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Abstract Although the genetic code of the yeast Saccharomyces cerevisiae was sequenced 
25 years ago, the characterization of the roles of genes within it is far from complete. The lack of a 
complete mapping of functions to genes hampers systematic understanding of the biology of the 
cell. The advent of high-throughput metabolomics offers a unique approach to uncovering gene 
function with an attractive combination of cost, robustness, and breadth of applicability. Here, we 
used flow-injection time-of-flight mass spectrometry to dynamically profile the metabolome of 
164 loss-of-function mutants in TOR and receptor or receptor-like genes under a time course of 
rapamycin treatment, generating a dataset with >7000 metabolomics measurements. In order to 
provide a resource to the broader community, those data are made available for browsing through 
an interactive data visualization app hosted at https://rapamycin-yeast.ethz.ch. We demonstrate that 
dynamic metabolite responses to rapamycin are more informative than steady-state responses when 
recovering known regulators of TOR signaling, as well as identifying new ones. Deletion of a subset 
of the novel genes causes phenotypes and proteome responses to rapamycin that further implicate 
them in TOR signaling. We found that one of these genes, CFF1, was connected to the regulation of 
pyrimidine biosynthesis through URA10. These results demonstrate the efficacy of the approach for 
flagging novel potential TOR signaling-related genes and highlight the utility of dynamic perturba-
tions when using functional metabolomics to deliver biological insight.

Editor's evaluation
This work measures time-resolved metabolomes of 164 yeast mutants using a high-throughput 
method (FIA-MS). The dynamic, nontargeted measurements allow for an improved inference of gene 
function in the TOR pathway after a rapamycin treatment, including the annotation of three new 
genes in the TOR signaling pathway. This case study opens an avenue for combined studies of func-
tional genetics and metabolism.

Introduction
Despite the long-standing sequencing of the Saccharomyces cerevisiae genetic code (Goffeau et al., 
1996), the characterization of the roles of genes and proteins within it is an ongoing process (Wood 
et al., 2019). Any systematic understanding of the cell will require a full mapping between genes 
and functions. Various approaches have been used to explore gene function at a genome-wide scale. 
Many of these approaches rely only on tracking changes in the fitness of mutants in different condi-
tions (Giaever et al., 1999). Similarly, synthetic genome arrays can be used to explore gene function 
by identifying genetic interactions between genes of unknown function and genes whose functions 
are better characterized (Costanzo et al., 2010). These approaches have been very successful, but 
generally use fitness as a readout to infer function through a guilt-by-association approach (Aravind, 
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2000) and thus are limited to genes that influence fitness under the chosen experimental conditions. 
Other techniques have been developed where the effects of mutations on the cell can be tracked 
beyond fitness. These approaches include transcriptional profiling (Velculescu et al., 1997) and high 
content imaging (Carpenter, 2007), among others. There is enormous variability for these approaches 
in terms of the number of unique features that can be collected as well as the time and cost required 
per sample analyzed. These approaches can also reveal changes within the cell that are measurable but 
that would not translate into differences in fitness. With the advent of high-throughput metabolomics, 
including flow-injection analysis mass spectrometry (FIA-MS), it is possible to measure the metab-
olome profile of cells in less than a minute per sample (Fuhrer et al., 2011). Increased throughput 
in metabolomics has allowed the union of functional genomics and metabolomics, opening a new 
approach to the characterization of gene function at a genome-wide scale (Fuhrer et al., 2017).

The relationship between genetics and the metabolome of S. cerevisiae has been a long-standing 
area of inquiry (Breunig et al., 2014), and metabolomics has been used to understand gene function. 
For example, metabolomics has been used to uncover phenotypes for silent mutations (Raamsdonk 
et al., 2001). In the past, pioneering work has demonstrated that high-throughput approaches can 
be used on a genome-wide scale to measure amounts of amino acids in yeast deletion mutants for 
the purpose of characterizing regulatory principles of biosynthesis (Mülleder et al., 2016a). Other 
work in Escherichia coli has explored the effect of loss-of-function mutations on the metabolome at a 
genome-wide scale (Fuhrer et al., 2017). However, these genome-scale approaches are insufficient 
to fully associate genes and functions since not all genetic deletions will exert a measurable effect 
on the cell in every condition (Giaever et al., 2002). This may in part be due to limited metabolome 
coverage, but it may also be because these studies were performed under steady-state conditions. 
Under these conditions, cells are not exposed to any dynamic perturbation, allowing them to buffer 
their metabolism in such a way as to obscure the effects of different mutations on the cell (Jost and 
Weiner, 2015). Dynamic cellular perturbation may reveal functional relationships between genes by 
evading some portion of compensating changes within the cellular system. Tracking the dynamics of 
the metabolome for large numbers of mutants has historically been unattainable due to throughput 
limitations, but with the order-of-magnitude increase in measurement speed offered by flow-injection 
such experiments are now feasible.

The ability to precisely follow changes in the levels of metabolites is particularly important when 
investigating the cellular systems that regulate metabolism and growth. The target of rapamycin (TOR) 
signaling system is a core regulator of these decisions around growth in eukaryotic cells (reviewed in 
González and Hall, 2017). Many core components of TOR signaling have been elucidated (Loewith 
et al., 2002). This includes the discovery of two functionally distinct sets of TOR protein complexes, 
one of which (TORC1) is sensitive to inhibition by rapamycin and a second complex (TORC2) which 
is not (reviewed in Eltschinger and Loewith, 2016). Key questions remain regarding the roles of 
different TOR signaling genes in the regulation of metabolism. For example, although it has been 
shown that leucine can regulate TOR through interactions with its transporter SLC7A5 (reviewed 
in Taylor, 2014), the broader question of how other amino acid levels are able to regulate TOR is 
currently not fully characterized (González and Hall, 2017). Genome-scale investigations have been 
devised to identify genes that convey resistance or susceptibility to the TORC1 inhibitor rapamycin in 
different mutant forms (Butcher et al., 2006). Although these approaches have had successes, they 
do not provide specific information regarding how any given mutation affects the cell. By contrast, 
high-throughput metabolomics can provide specific insights by identifying which mutants lead to 
defects in different dimensions of the metabolic response of the cell to rapamycin while also allowing 
for guilt-by-association analysis on the basis of metabolome similarity.

In this work, we exploit dynamic high-throughput metabolome profiling to measure the metab-
olome profiles of 164 loss-of-function mutants in yeast, and newly associate three genes with TOR 
signaling. Further investigation of these mutants showed that they have proteomic alterations that 
further implicate them in TOR signaling. A subset of them also showed altered growth responses 
during nutrient upshifts where TOR signaling is important. One of these genes, CFF1 (YML079W), is 
a gene of unknown function with structural similarity to auxin binding proteins in plants (Zhou et al., 
2005) that has recently been shown to be required for the production of quorum-sensing compounds 
(Valastyan et  al., 2021). We discovered that a CFF1 loss-of-function mutant also shows altered 
pyrimidine metabolism during nutrient upshifts, likely due to altered expression of the pyrimidine 
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biosynthetic enzyme URA10. These results demonstrate that CFF1 mutation alters the cell’s response 
to rapamycin and nutritional shifts, and thus implicates it in TOR signaling.

