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Abstract

Objective: Central (abdominal) obesity is associated with elevated adrenergic activity and 

arterial blood pressure (BP). Therefore, we tested the hypothesis that transduction of spontaneous 

muscle sympathetic nerve activity (MSNA) to BP, i.e., sympathetic transduction, is augmented in 

abdominal obesity (increased waist circumference) and positively related to prevailing BP.

Methods: Young/middle-age obese (32±7years; BMI:36±5kg/m2, n=14) and non-obese 

(29±10years; BMI:23±4kg/m2, n=14) without hypertension (24-hr ambulatory average 

BP<130/80mmHg) were included. MSNA (microneurography) and beat-to-beat BP (finger cuff) 

were measured continuously and the increase in mean arterial pressure (MAP) during 15 cardiac 

cycles following MSNA bursts of different patterns (single, multiples) and amplitude (quartiles) 

was signal-averaged over a 10 min baseline period.
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Results: MSNA burst frequency was not significantly higher in obese vs. non-obese 

(21±3vs.17±3 bursts/min, P=0.34). However, resting supine BP was significantly higher in 

obese compared with non-obese (systolic:127±3vs.114±3; diastolic:76±2vs.64±1 mmHg, both 

P<0.01). Importantly, obese showed greater increases in MAP following multiple MSNA bursts 

(P=0.02) and MSNA bursts of higher amplitude (P=0.02), but not single MSNA bursts (P=0.24), 

compared with non-obese when adjusting for MSNA burst frequency. The increase in MAP 

following higher amplitude bursts among all participants was associated with higher resting 

supine systolic (R=0.48; P=0.01) and diastolic (R=0.48; P=0.01) BP when controlling for MSNA 

burst frequency, but not when also controlling for waist circumference (P>0.05). In contrast, 

sympathetic transduction was not correlated with 24-hour ambulatory average BP.

Conclusions: Sympathetic transduction to BP is augmented in abdominal obesity and positively 

related to higher resting supine BP but not 24-hr ambulatory average BP.
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Introduction

The prevalence of obesity has increased to over 42% of adults in the United States [1]. 

Obesity, particularly elevations in central adiposity, is associated with the development 

of hypertension [2,3], which is a prominent cause of cardiovascular diseases (CVD), 

such as stroke [4], myocardial infarction [5,6], heart failure [7], and chronic kidney 

disease [8]. Pathophysiology of obesity hypertension includes several different categories 

of mechanisms, such as sympathetic activation, inflammation, and renal dysfunction [9]. 

However, the relative importance and contribution of these mechanisms to the initiation of 

obesity hypertension remains uncertain.

Obesity is characterized by elevated peripheral vascular tone [10,11]. Specifically, larger 

decreases in arterial blood pressure (BP) were observed following ganglionic blockade 

(trimethaphan) in obese individuals compared with non-obese controls, suggesting greater 

autonomic support of BP in obesity [10]. Similarly, 4 weeks of combined α- and 

β-adrenergic receptor blockade produced larger reductions in BP in obese participants 

with hypertension compared with non-obese controls with hypertension [11]. These data 

are consistent with the large body of evidence suggesting that obesity elevates muscle 

sympathetic nerve activity (MSNA) [12–18]. However, MSNA may not be elevated in 

obesity if development of hypertension is absent [19,20]. Therefore, the extent to which 

MSNA contributes to the initial development of BP dysregulation in obese men and women 

without hypertension remains unclear.

Obesity-related increases in vascular tone may be, in part, a result of increased vascular 

responsiveness to MSNA. In fact, elevated vascular responsiveness to MSNA has been 

reported in obesity-related conditions such as type 2 diabetes [21]. However, to our 

knowledge, only one study has directly examined sympathetic vascular tone in obese 

participants without hypertension [22], reporting similar passive increases in forearm 
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blood flow following α-adrenergic receptor blockade when compared to age- and sex-

matched non-obese participants. These data suggest that obesity alone does not alter 

passive dilation of the forearm resulting from α-adrenergic receptor blockade. However, an 

extrapolation to systemic BP regulation in obesity from an examination of forearm dilation 

is challenging for several reasons. First, passive dilation following α-adrenergic receptor 

blockade may not reflect the blood flow response to α-adrenergic receptor activation, i.e., 

endogenous sympathetic activation. Second, in normal adults, vascular responsiveness to 

sympathetic innervation is heterogenous across vascular regions. For example, the lower 

limbs exhibit greater vascular sensitivity to sympathetic stimulation compared with the 

forearm vasculature as a result of greater α-adrenergic receptor density and/or sensitivity in 

the lower limbs [23,24]. Third, obese individuals exhibit regional differences in endogenous 

norepinephrine kinetics compared with non-obese individuals [25]. Thus, although regional 

sympathetic vascular tone has been assessed in obesity, there are limited data available 

regarding potential alterations in systemic BP responsiveness to endogenous activation 

of adrenergic receptors in this population who are highly prone to development of 

hypertension.

