existing RF on the entirety of their opposite dataset (not just the test

subsets). The Japanese RF was able to accurately classify the elicited samples 61.43% of the

time (OOB error 38.57%), and the Elicited RF was able to accurately classify the official Japa-

nese Pokémon name samples 66.72% of the time (OOB error 33.28%) where naïve models

would be expected to achieve an accuracy of 52% and 50.16% respectively. The confusion

matrix for the RF trained using the official Japanese Pokémon names and tested using the elic-

ited samples is shown in Table 9. Table 10 shows the confusion matrix for the for the RF

trained using the elicited samples and tested using the official Japanese Pokémon names.

Discussion

All the RFs presented above performed better than a naïve algorithm would. For the Japanese,

Chinese, and Korean RFs, a naïve algorithm would be expected to achieve an OOB error of

48%. While the Japanese RF was shown to be the most accurate (OOB error 29.05%), the Chi-

nese (OOB error 39.05%) and Korean (OOB error 40.95%) error rates were well below 48%.

The elicited RF, for which a naïve algorithm would be expected to achieve an OOB error of

50%, achieved an OOB error of 30.96%. Important to remember here is that the RFs were

Table 7. Confusion matrix for the Elicited RF.

Classification

Pre-evolution Post-evolution

Sample Pre-evolution 103 55

Post-evolution 45 120

https://doi.org/10.1371/journal.pone.0279350.t007

Table 8. Feature importance (Imp.) and p values (p) for features that achieved a feature importance greater than

0.1% in the Elicited RF.

Feature Importance p value

/d/ 1.263% <0.001

/ɯ/ 1.059% <0.001

/a/ 0.918% <0.001

/g/ 0.838% <0.001

/d ͡ʒ/ 0.448% <0.001

/o/ 0.219% 0.2277

/ɴ/ 0.180% 0.2376

/:/ 0.140% 0.2772

/z/ 0.138% 0.1287

https://doi.org/10.1371/journal.pone.0279350.t008
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trained on only two-thirds of the data, so the RFs were efficient learners, given that they only

had 419 samples to learn from. The RF trained on the official Japanese data and tested on the

elicited data was trained on all 628 official Japanese samples and tested on all 967 elicited

responses. Despite having more samples from which to learn, the RF trained on the official

names and tested on the elicited responses (OOB error 38.57%) was less accurate than the RF

trained and tested on the official names (OOB error 29.05%). Similarly, the RF trained on the

Fig 5. Distribution of features to pre- and post-evolution categories in the elicited training subset. Features appear

in order of importance from left to right. Asterisks denote significant features.

https://doi.org/10.1371/journal.pone.0279350.g005

Table 9. Confusion matrix for the RF trained using the official Japanese Pokémon names and tested using the

elicited samples.

Classification

Pre-evolution Post-evolution

Sample Pre-evolution 245 237

Post-evolution 136 349

https://doi.org/10.1371/journal.pone.0279350.t009
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entirety of the elicited responses and tested on the official names (OOB error 33.28%) was less

accurate than the RF trained and tested on the elicited responses (OOB error 30.96%). Despite

these differences, the official names and the elicited responses are similar enough to perform

better than naïve algorithms.

The feature importance scores of the RFs reveal interesting relationships between Pokémon

evolution status and the sounds that make up their names, some of which hold across lan-

guages. While high front vowels did not achieve a feature importance greater than 0.1% in any

of the RFs, the low front vowel /a/ and the high back unrounded vowel /ɯ/ were important in

the Japanese, Korean, and Elicited RFs and were distributionally skewed towards post-evolu-

tion in all cases. The result for the phoneme /a/ as representing post-evolution Pokémon is in

line with the well-known observation that nonce words containing [a] are larger than those

containing [i] [2,45,46] given that post-evolution Pokémon are typically larger than their pre-

evolution counterparts. Interestingly, the high back rounded vowel /u/ was important in the