Results
TOR mutants show altered metabolome responses to rapamycin 
treatment
We sought to establish the metabolome responses of different TOR-related mutants to rapamycin so 
that we could use those responses as a baseline to explore gene function for mutants not yet known to 
be involved in TOR signaling. Thus, we characterized the effects of a collection of 85 mutants in TOR-
related signaling genes on the metabolome response of the cell to rapamycin (Figure 1A, Supple-
mentary file 1). The mutant collection included deletions in regulators that act upstream of TORC1, 
as well as downstream kinases or genes involved TOR-related processes such as autophagy. Only 
nonessential mutants were selected for the collection. These TOR signaling mutants were cultivated 
on synthetic defined media with glucose and ammonium as sole carbon and nitrogen sources. Cultures 
were grown to an optical density at 600 nm (OD600) of 0.7 at which point metabolites were extracted 
and a rapamycin treatment (400 ng/mL) was performed. Rapamycin treatment inhibits TORC1 and 
elicits important dynamic responses in terms of metabolite levels and downstream signaling events 
(Stracka et al., 2014). We aimed to capture these dynamic effects in our mutant strains by preparing 
polar metabolite extracts after 5, 30, 60, and 90 min of rapamycin treatment. These extracts were 
measured using FIA-MS (Fuhrer et  al., 2011), a chromatography-free method that allows for the 
measurement of relative metabolite levels with a broad coverage of metabolite classes in less than 
a minute per sample. The effect of rapamycin treatment on wild-type yeast as measured by high-
throughput FIA-MS was orthogonally validated by a longer liquid chromatography-mass spectrom-
etry (LC-MS)-based measurement method (Figure 1—figure supplement 1). The similar metabolome 
response seen using both methods demonstrated that our high-throughput measurements were of 
sufficient quality to explore the relative differences in metabolome responses between the mutants in 
this study while providing the throughput required to study the large number of mutants.

TORC1 is known to regulate many metabolic functions, but amino acid and nucleotide metabolism 
exhibit characteristic changes when TORC1 is inactivated (Oliveira et al., 2015; Xu et al., 2013). 
Specifically, the levels of most amino acids increase after rapamycin treatment due to inhibition of 
translational initiation (Berset et al., 1998), with some exceptions such as serine (Mülleder et al., 
2016a; Oliveira et al., 2015). Upon TORC1 inactivation through starvation, nucleotide degradation 
increases, which leads to increased pool sizes of nucleoside-related compounds (Xu et al., 2013). 
Since the yeast were cultivated in media containing glucose as a carbon source and ammonium as a 
nitrogen source, basal TORC1 signaling is high in these exponentially growing wild-type yeast until 
rapamycin is added to inhibit TORC1. Consistent with reports in the literature (Oliveira et al., 2015), 
changes in metabolite levels such as nucleosides were seen when wild-type yeast were treated with 
rapamycin (Figure 1B).

The TOR-related mutants within this study are drawn from a range of classes, with multiple genes 
involved in autophagy, positive and negative regulation of TOR signaling, signaling genes that are 
mechanistically downstream of TOR, and other classes (Figure  1C). Significantly altered metabo-
lite levels (absolute log2 transformed fold-changes of >0.5 compared with wild-type with a p-value 
of <0.05) could be observed for mutants across all functional classes compared with wild-type 
(Figure 1D). The highest number of changes in metabolite levels across all mutants were observed 
after 90 min of rapamycin treatment (Figure 1D). These results show that treating the cells with rapa-
mycin can reveal metabolic responses that are not measurable prior to treatment.

Deleting genes that are positive upstream regulators of TOR signaling reduces the signal propa-
gated through that system (Péli-Gulli et al., 2015), and thus either causes changes in the metabolome 
that resemble those resulting from rapamycin treatment (Mülleder et al., 2016a) or could further 
sensitize the cell to TORC1 inhibition. gtr1, a mutant in a key positive regulator of TOR signaling that 
acts upstream of TORC1 (Binda et al., 2009), showed elevated levels of glutamine compared with 
wild-type in the absence of rapamycin (Figure 1E). Since glutamine levels increase after rapamycin 
inhibition of TORC1, this increase in glutamine in gtr1 serves as a positive control. Phenylalanine 
also shows an accumulation after cells were treated with rapamycin, but it showed similar levels in 
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Figure 1. Metabolome profiling of TOR and receptor-related mutants captures dynamic metabolome changes. (A) A schematic diagram illustrating the 
study design. (B) The effect of rapamycin treatment over time is shown for wild-type cells after the indicated duration of rapamycin treatment compared 
with the untreated control condition. Only metabolites that show a significant (p-value<0.05, two-sided t-test) are shown. (C) The share of TOR-related 
mutants included in the study falling into each of the indicated categories is indicated. (D) The number of significantly changing metabolites across 
the mutants in the indicated categories is shown for each duration of rapamycin treatment. Significantly changed metabolites show an absolute log2 
transformed fold-change compared with wild-type of >0.5, and a p-value of <0.05 based on a two-sided Student's t-test. (E, F) The normalized ion 
intensities for glutamine and phenylalanine in wild-type and gtr1 yeast are shown after the indicated duration of rapamycin treatment. The central lines 
indicate the median value across four biological replicates. Shaded areas indicate the standard deviation across replicates.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Comparison of effects of rapamycin treatment on the metabolome as measured by flow injection and liquid chromatography-
mass spectrometry (LC-MS).

Figure supplement 2. Positive regulators of TORC1 signaling show similar metabolite changes.

Figure supplement 3. The effect of rapamycin on the levels of metabolites in wild-type and atg13 yeast.

Figure supplement 4. The effect of normalization of flow-injection metabolomics data.

https://doi.org/10.7554/eLife.84295


 Research article﻿﻿﻿﻿﻿﻿ Biochemistry and Chemical Biology

Reichling et al. eLife 2023;12:e84295. DOI: https://​doi.​org/​10.​7554/​eLife.​84295 � 5 of 20

untreated wild-type and gtr1 cells (Figure 1F). However, the gtr1 mutant showed a much stronger 
accumulation of the amino acid than did wild-type after rapamycin treatment (Figure 1F). Thus, some 
metabolic alterations manifested by deleting genes involved in TOR signaling are only revealed after 
treatment with rapamycin. When this analysis was expanded to all deletion mutants in genes that 
code for positive regulators of TORC1 signaling within our collection (GTR1 [Binda et al., 2009], GTR2 
[Binda et al., 2009], LST4 [Péli-Gulli et al., 2015], MTC5 [Panchaud et al., 2013], RTC1 [Panchaud 
et al., 2013], SEA4 [Panchaud et al., 2013]; hereafter referred to as 'positive regulators'), similar 
effects were seen across mutants and time points (Figure 1—figure supplement 2). These results 
suggest that metabolome profiles could be used to search for novel positive regulators of TORC1 
signaling.