Therefore, we employed a technique that quantifies the systemic pressor response to 

spontaneous bursts of MSNA with high temporal resolution (i.e., sympathetic transduction) 

[21,26,27]. We hypothesized that sympathetic transduction would be augmented in young/

middle-aged men and women with abdominal obesity (increased waist circumference) 

compared with age- and sex-matched non-obese controls. We further hypothesized that 

augmented sympathetic transduction in obesity would be positively related to higher 

prevailing BP.

Methods

All experimental procedures and protocols conformed to the Declaration of Helsinki and 

were approved by the Institutional Review Board at the University of Iowa (ID#201701762) 

and the University of Kansas Medical Center (STUDY00146744). Each subject received a 

verbal and written explanation of the study objectives, measurement techniques, and risks 

and benefits associated with the investigation prior to providing written informed consent 

on the initial visit. To match obese and non-obese groups for age and sex, data were pooled 

from an ongoing study at the University of Kansas Medical Center (STUDY00146744) and 

previously published studies from our group with unrelated hypotheses [28,29]. Therefore, 

this study was not prospectively registered in a public database.

Subjects:

Twenty-eight young and middle-aged men and women (14 obese and 14 age- and sex-

matched controls) that were nonsmokers and free of metabolic or neurological disease 

were included. The sample size is in line with previous studies (average group sizes: 

n=13 vs. n=13) detecting a significant difference in sympathetic transduction between 

different populations [21,30–33]. Study participants were recruited though mass email at 

the University of Iowa and a registry at the University of Kansas Medical Center. Visceral 

adiposity was estimated by waist circumference [34,35] and defined as waist circumference 
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> 102 cm for men and > 88 cm for women [36]. Criteria for normal waist circumference 

was < 94 cm for men and < 80 cm for women [36]. Age < 45 years was considered young 

and age 45–65 years was considered middle-age, as previously defined [29,37]. Exclusion 

criteria included use of anti-hypertensive medications, history of diabetes, and history of 

smoking within 3 months prior to study participation. Although all participants reported 

no history of hypertension, status of hypertension was determined by 24-hour ambulatory 

average BP (<130/80 mmHg). No pregnant women were studied as confirmed by a urine 

pregnancy test. No postmenopausal women were included, and the phase of the menstrual 

cycle was not controlled as previous work indicates that sympathetic transduction is not 

altered by the menstrual cycle in healthy women [38].

Experimental Measurements

24-hr ambulatory BP monitoring: 24-hr ambulatory brachial artery BP, which is 

regarded as the gold standard for the prediction of risk related to BP [39,40], was obtained 

using upper arm cuff oscillometric monitors (SpaceLabs Healthcare, Snoqualmie, WA) [41]. 

Monitors were programmed to obtain BP readings at intervals of 30 min during the day 

from 0600 to 2200 hours and at night every 60 min from 2200 to 0600 hours. Nocturnal 

BP “dipping” was calculated as the difference between mean daytime systolic and mean 

nocturnal (nighttime) systolic BP expressed as a percentage of the daytime value. Daytime 

and nocturnal BP was adjusted to the nearest hour based on each participant’s written 

record of their activities and sleep periods for the 24-hr monitoring period. At least 10 

daytime readings and 5 nighttime readings and at least 80% successful readings of planned 

measurements over the 24 hours were required [28].

Resting cardiovascular variables: Heart rate (HR) was determined from lead II of a 

three-lead ECG and BP was monitored via auscultatory BP at the brachial artery and beat-

to-beat via finger photoplethysmography. Multiunit postganglionic MSNA was recorded 

using standard microneurographic techniques as previously described [20,28,42,43]. A 

tungsten microelectrode was placed into the peroneal nerve near the left fibular head. 