Chinese model, but it skewed towards the pre-evolution category. Vowels were found to be

important in the Korean model, particularly /ɯ/, /a/, /ʌ/, and /u/. Korean vowels have been

found to hold sound symbolic correspondences between “light” and “dark” vowels [47]. These

correspondences run counter to cross-linguistic patterns. For example, light vowels are

defined as being low vowels and are said to reflect small, fast-moving entities, while dark (or

high) vowels are said to reflect larger, slow-moving entities [48]. Our findings do not support

this observation. Although the distribution of dark vowels /ɯ/ and /ʌ/ skew towards the post-

evolution category, the distribution of the light vowel /a/ skews towards the post-evolution cat-

egory, while the dark vowel /u/ skews towards the pre-evolution category. The finding that /a/

is important to the Korean model and skews towards the post-evolution category is in line

with [5] who found that Korean listeners judge nonce words to be larger when the contain [a].

Long vowels were important in both the Japanese and the Elicited RFs, and they skewed

towards post-evolution in both cases. This finding is reflected in previous Pokemon studies

[29,30], which also show that long vowels are associated with increased size. These studies

tend to suggest this can be explained by the iconicity of quantity which is the finding that larger

objects are typically associated with longer names [49]. This is explored further in Experiment

2. Lastly, tones in the Chinese RF were important to the model. The falling tone had the high-

est feature importance in the Chinese RF and it skewed toward the post-evolution category.

The neutral tone, on the other hand, skewed toward the pre-evolution category. In a similar

Pokémonastic study, Shih et al., [50] found that the falling tone seems to be associated with

increased power, evolution stage, and increased distribution to the male gender. This is seem-

ingly more complex than what Ohala’s Frequency Code hypothesis [51] would predict as it

simply states that low tones should reflect largeness while high tones should predict smallness;

but makes no prediction regarding tone pitch contour. Shih et al., [50] propose that the falling

tone has the steepest pitch of all Chinese tones, and that this may explain why this tone is icon-

ically linked to largeness in Chinese.

The Japanese nasal /ɴ/ and the Chinese nasal /η/ were important in the Japanese, Chinese,

and Elicited RFs and skewed towards post-evolution in all cases. This is an interesting finding

Table 10. Confusion matrix for the for the RF trained using the elicited samples and tested using the official Japa-

nese Pokémon names.

Classification

Pre-evolution Post-evolution

Sample Pre-evolution 180 123

Post-evolution 83 242

https://doi.org/10.1371/journal.pone.0279350.t010
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given that both consonants can only occur in the coda position, although the coda nasal /η/ in

Korean did not achieve a feature importance greater than 0.1%. Cross-linguistically, nasal con-

sonants are generally associated with large entities [2,52], likely due to their low frequency [2].

In Japanese, however, bilabial consonants have been found to be associated with images of

cuteness and softness [53], which may explain why /m/ was both important in the Japanese

model and was skewed towards the pre-evolution category. High back vowels in the Korean

model present an interesting case study when examined through the lens of the relationship

between cuteness and labiality in Japanese. In the Korean model, both high back vowels were

found to be important. While the high back rounded vowel /u/ skewed towards the pre-evolu-

tion category, the high back unrounded vowel /ɯ/ skewed towards the post-evolution cate-

gory. This result suggests that the association between cuteness and labiality may be a cross-

linguistic one; however, this suggestion is tentative given that the Korean labial-velar approxi-

mant both skewed towards post-evolution and was important in the model. Berlin [2] suggests

that nasal consonants can imply largeness given their low frequency energy; however, the bila-

bial nasal /m/ skewed towards the pre-evolution category and was found to be important in

the Japanese RF. In line with Shih et al. [31], who found that voiced plosives were reflective of

size in Japanese and English Pokémon names, voiced plosives /d/ and /g/ were important in

the Japanese and Elicited RFs. Intervocalic plosives in Korean were counted separately due to

maintaining systematic voicing in these positions; however, these did not achieve a feature

importance greater than 0.1%.

Experiment 2: Categorization

Random forests

The RFs presented in Experiment 1 were constructed using only the sounds that make up the

names of Pokémon. In Experiment 2, we reconstruct those RFs with name length as an addi-

tional feature. Length was not included in the previous RFs because previous studies suggest

that it is likely a highly important feature [29,31], the inclusion of which would likely mask the

importance of other features. In all other aspects, the RFs presented in Experiment 2 follow the

same method as those in Experiment 1, except in the case where multiple random forests

(MRFs) are constructed independently of each other. In MRFs, the starting value for the ran-

domization for splitting data into training and testing subsets, as well as the starting value for

the randomization for each RF was set as the number where the RF fell in the RF sequence. So

the first RF in each MRF had a set.seed value of 1 while the ninth RF had a set.seed value of 9.