Metabolome profiling identifies novel potential TORC1 signaling genes
Building on the investigation of known TOR signaling genes, we assembled another collection of 85 
loss-of-function mutants. These mutants were selected for being known receptors, nutrient sensing 
proteins in S. cerevisiae, showing sequence similarity to known receptors in other species, or carrying 
protein domains that are common in receptor proteins (Supplementary file 1). Mutants from this 
collection are from hereon referred to as 'receptor-related.' The collection includes both intracellular 
and extracellular receptors. By enriching the mutant collection for receptor-related functions, we aimed 
to increase our chances of identifying genes that are involved in the regulation of TORC1 signaling. 
Dynamic metabolome extracts for these 85 mutants (from here on referred to as receptor-related) 
were collected under the same conditions as described above for the TOR mutants (Figure 1A) and 
were analyzed by FIA-MS.

Metabolome profiles for each mutant at each time point were determined by calculating the 
average log2 fold-change between the metabolite intensities of the mutants compared with the wild-
type control. Patterns of metabolome similarity across the dataset were systematically analyzed by 
calculating the Pearson correlation between the metabolome profiles for each mutant in the TOR and 
receptor-related collections to each other for each time point. Manhattan distances between each 
mutant’s profiles of correlation were then calculated and the mutants were subjected to hierarchical 
clustering (Figure 2A). This analysis showed clustering of the positive regulators, with most co-clus-
tering mutants being other TOR-related genes. Indeed, the empirical likelihood for the distances 
between positive regulators being as low as was observed was calculated to be <5% for all time 
points that were tested (Figure 2B). The median distance between each mutant and the other posi-
tive regulators was used as a metric for the binary classification of mutants as being positive regu-
lators or not. Annotated positive regulators of TORC1 signaling were treated as true positives, and 
all other mutants in the annotated collection were treated as false positives. When the area under a 
receiver operating characteristic curve was calculated for each time point, the values were >0.5 for 
all the time points (Figure 2BC). The area under the curve for the untreated cells was observed to 
be the smallest of all the time points, indicating that a dynamic perturbation by rapamycin treatment 
improved the recovery of true positives (Figure 2B). This highlights the utility of dynamic perturba-
tions when applying metabolomics to studying gene function. Previous studies have interrogated 
gene function by measuring the genetic interactions between mutations in yeast systematically, 
including for mutations in genes included in this study. It is possible that the metabolome-based 
distances that were calculated here capture the same information that arises from genetic interac-
tion studies. However, when the metabolome distances between mutants were compared with the 
genetic interaction score between genes (Costanzo et al., 2016), small but significant correlations 
were seen between the datasets (Figure 2—figure supplement 1). These correlations were largely 
driven by relatively few interactions with large negative genetic interaction scores. This demonstrates 
that, with the exception of very strong negative genetic interactions, metabolome-based distances 
between mutants provide additional descriptions of the functional relationships between mutants. 
This suggests that new patterns of similarity derived from metabolomics could be used to identify 
new functional relationships.

This analysis captures other expected relationships between the genes within the dataset. For one, 
TOR-related genes showed smaller distances to the positive regulators compared with the receptor-
related genes (Figure 2A). This is expected since although these genes are not upstream positive 
regulators of TORC1 signaling, many of them are effectors of TORC1 signaling that are involved in the 
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Figure 2. Positive regulators of TOR signaling cluster together based on their metabolome profiles after rapamycin treatment. (A) The Pearson 
correlation matrix between all TOR and receptor-related genes is shown for the 30 min rapamycin treatment condition with clustering based on Ward’s 
algorithm of the Manhattan distance. The identity of the clustered mutants (TOR-related, upstream positive regulators of TOR signaling, or receptor-
related) is indicated with the alternate colored heatmap as the edge of the correlation heatmap. (B) The area under the curve for the recovery of 
known upstream positive regulators of TOR signaling is shown for each time point at which metabolomics data was collected. Area under the curve 
(AUC) is indicated as a blue line. The empirical p-value for the median distance between those genes is also shown for each time point, based on data 
randomization. The p-value is indicated as a red line. (C) A receiver operating characteristic curve is shown for the 30 min time point demonstrating the 
recovery of known positive recovery of known upstream positive regulators of TOR signaling. (D) The distance for each mutant relative to the 0.2 false 
discovery rate (FDR) threshold calculated for the time point is shown across all time points and genes in this study. Values of <1 indicate that the mutant 

Figure 2 continued on next page
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cellular response to altered TORC1 signaling and thus should share some features of their metabolic 
response. Additionally, genes that are negative regulators of TORC1 signaling (NPR3 [Neklesa and 
Davis, 2009], PBP1 [Yang et al., 2019], PSR1 [Chen et al., 2018], PSR2 [Chen et al., 2018], TIP41 
[Jacinto et al., 2001], and WHI2 [Chen et al., 2018]) showed among the longest distances to the posi-
tive regulators within the dataset (Figure 2—figure supplement 2). This is expected since the metab-
olome response of a loss-of-function mutant in a negative regulator of TORC1 would be quite distant 
from those of positive regulators. This, therefore provides additional evidence that metabolome-
based distances can capture functional relationships between genes.

Given that our analysis was able to recover known positive regulators of TORC1, we extended 
this analysis to ask which receptor-related mutant metabolome profiles were consistent with being 
a positive regulator of TORC1. For each time point, the distance at which a false-positive rate 
of 0.2 was obtained for the recovery of positive regulators was determined. Six receptor-related 
mutants (RGT2, HXK2, URE2, BCK1, CLA4, and CFF1) were able to pass this cutoff and were 
selected as potential novel positive regulators (Figure 2DE). Out of these genes, three are involved 
in signaling pathways with known cross-talk with TORC1 signaling. Namely, RGT2 and HXK2 are 
involved in sugar sensing via the PKA signaling, which feeds into the regulation of downstream 
TORC1 signaling targets (Shashkova et al., 2015). URE2 is a transcriptional regulator for nitrogen 
catabolite repression, which is in part regulated by TORC1 (Shashkova et al., 2015). The other 
hits included the intracellular kinases BCK1 and CLA4, as well as a gene of poorly characterized 
function YML079W, which has recently been named CFF1 based on its inability to produce the 
compound 4-hydroxymethylfuranone (Valastyan et al., 2021). These results show that a metab-
olome profiling-based guilt-by-association approach can be used to identify genes with known 
cross-talk with TOR signaling as well as genes whose connections to TOR signaling are completely 
novel.