Signals were amplified, filtered (bandwidth 0.7–2.0 kHz), rectified and integrated (0.1 s time 

constant) to obtain mean voltage neurograms (Nerve Traffic Analyzer; University of Iowa 

Bioengineering, Iowa City, IA). MSNA was identified by the presence of spontaneous bursts 

with characteristic pulse synchronicity and by its responsiveness to end-expiratory breath 

holds, but not to arousal or skin stimulation. Data were acquired using a Powerlab data 

acquisition system (ADInstruments, Colorado Springs, CO).

Experimental protocol: On the first visit to the laboratory, subjects received verbal 

explanation of the study and provided written informed consent. Subjects completed a 

health history survey and were instrumented with a 24-hr ambulatory BP monitor. On 

the experimental day (within 2 weeks of the initial visit), participants were instructed to 

refrain from medication use and fast overnight prior to arriving at the laboratory between 

0700 and 0900 hr. Subjects were also instructed to abstain from caffeinated beverages the 

morning of the study and strenuous physical activity and alcohol for at least 24 hours before 

experimental sessions. All experiments were performed in a dimly lit room at an ambient 

temperature of 22–24°C. First, participants underwent blood draw for a comprehensive 
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metabolic panel and lipid panel, followed by a 20 min rest period. Participants were 

then instrumented for heart rate, finger photoplethysmography (beat-to-beat BP), and 

microneurography (MSNA). Once the MSNA signal was acquired, data were collected 

under normal resting conditions in the supine position for at least a 10-min duration.

Data analysis

Muscle sympathetic nerve activity: Resting MSNA was calculated as a mean value 

over the 10-min baseline period and quantified as burst frequency (bursts∙min−1) and as burst 

incidence (bursts∙100 heartbeats−1) to account for interindividual differences in heart rate. 

Relative MSNA burst amplitude was calculated by attributing the value of 100 to the average 

of the 3 largest bursts during the baseline MSNA recording and expressing the amplitude of 

all MSNA bursts as a percentage [20,29,44–46].

Sympathetic transduction: The transduction analysis of MSNA to BP was performed 

as previously described [27,33,43,45,47]. Briefly, signal averaging was performed in which 

bursts of MSNA act as a trigger and beat-to-beat BP was tracked for 15 subsequent cardiac 

cycles thereafter (Figure 1). The 15 cardiac cycle window is sufficient to fully characterize 

the BP response because peak BP response latency following MSNA bursts is consistently 

within 5–8 heart beats in humans [33,47,48]. All detected bursts of MSNA are included 

regardless of proximity to other bursts. The change in BP is defined as the instantaneous 

MAP at each cardiac cycle subtracted by MAP at the cardiac cycle in which the burst 

occurred. The MAP response was signal averaged in response to single MSNA bursts that 

occur in isolation or multiple successive bursts that are adjacent to at least one other burst. 

The amplitude of all bursts of MSNA were divided into quartiles to quantify the contribution 

of burst amplitude to the ensuing MAP response.

Statistical Analysis: The primary endpoint was the peak MAP response to all bursts of 

MSNA, regardless of amplitude or pattern, and adjusted for resting MSNA burst frequency. 

Testing for equal variance was performed using Levene’s Test of Equality of Variances. 

Group differences in demographics were examined using one-way ANOVA (Table 1), and 

when normality failed, Kruskal-Wallis one-way ANOVA (ranks) tests was used. Group 

differences were also examined using analysis of co-variance (ANCOVA) to adjust for 

resting MSNA, waist circumference, and BMI as indicated in Fig. 2–4. Sex was not a 

significant covariate in any of the ANCOVA models and therefore group means were not 

adjusted for this variable. Linear mixed models were used to make group comparisons 

in the BP response curves (15 cardiac cycles) following different MSNA burst patterns 

and amplitude (Fig. 3–4). Pearson bivariate regressions were used to evaluate the relation 

between sympathetic transduction and prevailing BP, and partial regression analysis was 

used to determine the relation between sympathetic transduction and prevailing BP while 

adjusting for MSNA burst frequency, waist circumference, and BMI as indicated (Table 2, 

Fig. 5). Data are reported as mean ± standard deviation and as box plots (median, 25th and 

75th percentiles, and 10th and 90th percentiles). Statistical significance was set at P < 0.05.
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Results

Blood chemistries:

Obese participants had significantly higher fasting plasma concentrations of triglycerides 

(P<0.01) and LDL cholesterol (P=0.03) (Table 1). Six of the 14 obese participants were 

considered to have metabolic syndrome (meeting 3 or more of the following criteria: Waist 

circumference of ≥102 cm for men and ≥89 cm for women, BP ≥ 130/85 mmHg or taking 

an anti-hypertensive medication, triglycerides > 150 mg/dL, fasting plasma glucose > 100 

mg/dL or taking glucose-lowering medications, and high-density lipoprotein level (HDL) < 

40 mg/dL for men and 50 mg/dL for women.