For MRFs, tuning was conducted on the first RF only and those hyperparameter settings were

applied to all nine RFs in each MRF. This is because, as far as we can tell, there is no way to

make the tuning process replicable and the data for individual RFs come from the same source.

We test each MRF nine times using the testing subset for each random split. In those instances

where the entirety of a dataset is tested against the entirety of a different dataset, as in the case

of testing the accuracy of the official Japanese MRF against the elicited Japanese MRF, nine

iterations of each test were run with different starting values for the randomization of the

MRFs.

Categorization experiment

This experiment received ethics approval from the Nagoya University of Business and Com-

merce. ID number 21057.

In the categorization experiment, we took the elicited responses from Experiment 1 and

asked Japanese participants to classify them as either pre-evolution or post-evolution Poké-

mon. One hundred samples were selected randomly from the 967 elicited responses. There
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was no control for distribution in the random sampling process because there is no distribu-

tion control in the splitting of subsets for RFs. These samples were used to populate five Google

Forms that held twenty elicited names each. The surveys were designed in this manner, rather

than randomly sampling twenty names from the entire dataset, to simulate the voting process

that decision trees undertake in RFs. This is discussed further in the results section below. The

forms explained (in Japanese) to the participants that they were to assign new Pokémon to either

pre- or post-evolution categories. These choices were presented as buttons labelled進化前 [pre-

evolution] and進化後 [post-evolution]. Participants were not asked if they were familiar with the

Pokémon franchise prior to completing the survey. Five QR codes were generated for each of the

five Google Forms. The codes were printed on handouts and distributed to Japanese university

students at the Aichi Prefectural University and the Nagoya University of Business and Com-

merce. Other than the QR code, there was no other information on the handout except for the

headingポケモンクイズ [Pokémon Quiz]. Handouts were distributed to students prior to club

activities and scheduled classes. Students were not given any time in class to complete the survey.

In total, 119 participants responded to the survey, and there were 10 instances where participants

had failed to designate a category, resulting in 2,370 responses. As with Experiment 1, participants

were informed that their participation was entirely voluntary, that they may quit the survey at any

time. Consent was obtained verbally. No personal data were collected other than student email

addresses which were collected to ensure that students were not completing the survey twice.

These were discarded prior to the analysis. It was requested that students who had undertaken

Experiment 1 were to refrain from taking Experiment 2.

Results

The aim of Experiment 2 is to compare the performance of RFs against that of humans in clas-

sifying Pokémon into pre- and post-evolution categories. In the categorization experiment,

human participants had access to name length, so length was included in the algorithms to

give the RFs access to this information. In the following, the distribution of length is examined

across pre-and post-evolution in all four datasets. Then, all previous RFs are reconstructed to

include length to ascertain its effects on OOB error. We also calculate the feature importance

of length to determine how much it is contributing to OOB error. Finally, we report on the

results of the categorization experiment and compare the accuracy of the human participants

against that of the machine learning algorithms. Length was calculated on the sum of all

sounds in each dataset except for Chinese tones. In an exploration of sound symbolic relation-

ships in Pokémon names, Kawahara and Kumagai [28] calculated name length on the number

of moras in Japanese names because the mora is the most psycholinguistically salient prosodic

unit [54]. Although decision trees are scale-invariant, we calculated length on the number of

features to bring the Japanese length parameter in line with the Chinese and Korean parame-

ters. Chinese tones were excluded from the length calculation because tones are a measure of

pitch contour and do not contribute to the overall length of a name the same way that other

speech sounds do. Despite this, Chinese names were longer than those in all other data sets,

with both pre-evolution (M = 8.76, SD = 2.09) and post-evolution (M = 9.31, SD = 2.09) Poké-

mon names consisting of a median of nine sounds. Length in the Japanese, Korean, and elic-

ited datasets were similar, with all pre-evolution names consisting of a median of seven

sounds, and all post-evolution names consisting of a median of eight sounds. The difference

between mean pre- and post-evolution length was greatest in the Elicited dataset (1.52), fol-

lowed by the Japanese dataset (0.9), Korean (0.73), and finally Chinese (0.55). Mean, median

and standard deviation for length across datasets are presented in Table 11. Fig 6 presents a

boxplot of length in Chinese, Japanese, and Korean by evolution status.
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Table 11. Feature importance (Imp.) and p values (p) for features that achieved a feature importance greater than

0.1% in the Korean RF.

