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Abstract

Background: Radiomics is a type of quantitative analysis that provides a more objective 

approach to detecting tumor subtypes using medical imaging. The goal of this paper is to 

conduct a comprehensive assessment of the literature on computed tomography (CT) radiomics for 

distinguishing renal cell carcinomas from oncocytoma.

Methods: From February 15th 2012 to 2022, we conducted a broad search of the current 

literature using the PubMed/MEDLINE, Google scholar, Cochrane Library, Embase, and Web 

of Science. A meta-analysis of radiomics studies concentrating on discriminating between 

oncocytoma and RCCs was performed, and the risk of bias was assessed using the Quality 

Assessment of Diagnostic Accuracy Studies method. The pooled sensitivity, specificity, and 

diagnostic odds ratio (DOR) were evaluated via a random-effects model, which was applied for the 

meta-analysis. This study is registered with PROSPERO (CRD42022311575)

Results: After screening the search results, we identified 6 studies that utilized radiomics to 

distinguish oncocytoma from other renal tumors; there were a total of 1064 lesions in 1049 

patients (288 oncocytoma lesions vs 776 RCCs lesions). The meta-analysis found substantial 

heterogeneity among the included studies, with pooled sensitivity and specificity of 0.818 

[0.619– 0.926] and 0.808 [0.537– 0.938], for detecting different subtypes of RCCs (clear cell 

RCC, chromophobe RCC, and papillary RCC) from oncocytoma. Also, a pooled sensitivity and 

specificity of 0.83 [0.498– 0.960] and 0.92 [0.825– 0.965], respectively, was found in detecting 

oncocytoma from chromophobe RCC specifically.
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Conclusions: According to this study, CT radiomics has a high degree of accuracy in 

distinguishing RCCs from RO, including chRCCs from RO. Radiomics algorithms have the 

potential to improve diagnosis in scenarios that have traditionally been ambiguous. However, 

in order for this modality to be implemented in the clinical setting, standardization of image 

acquisition and segmentation protocols as well as inter-institutional sharing of software is 

warranted.
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Introduction

Renal cell carcinoma (RCC) is the most common type of kidney cancer in the United 

States, accounting for around 3.64 percent of all cancer cases reported(1). In the modern 

era, most renal tumors are incidentally discovered on imaging and present as small, localized 

entities (i.e., <4 cm). A retrospective analysis of 18,000 patients who underwent partial 

nephrectomy in the community demonstrated that more than 30% of all surgically excised 

small renal masses (SRMs) were consistently confirmed to be benign when the diagnosis 

was made only on the basis of CT(2). Renal oncocytomas (ROs) are one of the most 

common benign renal lesions. Although presence of a central stellate scar has traditionally 

been cited as pathognomonic for RO, only 25–30% of such tumors have this finding (3). 

Additionally, about 20% of chromophobe RCCs may also have a central scar (4). As such, 

RO can often be difficult to diagnose on radiographic appearance alone from chromophobe; 

clear cell; and/or papillary RCC. While renal mass biopsy (RMB)is a management option 

for SRM, it is an invasive procedure with the potential for complications. Furthermore, 

intra-tumoral heterogeneity may affect the diagnostic accuracy of RMB; for instance, a 

chromophobe RCC may be falsely diagnosed as an oncocytic tumor based on sampling 

location, as chromophobe RCC and RO have overlapping histological and molecular 

characteristics, which makes distinguishing them radiographically and/or through RMB 

especially challenging (5–9). While it is critical to avoid surgery on benign kidney lesions, 

our current diagnostic approaches (i.e., traditional cross-sectional imaging and RMB) have 

limitations.

Radiomics is the quantitative analysis of images on a pixel or voxel basis. There is a 

growing interest and utilization of radiomics for both tumor characterization (e.g. grading 

and differentiation) and clinical prediction (e.g. survival)(13–17).The contemporary usage 

of radiomics in RCC has mostly focused on increasing the accuracy of preoperative, non-

invasive histologic subtyping of small renal tumors in order to betterinform management.

(18) Given the large amount of features extracted from images (e.g., shape; intensity; and 

spatial relationship of voxels), radiomics is often paired with machine learning (ML) or deep 

learning (DL) in order to derive meaningful relationships between features and a relevant 

clinical outcome. In this study, we sought to conduct a systematic review and meta-analysis 

for studies utilizing CT based radiomics in order to differentiate ROs from (1) RCCs and (2) 

chRCC specifically.
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Methods:

Search strategy

We conducted a search using PubMed/MEDLINE, Google scholar, Cochrane Library, 

Embase, and Web of Science on studies published from February 15th 2012 to 2022 

in English. The following phrases were utilized in a search method that included a 

combination of keywords and medical subject headings (MeSH)/EMTREE terms: Search 

terms: (Radiomics OR Artificial Intelligence OR Machine learning OR Deep learning) 

AND (Kidney OR Renal) AND (Oncocytoma). This study is registered with PROSPERO 

(CRD42022311575).

Eligibility criteria.

The studies were chosen based on the following criteria: (1) Original full-text studies on CT 

radiomics clinical investigations to analyze the accuracy of identifying RO and RCCs(clear 

cell RCC(ccRCC), chromophobe RCC (chRCC), and papillary RCC (pRCC)), (2) Absolute 

numbers of patients with true positive (TP), false positive (FP), true negative (TN), and 

false negative (FN) results needed to be either found in published articles or recalculated 

in the manuscripts using other parameters (e.g., accuracy rate, sensitivity (SEN), specificity 

(SPE), positive predictive value (PPV), negative predictive value (NPV), and a total number 

of participants). (3) Patients’ histopathological data was available, which served as a gold 

standard for comparing model performance.