Ambulatory BP:

Although all participants showed 24-hour ambulatory average BP <130/80 mmHg, obese 

participants exhibited significantly higher 24-hour ambulatory average systolic BP compared 

with controls (P=0.03) (Fig. 2A). Similarly, obese participants showed significantly higher 

nocturnal systolic BP (P<0.01) and a smaller dip in systolic BP (P=0.05) from daytime to 

nighttime compared with non-obese controls (Table 1).

Resting cardiovascular variables:

Resting heart rate was significantly higher in obese vs. control participants (68 ± 9 vs. 58 

± 9 bpm, P=0.01). Similarly, resting supine systolic (P<0.01) and diastolic (P<0.01) BP via 

arm cuff were significantly elevated in obese participants compared with controls (Fig. 2B). 

However, no significant difference in MSNA burst frequency (P=0.30) or burst incidence 

(P=0.49) were observed between obese and control participants (Fig. 2C).

MSNA burst pattern:

The peak MAP response following multiple MSNA bursts (2 or more consecutive bursts) 

was significantly greater in obese compared with controls (P=0.02) (Fig. 3A). A post hoc 

analysis on group averages and variance (Obese: 3.9 ± 2.2 vs. Control: 2.4 ± 1.4 mmHg) 

revealed a large effect size of 0.81 and power of 0.66. Means are adjusted for resting 

MSNA burst frequency (ANCOVA) with similar results when adjusting for burst incidence 

(P=0.02). In accordance, the temporal pattern of the MAP response following multiple 

MSNA bursts was significantly greater in obese participants compared with controls 

(P=0.04). In contrast, the peak MAP response following single isolated MSNA bursts 

was similar between obese and controls (P=0.24) (Fig. 3B). Overall, obese participants 

demonstrated a greater MAP response following MSNA bursts regardless of pattern (all 

bursts, P=0.04) (Fig. 3C). Means are adjusted for resting MSNA burst frequency (ANCOVA) 

with similar results when adjusting for burst incidence (P=0.04). When considering MAP 

following cardiac cycles without bursts of MSNA, no statistically significant difference was 

observed between groups while adjusting for MSNA burst frequency (P=0.08) (Fig. 3D) or 

MSNA burst incidence (P=0.05). Sex was not a significant covariate in any of the ANCOVA 

models; therefore, mean values were not adjusted for this independent variable.
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MSNA burst amplitude:

The peak MAP response was significantly greater in obese compared with controls when 

considering the largest (4th) quartile of MSNA burst amplitude (P=0.02) (Fig. 2A). A post 

hoc analysis on group averages and variance (Obese: 5.0 ± 2.4 vs. Control: 3.1 ± 2.0 mmHg) 

revealed a large effect size of 0.86 and power of 0.70. Means are adjusted for resting MSNA 

(ANCOVA) with similar results when adjusting for burst incidence (P=0.02). Additionally, 

the temporal pattern of the MAP response following the 4th quartile of MSNA burst 

amplitude was significantly greater in obese participants compared with controls (P=0.01). 

While the peak MAP response following the 3rd quartile of MSNA burst amplitude was also 

significantly greater among obese participants compared with controls while adjusting for 

MSNA burst frequency (P=0.03) (Fig. 4B) or burst incidence (P=0.04), no significant group 

differences were observed for the 2nd quartile (P=0.20) (Fig. 4C) and 1st quartile (P=0.33) 

(Fig. 4D) while adjusting for MSNA burst frequency. Similar results were observed when 

adjusting for MSNA burst incidence (all P>0.05). Sex was not a significant covariate in 

any of the ANCOVA models; therefore, mean values were not adjusted for this independent 

variable.