Language Measure Pre-evolution Post-evolution

Chinese Median 9 9

Mean 8.76 9.31

Standard Deviation 2.09 2.09

Japanese Median 7 8

Mean 7.28 8.18

Standard Deviation 1.38 1.26

Korean Median 7 8

Mean 7.33 8.06

Standard Deviation 1.88 1.81

Elicited Median 7 8

Mean 6.79 8.31

Standard Deviation 2.07 2.38

https://doi.org/10.1371/journal.pone.0279350.t011

Fig 6. Boxplot of length for pre- and post-evolution Pokémon across the three languages.

https://doi.org/10.1371/journal.pone.0279350.g006
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The distribution of length in the official Japanese Pokémon dataset and the elicited dataset

were extremely similar. While there were more outliers in the elicited dataset, the median,

upper and lower quartiles, and minimum and maximum scores (excluding outliers) were

almost identical. Fig 7 presents a boxplot for the official Japanese Pokémon name length, and

the elicited name length presented side by side to illustrate these similarities.

Length was excluded from the RFs in the previous section because it is clear from previous

studies that length would be an important feature [29,31] and would likely mask the impor-

tance of speech sounds. Its inclusion should therefore increase the accuracy of the models (or

reduce OOB error). However, this was not the case. All previous RFs were reconstructed to

include the length feature. These RFs underwent the same tuning process outlined in Experi-

ment 1. The feature importance of length is presented in Table 12. Table 12 also presents the

OOB error rates for the RFs constructed with (+L) and without (-L) length. The inclusion of

length increased the OOB error of all but the Chinese RF, which should be the RF least affected

by length because the difference in average length between pre- and post-evolution Pokémon

Fig 7. Official Japanese Pokémon name length (Official) and elicited name length (Elicited) presented side by side

in a boxplot.

https://doi.org/10.1371/journal.pone.0279350.g007
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was the smallest in the Chinese dataset. Confoundingly, length was shown to be an important

feature in the RFs, yet its effects were not being exhibited by the difference in OOB error

between +L and -L RFs.

To explore a potential explanation for this, we examined the randomization processes used

in the construction of RFs. For all RFs until this point, we used the same set.seed value, except

for those used to tune the number of trees in each forest (num.trees). This value was used as

the starting number to generate randomization for both the splits between training and testing

data and the RFs themselves. In the method section of Experiment 1, we tuned num.trees by

running nine iterations of each num.trees value with different set.seed values for the randomi-

zation of RFs. We applied this method to the randomization of the splits between training and

testing subsets and found a substantial amount of variation in OOB error. We ran nine itera-

tions of each of the RFs presented in this study. Here, however, we adjusted the set.seed values

for both the subset splits and the RFs. The set.seed values ranged from 1–9 for both +L and -L

RFs, resulting in the same nine subset splits. The results of these are displayed in Table 13.

There is no way to control for randomization in the tuning process, each time the tuning pro-

cess is conducted, it returns different hyperparameter values even when conducted on the

same data. Given that the nature of the data remained the same, the hyperparameter values

used for the MRFs were taken from the previous RFs.

To understand the reason why the Japanese RF in Experiment 1 achieved such a low OOB

error, we examined the mean feature importance values for features in the -L Japanese MRFs

and compared them to the feature importance of features in the -L Japanese RF. Table 14

shows the confusion matrix for the Japanese MRF. Table 15 presents the feature importance

values in the Japanese RF and the mean feature importance values in the Japanese MRF. Here

we see that the Japanese RF outlined in Experiment 1 was over-emphasising the importance of

features /m/, /ɸ/, and /Q/, and under-emphasising the importance of /ɴ/, /:/, /ɾ/, /d/, /ɯ/, /o/,

and /s/. The latter three were not included in earlier tables and charts because they did not

achieve a feature importance greater than 0.1% in the Japanese RF.