Beyond the guilt-by-association approach outlined above, the data presented here can also be 
viewed at the level of the individual mutant and metabolite. This allows us to assess the involve-
ment of different genes in specific metabolic processes. This stands in contrast to other guilt-by-
association approaches that are based solely on fitness and cannot directly observe the effect of 
mutants on metabolic processes. One of the strongest examples is atg13, which is incapable of 
performing autophagy (Funakoshi et al., 1997). This mutant shows a strong reduction in the accu-
mulation of the nucleoside inosine under rapamycin treatment (Figure 1—figure supplement 3A). 
This is likely caused by the inability of the mutant to perform autophagy under these conditions 
(Xu et al., 2013), but other metabolites such as glutamine show no difference in their accumulation 
(Figure 1—figure supplement 3B) or in the case of kynurenine a more limited effect is observed 
(Figure 1—figure supplement 3C). These results highlight a clear relationship between ATG13 and 
nucleoside pool sizes under rapamycin treatment that likely results from the disruption of auto-
phagy, but also raises questions about the mechanism through which ATG13 affects the levels of 
metabolites like kynurine. This is an example of the type of observation that can be obtained from 
this analysis that would be missing from a more traditional guilt-by-association approach. Although 
ATG13 deletion had one of the strongest effects on metabolite levels within the dataset, differ-
ences in the metabolome profiles of many genes across a range of different functional classes were 
observed in this study (Figure 1D). Thus, the data included within this study can be used to query 
the effect of the deletion of genes of interest on the metabolome. The response of the cell to rapa-
mycin is not restricted to changes at the level of the metabolome, so we set forth to investigate the 
proteome response of the mutants in the newly predicted positive regulators of TORC1 signaling 
to rapamycin.

has passed the distance threshold for that time. (E) Table describing the identity and role of receptor-relating genes that pass the 0.2 FDR threshold for 
distance from positive regulators of TOR signaling.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Relationship between metabolome distance and genetic interaction score.

Figure supplement 2. The metabolome distances between positive and negative regulators of TOR signaling.

Figure 2 continued
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New and predicted TOR signaling genes show altered proteome 
responses to rapamycin
Metabolome-based guilt-by-association was used to newly implicate CFF1, BCK1, and CLA4 in 
TORC1 signaling. It is hypothesized that if these genes are involved in TORC1 signaling, the effect 
of their deletion on the cell is mediated at least in part by changing protein levels. We would also 
expect these changes to be similar to those seen in mutants in known positive regulators of TOR 
signaling. We tested this by analyzing the proteomes of six mutants in known positive regulators of 
TORC1 signaling, and the six receptor-related mutants that were associated with positive regulation 
of TORC1 signaling as was described above (Figure 2E). Cultures were grown to an OD600 of approxi-
mately 0.8 in defined media with glucose and ammonium as carbon and nitrogen sources. The strains 
were treated with 400 ng/mL rapamycin and were then grown for 30 min before harvesting the yeast 
and subjecting them to label-free, quantitative proteomics (Demichev et  al., 2020). Treatment of 
wild-type yeast with rapamycin resulted in broad changes in the proteome, with enriched changes 
in the levels of proteins in gene ontology (GO) biological process categories such as carbohydrate 
and organic acid metabolism (Figure 3A), recapitulating patterns observed in previously published 
work (Iesmantavicius et al., 2014). TOR signaling gene deletion mutants would be expected to show 
altered proteome responses to rapamycin treatment compared with the proteome responses seen in 
wild-type. The proteins that changed in abundance upon rapamycin treatment in all 12 mutants were 
tested for enrichment of the GO terms that were enriched for wild-type treated with rapamycin. All 
mutants, except HXK2 and RGT2, showed clearly altered patterns of GO enrichment upon rapamycin 
treatment (Figure 3A), as would be expected for genes that are required to respond to rapamycin.

In addition to an altered proteome response to rapamycin, BCK1, CLA4, and CFF1 also showed 
similar proteomic profiles to known positive regulators of TOR signaling (Figure  3B). The relative 
changes in protein levels were calculated for each mutant compared with wild-type. The Pearson 
correlation between those mutant proteome profiles was then calculated and used to assess how 
similar the effects of the mutations were on the proteome. The correlations coefficients were univer-
sally positive, with values as high as 0.91 (Figure 3B). Some mutants with similar molecular functions 
were seen to cluster together (both HXK2 and RGT2 are involved in sugar sensing) but cla4, bck1, cff1, 
and ure2 proteomes clustered with the known positive regulators of TORC1 signaling. Since yeast 
were grown in conditions where TORC1 signaling is active, a mutant that reduced TORC1 signaling 
would cause a change in the proteome that is similar to that of rapamycin-treated cells. All tested 
mutants showed a positive correlation in their proteome compared with that of wild-type treated with 
rapamycin, but cff1 and bck1 showed the strongest correlations with rapamycin treatment. This shows 
that the changes in the proteome that were caused by deletion have similar effects on the proteome 
to reduction of TORC1 signaling, as would be expected if those genes play a positive role in TOR 
signaling.

Newly predicted TORC1-related mutants show TORC1-related 
phenotypes
The above results implicate six receptor-related genes in the positive regulation of TORC1 signaling. 
TORC1 signaling is central to the adaptation of the yeast cell to changing nutritional environments. 
Therefore, mutations that impair TORC1 signaling reduce the ability of the cell to adapt to increases 
or decreases in nutritional quality (Kira et al., 2014). We tested whether deletion mutants in CFF1, 
RGT2, HXK2, URE2, CLA4, and BCK1 showed such an impairment by performing nutritional upshift 
experiments. Cultures were grown in minimal media with proline as a nitrogen source and glucose 
as a carbon source. Under these conditions, TORC1 activity is reduced due to the poor nitrogen 
source quality (Stracka et al., 2014). After cultivation for 18 hr, the cultures were exposed to a nutri-
tional upshift through the introduction of ammonium sulfate into the cultures, after which the growth 
rate and lag time were determined for all the predicted positive regulator mutants. Under these 
conditions, TORC1 signaling will become more active than before the addition of the ammonium 
sulfate, and genes involved in the positive regulation of TORC1 signaling would be expected to be 
physiologically relevant. cff1 and bck1 showed significantly reduced growth rates upon the supple-
mentation of the media with ammonium sulfate (Figure 3C), and hxk2 demonstrated a longer lag 
time (Figure 3D). Previously published functional genomics screens have shown that known positive 
regulators of TORC1 signaling show reduced growth rates when grown in minimal media compared 

https://doi.org/10.7554/eLife.84295
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with wild-type (Breslow et al., 2008). In that study, the relative growth rates of the positive regula-
tors varied from 0.71 to 0.97 with an average value of 0.84 for the five positive regulators that were 
measured (Breslow et al., 2008). This means that the reduction of growth rate seen for cff1 and bck1 
was within a similar range as was reported previously for the known positive regulators as described 
above. Although CFF1 and BCK1 have not previously been considered TORC1 signaling genes, these 
mutants showed reduced growth rates during a nitrogen source upshift as would be expected for a 
mutation in a positive regulator of TORC1 signaling. These results, in addition to their metabolome 
and proteome level similarity to known positive regulators of TORC1 signaling, further implicate these 