Relation between sympathetic transduction and prevailing BP:

When considering the largest (4th) quartile of MSNA burst amplitude, a significant bivariate 

correlation was observed between sympathetic transduction and resting supine systolic BP 

(R=0.40, P=0.03) and diastolic BP (R=0.38, P=0.04) (Table 2). Importantly, adjusting for 

resting MSNA (model 1) did not change these results (supine systolic BP: β=0.48, P=0.01; 

supine diastolic BP: β=0.48, P=0.01) (Fig. 5A and Table 2). However, these correlations 

were no longer statistically significant when adjusting for MSNA and waist circumference 

(model 2) and MSNA and BMI (model 3), suggesting obesity is an important determinant 

in the relation between sympathetic transduction and resting supine BP. In contrast, when 

considering MSNA burst pattern (multiples, ≥2 MSNA bursts), no relation was observed 

between sympathetic transduction and resting supine systolic BP (R=0.13, P=0.49) and 

diastolic BP (R=0.19, P=0.33) in any of the statistical models. Surprisingly, no models 

were statistically significant when examining 24-hour ambulatory average systolic BP 

(β=0.22, P=0.27) (Fig. 5C), average diastolic BP (β=0.16, P=0.44) (Fig. 5D), or other 

parameters of 24-hr ambulatory BP (e.g., day/night BP, “dipping”). Significant correlations 

were noted between higher 24-hr ambulatory systolic BP variability (standard deviation) 

and sympathetic transduction among all participants; however, these correlations were not 

specific to obesity because they remained statistically significant after adjusting for MSNA 

and waist circumference (multiple bursts: β=0.43, P=0.03; higher burst amplitude: β=0.72, 

P<0.01; all bursts: β=0.60, P<0.01). Thus, sympathetic transduction was positively related 

to prevailing BP in obesity when sympathetic transduction was being assessed under resting 

conditions but not BP across a 24-hour period.

Discussion

The present study examined whether central obesity augments transduction of MSNA 

to BP in humans without hypertension and the extent to which it is associated with 

prevailing BP. Two novel findings were noted. First, transduction of MSNA to BP was 
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significantly greater in obese participants compared with controls with no significant 

difference in resting MSNA. More specifically, BP responses following two or more 

consecutive bursts (multiples) and larger amplitude MSNA bursts were significantly greater 

in obese compared with controls, whereas no group difference was noted in the BP 

response following single isolated MSNA bursts. Second, prevailing BP in the resting 

supine position was significantly correlated with higher transduction of large amplitude 

MSNA bursts, but not when statistically adjusting for waist circumference or BMI. Indeed, 

resting supine BP was significantly higher in obese individuals compared with controls, 

despite all participants showing clinically normal 24-hour ambulatory BP. Taken together, 

these findings demonstrate that the pressor response to spontaneous bursts of MSNA of 

larger magnitude is selectively augmented in individuals with abdominal obesity and is 

positively related to prevailing BP at the time of the sympathetic transduction assessment. 

This increase in sympathetic transduction despite no increase in MSNA burst frequency may 

describe an early stage of BP dysregulation in obesity.

To our knowledge, only one previous study has directly examined sympathetic vascular 

tone in obese subjects without hypertension [22] and reported similar changes in forearm 

blood flow during α1-adrenergic receptor blockade when compared to control participants. 

However, only the forearm vasculature was examined without addressing regional 

differences in α-adrenergic receptor density and/or sensitivity, such as the upper and 

lower limbs [23,24]. In contrast, the present study employed the sympathetic transduction 

technique, which characterizes the effector organ response to endogenous norepinephrine 

and the aggregate end point from the perspective of overall BP regulation. Thus, the 

augmented BP response following bursts of MSNA in obese participants observed in the 

present study represents global sympathetic vascular constriction, thereby overcoming the 

limitation of regional differences in α-adrenergic receptor density and/or sensitivity.

Although the specific mechanism(s) that account for the obesity-related rise in sympathetic 

transduction were not tested, there are two points worth speculating. First, norepinephrine 

release and/or turnover in the sympathetic nerve terminal may be enhanced in obesity to 

the extent that bursts of MSNA cause augmented vasoconstrictor responses, particularly 

when MSNA increases with higher amplitude bursts or multiple bursts in succession. 

In support of this, there is evidence of enhanced renal norepinephrine spillover in 

obesity [25], although human studies focused on obesity-related changes in norepinephrine 

spillover in the vasculature of skeletal muscle remain scarce. Second, vascular α-

adrenergic receptor sensitivity may be enhanced by the circulating milieu in obesity 

(e.g., hyperlipidemia, oxidative stress). For example, elevations in plasma free fatty acids 

can increase reactive oxygen species [49–52], which can enhance α1-adrenergic receptor 

control of vascular smooth muscle contraction [53]. However, direct evidence in humans 

demonstrating enhanced α-adrenergic receptor sensitivity via plasma free fatty acids is 

needed. Nevertheless, our findings support our hypothesis that abdominal obesity increases 

transduction of MSNA to BP and may inform upcoming studies aiming to address the 

development hypertension in this population.