Given that the randomization of subsets has such a large impact on OOB error, we recon-

ducted the tests of the Japanese RF using the elicited data and the Elicited RF using the official

Japanese Pokémon data using both -L and +L datasets. We tested the entirety of the Japanese

Table 12. OOB error rates for the RFs constructed in Experiment 1 (-L OOB), the OOB error for RFs constructed

using length (+L OOB), and the feature importance of length in those RFs (L Imp).

RF -L OOBa +L OOBb L Impc

Chinese 41.90% 41.43% 0.25%

Japanese 29.05% 30.95% 4.74%

Korean 40.95% 41.43% 1.33%

Elicited 30.34% 30.96% 6.66%

https://doi.org/10.1371/journal.pone.0279350.t012

Table 13. Results of multiple random forests. The mean OOB error for RFs constructed without length (-L OOBM) and their standard deviation (-L OOBSD), the

mean OOB error for the RFS constructed with length (+L OOBM) and their standard deviation (+L OOBSD), and the mean feature importance of length (L ImpM) in the

+L MRFs.

MRF -L OOBM -L OOBSD +L OOBM +L OOBSD L ImpM

Chinese 40.85% 3.35% 39.36% 4.52% 0.51%

Japanese 34.07% 2.40% 31.69% 3.01% 5.47%

Korean 43.28% 3.09% 40.85% 2.85% 2.44%

Elicited 36.29% 1.98% 32.47% 2.44% 6.99%

https://doi.org/10.1371/journal.pone.0279350.t013
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and elicited datasets on the Elicited and Japanese MRFs, respectively. Table 16 presents the RF

trained on the official Japanese Pokémon names and tested on the elicited samples. Table 17

shows the confusion matrix for the RF trained using the elicited samples and tested on the offi-

cial names.

Table 14. Confusion matrix for the Japanese MRF trained and tested on multiple subsets from the official Poké-

mon names that include length as a feature.

Classification

Pre-evolution Post-evolution

Sample Pre-evolution 609 314

Post-evolution 285 682

https://doi.org/10.1371/journal.pone.0279350.t014

Table 15. Feature importance of sounds for Japanese RF trained on official Pokémon names (RF Imp), mean fea-

ture importance of sounds for Japanese MRF trained on official names (MRF ImpM), and mean standard devia-

tion for the Japanese MRF (MRF ImpSD). Asterisks reflect a mean p value of less than 0.05.

Feature RF Imp MRF ImpM MRF ImpSD

/m/ 0.78%� 0.39%� 0.22%

/ɴ/ 0.63%� 1.29%� 0.38%

/:/ 0.45%� 0.83%� 0.21%

/g/ 0.40%� 0.45% 0.20%

/a/ 0.39% 0.37% 0.23%

/ɾ/ 0.35% 0.67%� 0.26%

/Q/ 0.25% 0.01% 0.05%

/ɸ/ 0.21% 0.09%� 0.11%

/t ͡ɕ/ 0.19% 0.10% 0.07%

/d ͡ʒ/ 0.19% 0.11% 0.14%

/d/ 0.19% 0.50% 0.26%

/ɯ/ 0.51%� 0.29%

/o/ 0.27% 0.18%

/s/ 0.10% 0.07%

https://doi.org/10.1371/journal.pone.0279350.t015

Table 16. Confusion matrix for the MRF trained on all official Japanese Pokémon names and tested on all elicited

samples.

Classification

Pre-evolution Post-evolution

Sample Pre-evolution 3055 1510

Post-evolution 1283 2855

https://doi.org/10.1371/journal.pone.0279350.t016

Table 17. Confusion matrix for the MRF trained on all elicited samples and tested on all official Japanese Poké-

mon names.