Figure 3. New TOR hits resemble positive TORC1 regulators at the level of the proteome and growth. (A) -log10 transformed adjusted p-values are 
shown for the enrichment of gene ontology (GO) biological processes in changing proteins after rapamycin treatment in each mutant. Only GO terms 
that show enrichment in wild-type yeast treated with rapamycin are included within the plot. Adjusted p-values are Benjamini–Hochberg corrected 
hypergeometric test outcomes. Negative values indicate an enrichment among proteins of decreased abundance. (B) The Pearson correlations between 
the protein fold-changes observed when comparing each mutant to wild-type are shown. The Pearson correlation of each mutant proteome to the 
proteome response of wild-type treated with rapamycin is also shown in bar format to the right of the plot. (C) The maximum relative growth rate for 
the indicated mutants and wild-type is shown after an upshift from using proline as a nitrogen source to ammonium sulfate. The bar height indicates 
the mean value, and error bars represent the standard error of the mean from four biological replicates; individual points indicate the average value 
from one biological replicate. ‡p-value<0.05 for a two-sided t-test compared with the wild-type control. (D) The lag time for the indicated mutants and 
wild-type is shown after an upshift from using proline as a nitrogen source to ammonium sulfate. The bar height indicates the mean value, and error bars 
represent the standard error of the mean from four biological replicates; individual points indicate the average value from one biological replicate. ‡p-
value<0.05 for a two-sided t-test compared ith the wild-type control.
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two genes in the TORC1 signaling. Although CFF1, BCK1, and CLA4 all show signs of involvement 
in TORC1 signaling, because CFF1 is a protein of unknown function, we decided to investigate its 
possible role in TORC1 signaling in greater depth.

The protein SCH9 is directly phosphorylated by TORC1 and is a key node for transmission of 
signaling intro processes downstream of TORC1 (Urban et al., 2007). If CFF1 acts mechanistically 
downstream of TORC1 and SCH9, we would expect that the mutant would not impact the ability of 
TORC1 to phosphorylate SCH9 under nutrient-rich conditions. As expected, Western blot quantifica-
tion revealed a similar degree of SCH9 phosphorylation in wild-type and cff1 strains in rich conditions 
(Figure 4A). Since CFF1 is required for a normal response to changing nutritional environments, it 
therefore appears to act mechanistically downstream of TORC1. Consistent with this expectation, the 
relative abundance of the CFF1 protein was reduced upon treatment rapamycin (Figure 4B).

If CFF1 is involved in TORC1 signaling, it should also play a role in the regulation of the cell state 
under nutritional downshifts. To this end, wild-type and cff1 yeast were cultivated in minimal media 
with ammonium as the sole nitrogen source and then shifted into media where the poor nitrogen 
source proline, 30 min prior to metabolite extraction. Under these conditions, TORC1 should shift 
from an activated to an inactive state. If CFF1 is required to adapt to the poor nitrogen source, we 
would expect to see differences in metabolite pools for the mutant compared with the wild-type. 
LC-MS analysis of the samples indicated that pyrimidine biosynthetic precursors (carbamoyl aspartate 
and dihydroorotate) were increased in cff1 compared with wild-type (Figure 4C). TOR signaling has 
been shown to stimulate de novo pyrimidine biosynthesis in other systems (Ben-Sahra et al., 2013; 
Robitaille et al., 2013), so the observation that CFF1 is required for the maintenance of pyrimidine 
precursor pool sizes during this nitrogen source shift further implicates its TORC1-related metabolic 
processes.

Since CFF1 deletion increased the amounts of pyrimidine precursors under a nitrogen downshift, 
we queried the proteomic data to determine whether these changes could be explained by alterations 
in the levels of enzymes involved in that pathway. The enzyme URA10, which converts orotate into 
oratidine-5-phosphate (Figure 4D), showed a significant decrease in abundance (Figure 4E), which 
was not shared by the other members of the metabolic pathway (Figure 4—figure supplement 1). 
This alteration of the expression of URA10 provides a likely explanation for the effect of CFF1 deletion 
on the abundances of metabolites upstream of that enzyme in the pyrimidine biosynthetic pathway. 
Taken together with earlier results, CFF1 is required for normal adaptation of the cell to changing 
metabolic environments in terms of both up- and downshifts with a specific role in the regulation 
of pyrimidine biosynthesis through URA10. This is in addition to its similarity to positive regulators 
of TORC1 signaling at the level of metabolome and proteome. This offers an example of how gene 
function can be explored using high-throughput metabolomics using a guilt-by-association approach 
during a dynamic perturbation.

Discussion
In this study, we used high-throughput metabolomics in a guilt-by-association framework to identify 
mutants with metabolome responses to rapamycin that are similar to those of mutants in known posi-
tive regulators of TOR signaling. Using this approach, we were able to recover known genes involved 
in positive regulation of yeast TOR signaling based on the relationships between the metabolome 
profiles of the mutants. Notably, the recovery of known positive regulators of TORC1 signaling was 
highest after the cells were dynamically perturbed with rapamycin. To our knowledge, this is the 
first demonstration that dynamic perturbation of the cell improves the recovery of eukaryotic gene 
function when using a metabolomics-based guilt-by-association scheme. These studies also provide 
insights into why different genome-wide metabolome profiling experiments conducted under steady 
state appear to provide incomplete information regarding gene function (Mülleder et al., 2016a; 
Fuhrer et al., 2017).

Through our guilt-by-association approach, we were able to use patterns of metabolome similarity 
to recall known positive regulators of TORC1 signaling and implicate six receptor-related genes in that 
process as well. Three of the recovered receptor-related genes (HXK2, RGT2, and URE2) are known 
to have connections to TOR signaling. CFF1, BCK1, and CLA4 were newly predicted to be involved 
in the positive regulation of TORC1 signaling. CFF1 is of particular interest because it is a gene 
of unknown function, its mutation has previously shown phenotypes including a reduced resistance 
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Figure 4. CFF1 acts downstream of TORC1 and in the regulation of pyrimidine metabolism. (A) The relative ratio of phosphorylated SCH9 to total SCH9 
is shown for wild-type and cff1 yeast grown in rich conditions before and after a 30 min treatment with 400 ng/mL rapamycin. Error bars indicate the 
standard deviation of biological replicates (n = 3). (B) The average abundance of CFF1 is shown in wild-type yeast either treated with rapamycin (400 ng/
mL) or a control. Points represent a single replicate, bar height indicates the average value, and the error bar indicates the standard deviation (n = 3 