Resting MSNA is elevated in obesity-related hypertension [13,18]. However, compared with 

controls, we did not observe a significant elevation in MSNA among obese participants in 
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the present study, attributed primarily to the exclusion of individuals with 24-hr ambulatory 

average BP ≥130/80. Our findings are in line with previous reports of similar resting MSNA 

in obese and control subjects without established hypertension [17,19] and support the 

notion of heightened sympathetic transduction in obesity despite normal resting MSNA. In 

fact, there is substantial evidence that higher sympathetic transduction in normal adults may 

be requisite for normal BP regulation when resting MSNA is low [32,54–58]. However, 

no association was observed between sympathetic transduction and resting MSNA burst 

frequency in the present study (data not shown). Therefore, it remains unclear whether the 

commonly observed inverse relation between sympathetic transduction and resting MSNA is 

modified by obesity.

It is important to note that the sympathetic transduction analysis in the present study was 

performed under resting steady-state conditions and may not translate to BP responses to 

sympathoexcitatory stimuli for several reasons. First, the influence of peripheral sympathetic 

vasoconstriction on blood pressure, which the sympathetic transduction analysis captures, 

cannot reliably be isolated if other hemodynamic variables, such as cardiac output, are 

increasing simultaneously. Sympathoexcitatory stimuli, such as the cold pressor test and 

handgrip, typically cause major elevations in cardiac output and MSNA, and also do not 

provide an adequate duration of data needed for the signal-averaging technique (≥10 min). 

Although previous studies have examined changes in blood pressure for a given increase 

in sympathetic nerve activity during the cold pressor test or handgrip, these studies were 

not performed with the signal-averaging technique and therefore were not isolating the 

influence of peripheral sympathetic vasoconstriction on BP. Second, there is considerable 

interindividual variability in MSNA responses to the cold pressor test and handgrip with 

less than optimal reproducibility [59]. For these reasons, it would not be surprising if results 

from sympathoexcitatory maneuvers were not parallel with the sympathetic transduction 

analysis.

Strengths and limitations

The strength of the present study can be appreciated in several ways. First and foremost 

is the method of assessing sympathetic transduction. Methods of assessing sympathetic 

transduction following spontaneous bursts of MSNA can be categorized as either the signal-

averaging technique, as used the present study, or the linear regression approach (discussed 

in a recent review, [60]). The signal-averaging technique is the most established technique 

for assessing sympathetic transduction [48] and results have been validated as an almost 

entirely α-adrenergic receptor mechanism using intra-arterial infusion of an α-adrenergic 

receptor antagonist with proper control conditions [47]. However, the linear regression 

approach has not been validated with α-adrenergic receptor antagonists or with measures of 

blood flow and conductance. Indeed, recent work has demonstrated important differences in 

results when comparing these methodologies [61]. Secondly, the obese and control groups 

were matched by age and sex, thereby minimizing the influence of these variables in the 

comparison between groups. Third, a comprehensive assessment of BP was performed 

using 24-hour ambulatory BP, thereby providing high confidence in the negative status of 

hypertension for all participants.
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However, there were also several limitations. For example, our study does not reveal 

any causal nature of the associations described. Also, although the obese and control 

groups were age- and sex-matched, the sample size was relatively small, thereby limiting 

comparisons between- and within-sex. However, it should be noted that sex was not a 

significant covariate in any of the ANCOVA models. Indeed, most studies comparing men 

and women do not report a sex difference in sympathetic transduction [43,56,62,63], despite 

a sex difference in the relation between sympathetic transduction and resting MSNA [62]. 

Nonetheless, we cannot rule out the possibility of an interaction between sex and obesity 

because the study was designed only to address the question of an obesity-related change 

in sympathetic transduction. Second, our study did not include an additional group of obese 

individuals based on BMI but without “central adiposity.” Comparing obese participants 

with and without significant central adiposity would provide further information on the 

role of central adiposity in altered sympathetic transduction. Along these lines, the present 

study was limited by utilizing only waist circumference as an index of visceral fat because 

there are exceptions, such as reciprocal changes in subcutaneous and visceral abdominal 

fat that do not affect waist circumference but may have metabolic implications. Indeed, 

subcutaneous abdominal obesity has been considered “metabolically healthy obesity” 

characterized by normal glucose and lipid metabolism and absence of hypertension [64]. 