Classification

Pre-evolution Post-evolution

Sample Pre-evolution 1436 1291

Post-evolution 585 2340

https://doi.org/10.1371/journal.pone.0279350.t017
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To explore the issue of overfitting further, we reconstructed the -L Japanese MRF; this time,

however, we skipped the tuning process and used the default hyperparameter settings in the

Ranger package. This was done because we considered that the most likely reason for overfit-

ting was low variability in decision trees due to the hyperparameter settings suggested by the

tuning process. The untuned -L Japanese MRF (OOB error M = 35.94%, SD = 1.75%) was less

accurate than the tuned MRF (OOB error M = 34.07%, SD = 2.4%), but the standard deviation

was lower, suggesting that overfitting was less prevalent in individual RFs. We then recreated

the untuned MRF using the entirety of the official Japanese names and tested it on the entirety

of the elicited names and found the same pattern whereby the untuned MRF (OOB error

M = 38.24%, SD = 0.42%) was less accurate, but more stable than the tuned MRF (OOB error

M = 37.31%, SD = 1.26%) presented in Table 18.

We considered a potential alternative explanation for the high standard deviation in tuned

MRFs; that variability caused by the randomization of subset splits may be explained by an

over/under-representation of pre-/post-evolution Pokémon in the testing/training subsets. A

simple regression model was constructed to predict the effect of increased post-evolution

Pokémon in the testing subset on OOB error for all the Japanese, Chinese and Korean RFs

taken from the MRFs. Elicitation data was not included because the distribution of samples to

pre-/post-evolution categories is different in the elicited responses. No correlation between

distribution in subsets and OOB error was observed, F(1,25) = 0.31, p = 0.581, R2 = 0.01. We

must therefore consider that the variability in accuracy when randomizing the subsets is most

likely due to overfitting resulting from low variability in decision trees.

In the classification experiment, 119 Japanese participants each classified twenty names

into either pre- or post-evolution categories. The twenty names were taken from 100 randomly

selected samples from the results of Experiment 1. The participants were reasonably accurate

(M = 61.58%, SD = 17.84%) at assigning the elicited Pokémon names to pre- and post-evolu-

tion categories. This assessment was based on the individual responses taken from their mean

accuracy. This is arguably an unfair assessment of human ability, given that sound symbolic

associations are decided upon by speech communities, not individual speakers. In RFs con-

structed for classification tasks, each decision tree votes for the classification of samples. The

RF chooses the classification based on majority voting. To apply this method to the results of

the classification experiment, we treated each response as a vote and examined the results of a

majority vote analysis. Put simply, we examined the mode rather than the mean for each sam-

ple. Using majority voting, the participants in the classification experiment were able to accu-

rately classify 71% of the samples. The same 100 samples were then tested using each RF in the

MRF constructed with the official Japanese names. The MRF was able to accurately classify the

samples far more accurately than the humans, correctly classifying samples 75.88% of the time

(OOB error M = 24.12%, SD = 1.61%).

Discussion

Experiment 2 was designed to test whether machine learning algorithms perform on par with

humans, though it may not be immediately clear which of the MRFs presented in Table 18

Table 18. Results of testing the Japanese MRF on the elicited data from Experiment 1 and the Elicited MRF on the Japanese data. This includes both MRFs that do

not contain length as a feature (-L OOBM) and those that do (+L OOBM) as well as their standard deviation (-L OOBSD, +L OOBSD).

Train data Test data -L OOBM -L OOBSD +L OOBM +L OOBSD

Japanese Elicited 37.31% 1.26% 32.09% 0.75%

Elicited Japanese 35.86% 2.01% 33.19% 2.03%

https://doi.org/10.1371/journal.pone.0279350.t018
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should be used as a fair yardstick for the accuracy of the algorithms. We consider the results of

the MRF trained using the length and sounds of all of the official Japanese Pokémon names

and tested on the 100 samples used in Experiment 2 (OOB error M = 24.12%) as the fairest

measure for the performance of the algorithms, because they were trained on the maximum

amount of information available that was also available to the human participants and tested

on the same samples used in Experiment 2. Converting the responses of the human partici-

pants to OOB error shows us that the human participants (OOB error M = 38.42%,

SD = 17.84%) were far less accurate than the algorithm (OOB error M = 20.12%, SD = 1.61%),

even when using the majority vote method (OOB error = 29%).