Figure 4 continued on next page
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to hyperosmotic stress (Yoshikawa et  al., 2009), and reduced chronological life span (Campos 
et  al., 2018). Previous work has also demonstrated structural similarity between CFF1 and auxin-
binding proteins from plants (Zhou et al., 2005), as well as a role in determining the production of 
the compound 4-hydroxymethylfuranone (Valastyan et  al., 2021). Further exploration of the cff1 
response to rapamycin at the proteome level revealed a clearly impaired response to rapamycin, a 
similarity between the effects of cff1 on the proteome to those of rapamycin, and a reduction in CFF1 
abundance under rapamycin treatment. We showed that CFF1 deletion caused a defective response 
to nutrient upshifts at the level of growth and altered metabolite pool sizes and during a nitrogen 
quality downshift. The phosphorylation of the key TORC1 target SCH9 was not altered in cff1 yeast, 
suggesting that the mechanism of action of the gene lies downstream of TORC1. Intriguingly, CFF1 
has been reported to be phosphorylated at a number of positions, including serine 68 under glucose 
limitation (Lanz et al., 2021). This could point to additional regulation of CFF1 activity at a post-
translational level within the context of TOR signaling downstream of TORC1. Although the exact 
mechanistic role of CFF1 in TORC1 signaling will require deeper investigation, CFF1 seems to act 
downstream of TORC1 to regulate pyrimidine biosynthesis through URA10. Unlike CFF1, both BCK1 
and CLA4 have mammalian homologs. BCK1 has homology to mammalian Map3K1, which is impli-
cated in breast cancer in humans (Easton et al., 2007). PAK4, PAK5, and PAK6 are homologs of CLA4, 
and PAK6 has also been implicated in clear cell renal cell carcinoma (Liu et al., 2014). This suggests 
that investigating the relationships between these genes and TORC1 signaling could provide addi-
tional insights into cancer biology in humans, including novel therapeutic targets.

In addition to the guilt-by-association approach described above, our approach has the benefit of 
allowing for the exploration of the effects of mutants on the relative quantities of many metabolites 
under perturbation with rapamycin. This allowed us to capture the role of ATG13 in the regulation of 
nucleoside levels in the cell under rapamycin treatment, but also raises questions about the mecha-
nism by which it regulates the abundances of other metabolites under rapamycin treatment. These 
kinds of observations can be made across many other mutants that are included in this dataset and 
can be the basis of future work where the roles of genes in metabolic regulation can be explored by 
members of the scientific community. To enhance the usability of this data, we assembled an interac-
tive data visualization app where users can browse through this data in order to investigate mutants 
that are of interest to them (https://rapamycin-yeast.ethz.ch). Furthermore, our data are made avail-
able in raw form, and because the acquisition of the main dataset was performed in an untargeted 
mode, these data can be reanalyzed in the future as the library of potential metabolites is expanded. 
This can allow for even greater utility for researchers with a particular interest in any compound that 
may be unannotated within our analysis. In addition to this metabolomics data, this article includes 
the proteome response of 12 mutants to rapamycin and thus provides a resource for members of the 
community who wish to further explore the proteome response of the cell to rapamycin treatment in 
those strains.

In this work, we demonstrate that condition-specific, dynamic metabolome profiling can offer 
attractive properties for the exploration of gene function compared to steady state metabolomics 
measurements. This builds on work showing that dynamic perturbations of gene expression can be 
used to recover drug-target relationships on the basis of metabolome similarity (Holbrook-Smith 
et al., 2022; Anglada-Girotto et al., 2022) and thus further demonstrates the value of non-steady-
state perturbations of the cell in the context of metabolome profiling. Although this approach included 

biological replicates). ‡p-value<0.05 for a two-sided t-test compared with the control. (C) The peak areas for the indicated metabolites are indicated 
for both WT and cff1 yeast that were exposed to a nitrogen source downshift for a duration of 30 min. Data was collected by liquid chromatography-
mass spectrometry (LC-MS) as indicated in the 'Methods' section. Bar heights indicate the average value for three biological replicates, with the 
error bars indicating the standard deviation. (D) A subset of the pathway for pyrimidine biosynthesis is diagrammed with enzymes colored blue and 
metabolites written in black. (E) The average abundance of URA10 is shown in cff1 yeast or a wild-type control. Points represent a single replicate, bar 
height indicates the average value, and the error bar indicates the standard deviation (n = 3 biological replicates). ‡p-value<0.05 for a two-sided t-test 
compared ith the control.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The effect of rapamycin and CFF1 deletion on the levels of pyrimidine biosynthetic enzymes.

Figure supplement 2. The effect of normalization of proteomics data.

Figure 4 continued
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measurements of the metabolome at five time points, subsequent analysis at a genome-wide level 
could just as easily be performed with a single time point within the dynamic perturbation. Thus, we 
can reveal relationships between metabolites and mutants that could be hidden during steady state 
due to homeostatic changes in gene expression or other compensatory changes within the cell. This 
would allow for the discovery of hitherto uncharacterized relationships between genes as well as iden-
tify novel roles for genes in metabolic regulation.

Methods
Yeast cultivation
Liquid-cultivated yeast were grown at a temperature of 30°C with a shaking frequency of 250 rpm. 
Auxotrophic strains were cultivated in YPD medium (10 g/L yeast extract [BD Biosciences: 288630], 
20 g/L Bacto-peptone [BD Biosciences: 211830], 5 g/L agar [BD Biosciences: 214530]). Yeast were 
transformed as described previously (Gietz and Schiestl, 2007) with the pHLUM plasmid (Mülleder 
et al., 2016b) and selected for growth on SD media with inositol 5 g/L ammonium sulfate (Sigma-
Aldrich: A4418), 1.7 g/L Yeast Nitrogen base (BD Biosciences: 233530), 20 g/L D-(+)-glucose (Sigma-
Aldrich: G8270), and 10 mg/L myo-inositol (Sigma-Aldrich: I5125). For growth shift experiments, yeast 
were cultivated in or shifted to SD proline media (5 g/L potassium sulfate [Sigma-Aldrich: P0772], 
1.7 g/L Yeast Nitrogen base [BD Biosciences: 233530], 20 g/L D-(+)-glucose [Sigma-Aldrich: G8270], 
750  mg/L proline [Sigma-Aldrich: P0380], and 10  mM potassium phthalate [pH 5, Sigma-Aldrich: 
60360]).

Yeast strains
Auxotrophic haploid deletion strains were recovered from the Euroscarf haploid mating type a library 
(Taylor, 2014) and were transformed as described above (Gietz and Schiestl, 2007) with the pHLUM 
plasmid (Mülleder et al., 2016b) in order to restore prototrophy.