Thus, highly accurate and detailed methods characterizing body composition, such as dual-

energy X-ray absorptiometry (DEXA), magnetic resonance imaging (MRI), or computed 

tomography (CT), would aid in future studies examining obesity-related increases in 

sympathetic transduction. Finally, cardiac output responses following bursts of MSNA 

were not examined. However, it is important to note that when examining the temporal 

response, the peak increase in MAP following bursts of MSNA coincides with the increase 

in peripheral resistance but not the relatively small and brief increase in cardiac output 

[45,47,65]. In contrast to the present study, cardiac output does become important when 

examining the MAP response to MSNA following acute stressors, such as handgrip, cold 

pressor test, etc., which can generate substantial increases in heart rate and stroke volume in 

addition to an increase in peripheral resistance.

Summary

The primary novel findings were an obesity-related increase in sympathetic transduction, 

including the BP response following larger MSNA burst amplitude and multiple MSNA 

bursts, despite resting MSNA burst frequency that was not significantly higher in obese 

participants. As a result, these data suggest that α-adrenergic receptor sensitivity to MSNA 

may potentially be elevated by moderate central obesity. Importantly, prevailing BP in 

the resting supine position was significantly correlated with higher transduction of large 

amplitude MSNA bursts. These findings advance our knowledge by demonstrating an 

alteration in sympathetic control of BP in the setting of abdominal obesity and may inform 

future studies focused on understanding the prevention of hypertension in this population. 

This is also the first study to demonstrate an association between elevated resting BP and 

sympathetic transduction.
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Figure 1. 
Methodology for determining sympathetic transduction in humans. Muscle sympathetic 

nerve activity (MSNA) is measured via microneurography at the peroneal nerve (A). Arterial 

blood pressure (BP) via finger photoplethysmography is time-aligned with MSNA, and the 

change in BP during 15 sec following each burst of MSNA (triggering event) is signal 

averaged over the entire resting baseline period of at least 10 min.
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Figure 2. 
Box plots of average 24-hour ambulatory systolic and diastolic blood pressure (BP) (A), 

resting supine systolic and diastolic BP (B), and muscle sympathetic nerve activity (MSNA) 

burst frequency (burst/min) and burst incidence (bursts/100 heartbeats) (C) in non-obese 

controls (n=14) and obese participants (n=14). Group differences determined by analysis of 

variance (t-tests). Horizontal lines in boxes show the median, ends of boxes define the 25th 

and 75th percentiles, whiskers define the 10th and 90th percentiles, and individual data points 

indicate values outside the 10th and 90th percentiles.
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Figure 3. 
Peak mean arterial pressure (MAP) responses (box plots) and MAP curves following 

multiple consecutive bursts of MSNA (A), single bursts of MSNA (B), all detected bursts of 

MSNA (C), and cardiac cycles without bursts of MSNA (D) in non-obese controls (n=14) 

and obese participants (n=14). Peak MAP responses were adjusted for resting MSNA burst 

frequency using one-way analysis of covariance (ANCOVA), and group comparisons of 

MAP curves following bursts of MSNA were assessed by linear mixed models. MAP curves 

are displayed as polynomial trendlines (line of best fit). Horizontal lines in boxes show the 

median, ends of boxes define the 25th and 75th percentiles, whiskers define the 10th and 90th 

percentiles, and individual data points indicate values outside the 10th and 90th percentiles.
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Figure 4. 
Peak mean arterial pressure (MAP) responses (box plots) and MAP curves following MSNA 

bursts group within the 4th quartile of burst amplitude (A), 3rd quartile of burst amplitude 

(B), 2nd quartile of burst amplitude (C), and the 1st quartile of burst amplitude (D) in non-

obese controls (n=14) and obese participants (n=14). Peak MAP responses were adjusted for 

resting MSNA burst frequency using one-way analysis of covariance (ANCOVA), and group 

comparisons of MAP curves following bursts of MSNA were assessed by linear mixed 

models. MAP curves are displayed as polynomial trendlines (line of best fit). Horizontal 

lines in boxes show the median, ends of boxes define the 25th and 75th percentiles, whiskers 

define the 10th and 90th percentiles, and individual data points indicate values outside the 

10th and 90th percentiles.
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Figure 5. 
Partial regression plots (controlling for MSNA burst frequency) between the peak arterial 

blood pressure (BP) response following the largest amplitude bursts of MSNA (4th quartile) 

and resting supine systolic BP (A), resting supine diastolic BP (B), 24-hr ambulatory 

systolic BP (C), and 24-hr ambulatory diastolic BP (D). Plots include all study participants. 

