Skip to main content
. 2023 Jan 4;27(9):5521–5535. doi: 10.1007/s00500-022-07798-y

Table 9.

Comparison of the proposed models with previous studies

Study Methodology Accuracy (%)
Rehman et al. (2020) ResNet101, MobileNet 98.75
Shorfuzzaman and Masud (2020) VGG16, ResNet50, Xception, MobileNet, and DenseNet121 99.26
Degadwala et al. (2021) FT CNN 90.70
Minaee et al. (2020) ResNet, SqueezeNet, and DenseNet121 98.00
Iskanderani et al. (2021) DenseNet 96.25
Pathak et al. (2020) ResNet32 96.22
Apostolopoulos and Mpesiana (2020) MobileNetV2 96.78
Kaur et al. (2021) AlexNet 99.52
Wang et al. (2020) ResNet101 and ResNet152 96.10
Misra et al. (2020) ResNet18 93.90
Punn and Agarwal (2021) ResNet, Inception-v3, and NASNetLarge 97.00
Ucar and Korkmaz (2020) Bayes-SqueezeNet(CNN) 98.30
Narin et al. (2021) ResNets and Inception 96.10
Lee et al. (2020) VGG16 95.00
Ismael and Şengür (2021) ResNet50 92.60
Wang et al. (2020) COVID-Net 94.00
Nishio et al. (2020) VGG16 86.30
Monshi et al. (2021) CovidX-RayNet 95.82
Das et al. (2021) VGG16 97.67
Rahaman et al. (2020) VGG19 89.30
Moujahid et al. (2020) VGG19 96.97
Khan et al. (2020) Coro-Net 95.00
Ohata et al. (2020) DenseNet201 95.60
Manokaran et al. (2021) DenseNet201 92.19
Garg et al. (2020) DenseNet121 94.00
Naronglerdrit et al. (2021) MobileNet 96.76
Xu et al. (2020) ResNet + Location Attention 86.70
Ozturk et al. (2020) DarkCovidNet 87.02
Asif and Wenhui (2020) InceptionV3 96.00
Luz et al. (2021) EfficientNet 93.90
Bargshady et al. (2022) CycleGAN 94.20
Rahimzadeh and Attar (2020) Xception + ResNet50V2 91.40
Model 1 MobileNetV2+Classical fine-tuning 95.62
Model 2 MobileNetV2+Step fine-tuning 96.10
Model 3 MobileNetV2+Exponential fine-tuning 97.61