Metabolite extraction
Yeast were cultivated such that after at least two doublings metabolite extractions could be performed 
on cultures with an average OD600 of approximately 1.0. The yeast were grown at 1.2 mL scale in 
96-well plates with OD600 measured intermittently throughout the sampling. For time-course rapa-
mycin experiments, metabolites extracts were taken immediately before rapamycin treatment, and 
then at 5, 10, 30, 60, and 90 min after treatment with the drug at a final concentration of 400 ng/mL. 
Sampling was performed by harvesting 100 µL aliquots of yeast by centrifugation for 2 min at 2250 
rcf in a 4°C precooled centrifuge, and discarding the supernatant by vigorous inversion. 100 µL of 
–2°C extraction solution (40% [v/v] HPLC-grade acetonitrile [Sigma-Aldrich: 34998], 40% [v/v] HPLC 
grade methanol [Sigma-Aldrich: 34885], 20% [v/v] HPLC-grade water [Sigma-Aldrich: 1153331000]) 
was added to the cell pellets, and extractions were allowed to proceed for 18 hr at –2°C. Extracts were 
then stored at –8°C in sealed conical plates (Huber lab: 7.0745, Huber lab: 7.1058).

Flow-injection time-of-flight mass spectrometry for metabolomics
Flow-injection analysis for mass spectrometry-based metabolomics was performed using an Agilent 
6550 Series quadrupole time-of-flight mass spectrometer (Agilent) by an adaptation of the method 
described by Carpenter, 2007. The analysis was performed utilizing an Agilent 1100 Series HPLC 
system (Agilent) coupled to a Gerstel MPS 3 autosampler (Gerstel). The mobile phase flow rate was 
set at 0.15 mL/min, with the isocratic phase composed of 60:40 (v/v) isopropanol and water buffered 
to a pH of 9 with 4 mM ammonium fluoride. The instrument was run in 4 GHz mode for maximum 
resolution while collecting mass spectra between 50 and 1000 m/z. Online mass axis correction was 
performed with taurocholic acid and Hexakis (1H, 1H, 3H-tetrafluoropropoxy–phosphazene) within 
the mobile phase.

Flow-injection data analysis
Processing of mass spectra, including centroiding, merging, and ion annotation, was performed as 
described in Carpenter, 2007. Raw annotated ion intensities are provided in Supplementary file 2. 
Data was normalized and analyzed in Python using the Pandas package (McKinney, 2019). Datasets 
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were filtered for outliers in terms of the biomass at the time of sampling as well as in total ion current. 
Raw ion intensities were normalized to counteract temporal drifts, as well as OD600 effects. In both 
cases, a locally weighted scatterplot smoothing (LOWESS) regression approach was used to remove 
trends in the data arising from those parameters. The effect of normalization on data quality is visu-
alized in Figure 1—figure supplement 4. Average metabolite intensities were compared between 
each mutant with wild-type at each time point in order to calculate an average metabolome profile in 
the form of log2 fold-changes.

Distance analysis of metabolome profiling
Within each time point, the Pearson correlation coefficients between all metabolite log2 fold-
changes for each mutant compared with the wild-type control were calculated. Those correlations 
were clustered according to Ward’s method applied to Manhattan distances between mutant correla-
tion matrices. The average distance between each mutant and genes that are annotated as positive 
regulators of TORC1 signaling (GO 0032008) were then calculated. For known positive regulators 
of TORC1 signaling, the distance was calculated with them excluded from the list of known positive 
regulators of TORC1. Empirical p-values were determined through 10,000 randomizations of labels 
on correlation profiles in order to determine the distribution of distances between known positive 
TORC1 signaling genes.

Liquid-chromatography mass spectrometry for metabolomics
Normal-phase chromatography was used to separate the metabolite extracts. Chromatographic sepa-
ration was performed using an Agilent Infinity 1290 UHPLC stack with Agilent 1100 Series binary pump 
with an InfinityLab Poroshell 120 HILIC-Z column (2.1 × 150 mm, 2.7 µm, Agilent). An Agilent 6550 
Series quadrupole time-of-flight mass spectrometer running in negative extended dynamic range 
mode was used to analyze the samples. Mobile phases were 10 mM ammonium acetate pH 9 in water 
with 5 µM medronic acid, and 85:15 acetonitrile:water with 10 mM ammonium acetate pH 9. A flow 
rate of 250 µL/min was used with a total measurement duration of 30 min. Mobile phase compositions 
were set as described in Supplementary file 3. Online mass-axis correction was performed using 
purine and Hexakis. Drying gas was provided at 13 L/min at a temperature of 22°C. Sheath gas was 
provided at 12 L/min at a temperature of 350°C. Capillary and nozzle voltages were set to 3500 and 
0 V, respectively. Data analysis was performed in Agilent MassHunter Quantitative Analysis (version 
B.07.00) with peaks chosen based on retention time matching to compounds in standard solution. 
Twenty parts per million m/z windows were used for peak selection, with integration performed using 
the Agile2 algorithm. Average log2 transformed fold-changes were calculated between samples. Peak 
areas for the effect of rapamycin on metabolite levels and for the effect of nitrogen source downshifts 
are provided in Supplementary files 4 and 5.

Yeast cultivation for growth rate and lag-time determination
Defined media with glucose and proline as carbon and nitrogen sources (see above) were inoculated 
with yeast to a target starting OD600 of 0.05. Yeast were cultivated at a 1 mL volume within 48-well 
flower plates (M2P labs: MTP-48-B). The yeast were allowed to grow at 30°C for 18 hr at a shaking 
speed of 800 rpm with optical density monitoring every 5 min using a Biolector 1 microfermentation 
system. After 18 hr of growth, 1 mL of SD media with ammonium as a nitrogen source (see above) was 
added and the growth was tracked for another 24 hr. Data was smoothed by applying a 1 hr moving-
window averaging to the recorded optical density. The data was natural log transformed, and the 
maximum slope was determined as well as the cultivation time required to reach the maximum slope. 
These values were recorded as growth rate and lag time. Average values from six technical replicates 
were taken per treatment and expressed as ratio to the average value for that experiment. These 
ratios are from four independent experiments in order to generate the data depicted in Figure 3.