Variables on the horizontal axis and vertical axis are adjusted for the independent variable 

(MSNA burst frequency) in the partial regression plot procedure, which creates standardized 

values centered around zero. Regression lines (solid) are quadratic with 95% confidence 

intervals (dashed lines).
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Table 1.

Demographics

Control (n=14) Obese (n=14) t-test
P-value

Variable

 Men / women, n 8 / 6 8 / 6 --

 Age, years 29 ± 10 32 ± 7 0.13

 Age range, years 19–52 25–49 --

 Waist circumference, cm 79 ± 10 110 ± 11 <0.01

 Hip circumference, cm 99 ± 10 122 ± 17 <0.01

 Waist/hip ratio 0.8 ± 0.1 0.9 ± 0.1 <0.01

 BMI, kg∙m2 (−1) 23.5 ± 3.6 36.0 ± 5.1 <0.01

 Glucose, mg∙dL−1 90 ± 7 91 ± 11 0.64

 Insulin, μIU·mL−1 8.5 ± 6.1 16.9 ± 13.1 0.06

 HOMA-IR 2.0 ± 1.6 4.1 ± 4.1 0.12

 Triglycerides, mg∙dL−1 73 ± 33 142 ± 82 <0.01

 LDL cholesterol, mg∙dL−1 96 ± 30 118 ± 20 0.03

 HDL cholesterol, mg∙dL−1 50 ± 18 43 ± 7 0.16

 Total cholesterol, mg∙dL−1 171 ± 43 187 ± 25 0.07

 Metabolic syndrome, n (m/w) 0 4 / 2 --

24-hour ambulatory BP

 Day systolic BP, mmHg 122 ± 7 127 ± 5 0.06

 Day diastolic BP, mmHg 72 ± 6 75 ± 6 0.35

 Nocturnal systolic BP, mmHg 108 ± 6 116 ± 6 <0.01

 Nocturnal diastolic BP, mmHg 60 ± 4 64 ± 6 0.02

 Systolic BP “dipping”, % −11.4 ± 3.8 −7.9 ± 5.1 0.05

 Diastolic BP “dipping”, % −16.9 ± 4 −13.4 ± 6.6 0.23

Values are means ± SD. P-values are obese vs. lean controls. BMI, body mass index; LDL and HDL, low/high density lipoprotein; BP, arterial 
blood pressure. Comparisons were made using independent t-tests.
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Table 2.

Partial correlation analysis

Partial correlation

Bivariate correlation Model 1 Model 2 Model 3

R P-value β P-value β P-value β P-value

Resting supine SBP

 Burst amplitude (Q4) 0.40* 0.03 0.48* 0.01 0.29 0.14 0.32 0.11

 Burst pattern (multiples) 0.13 0.49 0.23 0.25 −0.06 0.76 0.02 0.94

 All bursts 0.25 0.21 0.32 0.10 0.12 0.57 0.17 0.40

Resting supine DBP

 Burst amplitude (Q4) 0.38* 0.04 0.48* 0.01 0.32 0.12 0.30 0.13

 Burst pattern (multiples) 0.19 0.33 0.31 0.11 0.09 0.67 0.11 0.60

 All bursts 0.25 0.21 0.38 0.05 0.21 0.30 0.23 0.26

Avg. 24-hr ambulatory SBP

 Burst amplitude (Q4) 0.19 0.33 0.22 0.27 0.09 0.68 0.10 0.63

 Burst pattern (multiples) 0.10 0.61 0.14 0.47 −0.01 0.95 0.03 0.91

 All bursts 0.13 0.51 0.16 0.43 0.03 0.87 0.06 0.76

Avg. 24-hr ambulatory DBP

 Burst amplitude (Q4) 0.12 0.54 0.15 0.44 0.21 0.30 0.19 0.36

 Burst pattern (multiples) 0.08 0.69 0.13 0.51 0.19 0.35 0.16 0.45

 All bursts 0.13 0.51 0.17 0.40 0.22 0.29 0.19 0.36

Data shown include largest quartile (quartile 4) of MSNA burst cluster and amplitude (control: n=14, obese: n=14). Model 1: adjusting for MSNA 
burst frequency, Model 2: adjusting for MSNA burst frequency and waist circumference; Model 3: adjusting for MSNA burst frequency and body 
mass index.

*
P<0.05.
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