The finding that the algorithms were more accurate than individual participants at classify-

ing Pokémon is unintuitive, particularly given the limited data upon which the MRFs were

trained. One interpretation of this finding is that human participants do not give their best

effort all the time, while machine learning algorithms do. This lack of effort may come down

to a lack of motivation, not taking the survey seriously, or any number of other factors that are

simply impossible to take into account. However, we contend that this does not account for

the entirety of the difference in classification accuracy for the following reasons. Firstly, the

categorisation experiment was voluntary; participants were not rewarded monetarily or other-

wise for their participation. While the printed handouts were distributed prior to classes, the

students were not given any time in class to complete the experiment. It was done entirely in

their own time. Additionally, the task was brief, taking around 2–3 minutes to complete.

Lastly, the subject matter was specifically chosen because it was appealing and familiar to the

population sample. Based on these factors, we expect that participant interest would have been

high and that many participants would have been invested in the experiment.

Therefore, we believe that another interpretation may better explain the difference between

participant and algorithm accuracy. That humans are susceptible to cognitive biases while

machine learning algorithms are not. For example, humans will often apply oversimplified

images or ideas to types of people or things, this is known as stereotyping. Through the lens of

RFs, stereotyping is the overapplication of a feature to a category. Other cognitive biases sug-

gest that humans do not intuitively understand probabilities, this is important given that

sound symbolism is stochastic, not deterministic [24]. These biases include the recency bias
(also known as the availability bias) which is the expectation that events that have occurred

recently will reoccur regardless of their probability and the conjunction fallacy which is the

assumption that a specific condition is more probable than a general one even when said spe-

cific condition includes the general condition [55]. Indeed, other studies have shown that

machine learning algorithms can outperform humans (see [56] for a recent review). For exam-

ple, McKinney et al. [57] presented a machine learning algorithm that outperformed six expert

readers of mammographs in breast cancer prediction performance. Compared to the expert

radiologists, the algorithm showed an absolute reduction in both false positives and false nega-

tives. Given the nature of the task and the human participants, we can reasonably safely assume

that the difference in performance was not based on disinterest or lack of motivation on the

part of the radiologists. We must therefore consider that the OOB error difference between the

human participants and the algorithm in this study is potentially due to a difference in learning

efficiency and the application of that learning.

Length was omitted from the RFs presented in Experiment 1 because we wanted to isolate

the feature importance of speech sounds, and the descriptive statistics suggested that Length

was going to be an important feature that may mask the importance of weaker features.

Indeed, Length was found to be important in all the MRFs. It was most important in the Elic-

ited (6.99%) and Japanese (5.47%) MRFs which suggest that word length carries a considerable

amount of sound symbolic information in Japanese. It was less important in the Korean
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(2.44%) and Chinese (0.51%) MRFs. Isolating Length from the other features in Experiment 1

and introducing it into the RFs in Experiment 2 uncovered the issue of overfitting that led to

the use of MRFs. The -L Japanese RF in Experiment 1 (OOB 29.05%) performed better than

the +L Japanese RF in Experiment 2 (OOB 30.95%), despite Length being a highly important

feature (4.54%) in the +L Japanese RF. The most likely explanation for overfitting is that there

was little variability in decision trees. This hypothesis was tested by recreating the Japanese

RFs using the default hyperparameter settings in the Ranger package. Running the untuned

MRFs resulted in more stable RFs that were only slightly less accurate than their tuned coun-

terparts. This finding supports our hypothesis that overfitting in Experiment 1 was the result

of a lack of variability in decision trees. The lack of decision tree variability is likely due to a

high number of features being examined at each node (mtry) which was suggested by the tun-

ing process due to the large percentage of null values in the dataset (82.26%).

A potential solution to this issue was explored, which involved constructing each RF using

the default hyperparameter settings; however, this resulted in an increased OOB error in all

cases. Another potential solution would be to reduce the number of null values by reporting

on phonological features rather than the sounds themselves. This would reduce both the num-

ber of null values and the number of features resulting in a less fine-grained data resolution.