Protein extraction and peptide preparation for proteomics
The indicated yeast mutants were cultivated in a 96-well format in SD media (5 g/L ammonium sulfate 
[Sigma-Aldrich: A4418], 1.7 g/L Yeast Nitrogen base [BD Biosciences: 233530], 20 g/L D-(+)-glucose 
[Sigma-Aldrich: G8270]). 1  mL cultures were inoculated with the indicated mutant strains carrying 
the pHLUM prototrophy restoration plasmid and were allowed to double at least twice to achieve an 
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OD600 of approximately 0.8. At this point, the yeast were treated with either rapamycin (400 ng/mL) 
or a vehicle control. After 1 hr of growth, the yeast were pelleted through centrifugation for 2 min at 
2250 rcf in a 4°C precooled centrifuge. The supernatants were discarded and the remaining pellets 
were subjected to bead beating (425–600 µM diameter) for a duration of 20 min at 4°C after resus-
pension in 200 µL of protein extraction solution (8 M urea, 50 mM Tris [pH 8], 75 mM NaCl, 1 mM EDTA 
[pH 8]). After bead beating, extractions were supplemented with Triton X to 1% (w/v), dithiothreitol 
(DTT) to 5 mM, and sodium pyrophosphate to 10 mM. DTT-treated extracts were allowed to incubate 
at 30 min at 55°C. Samples were then alkylated with a final concentration of 10 mM iodoacetamide 
in the dark for 30 min. 50 µg of the extracted protein was then subjected to chloroform precipitation, 
and the clean protein extracts were subjected to tryptic digestions at a ratio of 50 µg of extracted 
protein to 1 µg of protease. Digestions were allowed to proceed for 16 hr at 37°C. Proteolysis was 
quenched through acidification with HCl.

Quantitative proteomics
Peptides were analyzed by LC-MS/MS. On-line reversed phase chromatography was performed 
using a Vanquish Neo UPLC system (Thermo Scientific, Sunnyvale) equipped with a heated column 
compartment set to 50°C. Mobile Phase A consisted of 0.1% formic acid (FA) in water, while Mobile 
Phase B was 80% acetonitrile in water and 0.1% FA. Peptides (~1  µg) were loaded onto a C18 
analytical column (500 mm, 75 µm inner diameter), packed in-house with 1.8 μm ReproSil-Pur C18 
beads (Dr. Maisch, Ammerbuch, Germany) fritted with Kasil, keeping constant pressure of 600 bar 
or a maximum flow rate of 1 µL/min. After sample loading, the chromatographic gradient was run at 
0.3 µL/min and consisted of a ramp from 0 to 43% Mobile Phase B in 70 min, followed by a wash at 
100% Solution B in 9 min total, and a final re-equilibration step of three-column volumes (total run 
time 90 min).

Peptides from each sample were analyzed on an Orbitrap HF-X mass spectrometer (Thermo 
Fisher Scientific, San Jose, CA) using an overlapping window data-independent analysis (DIA) pattern 
described by Searle et al., 2018, consisting of a precursor scan followed by DIA windows. Briefly, 
precursor scans were recorded over a 390–1010 m/z window using a resolution setting of 120,000, 
an automatic gain control (AGC) target of 1e6, and a maximum injection time of 60 ms. The RF of the 
ion funnel was set at 40% of maximum. A total of 150 DIA windows were quadrupole selected with a 
8 m/z isolation window from 400.43 m/z to 1000.7 m/z and fragmented by higher-energy collisional 
dissociation, HCD (NCE = 30, AGC target of 1e6, maximum injection time 60 ms), with data recorded 
in centroid mode. Data was collected using a resolution setting of 15,000, a loop count of 75, and a 
default precursor charge state of +3. Peptides were introduced into the mass spectrometer through 
a 10 µm tapered pulled tip emitter (Fossil Ion Tech) via a custom nano-electrospray ionization source, 
supplied with a spray voltage of 1.6 kV. The instrument transfer capillary temperature was held at 
275°C.

All Thermo RAW files were converted into mzML format using the ProteoWizard package (version 
3.0.2315; Chambers et al., 2012). Vendor-specific peak picking was selected as the first filter, and 
demultiplexing with a 10 ppm window was used for handling the overlapping window scheme. 
Processed mzML files were then searched using DIA-NN (version 1.8; Demichev et al., 2020) and 
the UniProt Saccharomyces cerevisiae proteome (UP000002311, June 15, 2021) as the FASTA file for 
a 'library-free' deep neural network-based search approach. Data was searched using deep learning-
based spectra and retention time as described by Demichev et al., 2020, with trypsin as the protease, 
and allowing for X missed cleavages, with N-terminal methionine cleavage, and cysteine carbam-
idomethylation. Peptide length was allowed to range from 7 to 30 amino acids with a precursor 
charge state range from +1 to +4, a precursor range of 300–1800 m/z, and a fragment ion range 
of 200–1800 m/z. Data was processed to a 1% precursor-level false discovery rate (FDR) with mass 
accuracy, MS1 accuracy, and match between runs set to the software default settings. A single-pass 
mode neural network classifier was used with protein groups inferred from the input Saccharomyces 
cerevisiae FASTA file. Protein quantities were quantile normalized (Bolstad, 2021) and subjected 
to differential analysis as described above. The effect of normalization on data quality is visualized 
in Figure 4—figure supplement 2. GO term enrichment was performed using the clusterProfiler R 
package (Yu et al., 2012).
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Western blot for SCH9 phosphorylation
15 mL of wild-type and cff1 yeast cells were grown to OD600 of approximately 0.7 in defined media 
with glucose and ammonium as carbon and nitrogen sources. The cells were then exposed to either 
a vehicle control or 400  ng/mL rapamycin and were cultivated for a further 30  min. 9  mL of the 
yeast cultures were mixed with 1 mL of 100% (w/v) TCA. Cells were cooled on ice for 10 min prior 
to harvesting the cells by centrifugation (2 min at 1620 rcf). The resulting pellet was washed twice 
in 100% (v/v) acetone prior to resuspension in 100 µL of lysis buffer (50 mM Tris-HCl pH 7.5, 5 mM 
EDTA, 6 M urea, 1% [w/v] SDS). Cells were lysed by bead beating at 4°C for 20 min. Lysates were 
then incubated at 95°C for 5 min. Prior to gel loading, 200 µL of protein sample buffer containing 
25% (v/v) β-mercaptoethanol was added to each sample before they were again incubated at 95°C 
for 5 min. Samples were subjected to a two-antibody Western blot analysis for SCH9-P/SCH9 quanti-
fication. Protein lysates were separated by SDS-PAGE on a 7.5% (w/v) gel. Membranes for all Western 
blot analyses were blocked and incubated with PBS-Tween 0.05% (v/v) and 5% (w/v) BSA. The anti-
bodies used in this study were rabbit polyclonal anti-SCH9 (homemade, 1:10,000), mouse monoclonal 
anti-P-SCH9S-758 (homemade, 1:7000), and the corresponding fluorescent dye-coupled secondary 
antibodies (Alexa Fluor conjugated secondary antibodies, LI-COR). Protein was transferred to a nitro-
cellulose membrane, which was probed overnight with primary antibodies at 4°C. The membrane was 
then washed, and an incubation with the secondary antibodies was performed for 45 min at room 
temperature. Membrane development was performed using the Odyssey imaging system (LI-COR). 
Result quantification was performed using ImageJ (Schneider et al., 2012). Min-max normalization 
was performed for each sample through comparison to a standard sample generated from BY4741 
yeast (MATa his3Δ1, leu2Δ0, met15Δ0, ura3Δ0) grown at 30°C in YPD and extracted according to the 
same protocol.
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