Instead, we constructed MRFs made up of independent RFs with different starting values for

the randomisation of both the splitting of data into subsets and the RFs themselves. At first

glance, MRFs may appear to be stacked RFs (SRFs: [58]), but this is not the case. Stacking [37]

is a method of improving algorithm accuracy by combining weaker models into a super

learner [59]. For example, Hänsch [58] sequentially adds RFs to SRFs using the estimates of

earlier RFs to improve the accuracy of the final model. Our method is more like k-fold cross-

validation which involves randomly dividing the data into k groups, or folds, and then recom-

bining the data by way of a partial Latin square to create multiple training/testing subsets

which are then used for constructing and testing multiple iterations of the algorithm [60]. K-

fold cross-validation was not used in the present study because if the user adheres to the two-

thirds subset rule, they are limited in choice for the number of iterations.

Conclusion

The present study builds and tests machine learning algorithms using the names of Pokémon.

Those algorithms are constructed to classify Pokémon into pre- and post-evolution categories.

In Experiment 1, the algorithms are constructed using the speech sounds that make up Japa-

nese, Chinese, and Korean Pokémon names. The feature importance calculations of these algo-

rithms show that while some sound-symbolic patterns hold across languages, many important

features are unique to each language. Experiment 1 also includes an elicitation experiment

whereby Japanese participants named previously unseen Pokémon. We then construct RFs

using the entirety of the official Japanese Pokémon name data and the elicited responses and

test them on their opposite dataset. The OOB error of these tests shows that the sound sym-

bolic patterns in these datasets are reasonably similar, suggesting that either those sound sym-

bolic patterns already exist in the Japanese language, or the participants are familiar with

Pokémon naming conventions. Previous studies have shown no correlation between Pokemon

familiarity and sound symbolism effect size in nonce-word Pokémonastic experiments [61,62],

suggesting that their results were not driven by existing knowledge of Pokémon names. In

Experiment 2, all algorithms are reconstructed to include name length as a feature. This

uncovers an issue of overfitting, which we resolve using MRFs. The performance of the MRFs

is then measured against the performance of Japanese participants. The MRFs are shown to

perform more accurately than humans.
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RFs are said to be appropriate for “small N, high p” datasets [63], such as those found in the

present study. However, Experiment 2 uncovers a clear case of overfitting in Experiment 1.

The RFs constructed with length as a feature showed that length was important, yet this impor-

tance was not always reflected in OOB error. For example, the Japanese +L MRF

(OOB = 31.69%) performed worse than the -L RF in Experiment 1 (OOB = 29.05%). Given

that length was found to be important in the MRFs, this suggests that the individual RFs were

overfitting because of the lack of variability in decision trees. Further evidence for this can be

found in the difference between the accuracy of the RF trained on official Japanese Pokémon

names to classify Elicited names (OOB = 38.57%) and the -L MRF trained on official Japanese

Pokémon names to classify Elicited names (OOBM = 37.31%). In other words, the Japanese RF

in Experiment 1 was more accurate than the Japanese MRF at classifying its own testing subset

but less accurate at classifying the elicited samples because its function was too closely aligned

to the initial dataset, resulting in a reduced capacity to classify external samples.

Sound symbolism is the study of systematic relationships between sounds and meanings.

These relationships are not deterministic but rather stochastic, so they need to be observed

through a statistical analysis. This paper details random forest algorithms that learn from these

stochastic relationships and apply that learning to a classification task. Said task is the classifi-

cation of Pokémon into pre- and post-evolution categories. This finding has important impli-

cations for the Natural Language Processing field of research, adding to the findings of Winter

and Perlman [11] and showing that machine learning algorithms can make classification deci-

sions driven (at least mostly) by sound symbolic principles, and should do so if the goal of an

algorithm is to understand and use language the same way that humans do. The algorithms

show how they make their classification decisions using feature importance, which is a useful

metric for measuring the sound symbolic qualities of specific linguistic features. This is partic-

ularly useful when assessing universal sound-symbolic patterns. The present paper also expo-

ses an issue of overfitting inherent in random forests constructed using decision trees with low

variability. This issue is resolved by randomizing training and testing subset splits across mul-

tiple random forests. The machine learning algorithms are shown to be efficient learners in

this task, achieving a higher classification accuracy than the human participants, despite hav-

ing access to a limited number of samples from which to learn.
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