Study selection and data extraction

The articles were screened independently by the 2 authors (NG, FH) based on the titles 

and abstracts using the Covidence systematic review software (Veritas Health Innovation, 

Melbourne Australia, available at www.covidence.org); those not meeting the inclusion 

criteria stated above were eliminated. If necessary, any disagreements in included articles 

between the two screeners were reconciled by a third author (PY). After this initial phase, 

the full texts of all remaining articles were independently reviewed by two authors (PY, 

FH) for inclusion or exclusion in the final study. Conflicts were resolved in the same way 

as during the initial screening phase (FDF). Two authors (FH, FDF) extracted the study 

characteristics from each included study. Disagreements with extracted data were resolved 

through discussion and consensus or by consulting a third member (NG) of the review team. 

The data included the following: author, year of publication, , machine learning algorithm, 

study design, accuracy, validity, sensitivity, specificity, PPV, NPV, and area under the curve 

(AUC).

Quality assessment of included studies

Since no established quality assessment tool focuses on machine learning methodology, 

we used a modification of the Quality Assessment of Diagnostic Accuracy Studies 2 

(QUADAS-2) (20).
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Data analysis

Published data were extracted and transformed into a datasheet using the reported true-

positive, true-negative, false-positive, and false-negative values for distinguishing RO and 

RCCs. For the meta-analysis, the pooled SEN and SPE with 95% confidence intervals for 

diagnosis by AI were calculated using a random-effects model. Datasets were used to create 

forest plots and risk of bias graphs. The risk of publication bias was assessed using funnel 

plot and symmetry analysis. We plotted the 95% CI and prediction regions around the 

averaged accuracy estimates in the summary receiver operating characteristic (SROC) space, 

and the AUC was calculated. All statistical analyses were performed using R software, 

version 3.5.1 (R Foundation for Statistical Computing, Vienna, Austria, 2018).

Assessment of heterogeneity

Initially, statistical heterogeneity was evaluated informally from the forest plots of the study 

estimates and more formally using the I2 statistic (I2> 50%=significant heterogeneity). A 

hierarchical summary receiver operating characteristic curve was also fitted. All studies 

were presented as a circle and plotted with the hierarchical summary receiver operating 

characteristic curve. The heterogeneity and threshold effect of the included studies were also 

determined. An I2 test with P < 0.1 generally indicated significant heterogeneity.

Results

Research and selection of studies

Using the search terms specified above, 240 articles were initially identified from all 

databases. Finally, 162 articles were included after duplications removed. In addition, 106 

papers were eliminated after being deemed irrelevant after reading their titles and abstracts. 

After reading the entire full texts, it was discovered that 13 publications were reviews or 

had no relevant data, while seven papers were unavailable for data extraction. In the end, six 

studies were included(Table 1, 2). The article selection procedure is depicted in Figure 1. 

We do not have available data to do meta-analysis to calculate sensitivity, specificity, AUC, 

and accuracy of radiomic algorithms to differentiate RO vs. individual RCC subtypes (i.e., 

ccRCC; pRCC; chRCC). However, we were able to do meta-analysis on RO vs. RCCs as a 

whole.

Quality assessment and publication bias

The quality of the included studies was evaluated using the QUADAS-2 checklist, and the 

results are shown in Figure 2. Overall, the quality of the studies that were included was 

satisfactory. Concerns about ‘risk of bias’ were raised when it was determined that ‘patient 

selection’ had problems that could imply bias in terms of inclusion (3 in group 2).

Heterogeneity test

Cochran-Q and I2 were used to assess heterogeneity (Figure 3). When we used the best 

model performance in differentiating RO from RCCs as well as chRCC, we found high 

heterogeneity in pooled sensitivity and specificity among the included studies.
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Study characteristics

Table 1 lists the features of the 6 studies that were included. They were all retrospective 

cohort studies. There were 1049 patients in total, with 1064 lesions were found (288 

oncocytoma lesions vs 776 RCCs lesions). Patient’s age ranged from 18 to 93. In the 6 

studies that included data on CT slice thickness, 17 percent used CT slices with a thickness 

of 1–3 mm, while the rest used CT slices with a thickness of 5 mm. Figures 3 showed the 

results of the meta-analysis.

The pooled sensitivity, specificity, and odds ratio were 0.818 [0.619– 0.926], 0.808 [0.537– 

0.938], and 17.777 [3.441–91.859], respectively for detection of RO from RCCs. (figure 3A, 

B, C) For identification of RO from chRCC specifically, the pooled sensitivity, specificity, 

and odds ratio were 0.83 [0.498– 0.960], 0.92 [0.825– 0.965], and 50.873 [8.792– 294.383], 

respectively. (figure 4A, B, C).

Discussion

Renal cancer incidence has grown from 1975 to 2016, owing mostly to increased incidental 

tumor detection on imaging investigations (21, 22). These tumors are frequently treated, 

although greater treatment has not resulted in a significant reduction in renal cancer 

mortality, raising concerns about overtreatment (2). As a result, improved risk categorization 

of incidentally detected cancers might help clinicians. Our findings suggested that CT 

radiomics has a strong diagnostic performance when it comes to distinguishing RO from 

RCCs, including RO from chRCC.

Granular cytoplasm is found in a subgroup of RCCs, the most prevalent of which are 

renal RO and chRCC (23). Both chRCC and RO arise from renal intercalated cells, 

accounting for 6–8% and 3–7% of all renal malignancies, respectively(24). ccRCC has 

a spectrum of imaging manifestations which may not always be distinguishable from 

oncocytoma.(25). Due to the overlapping radiological, histological, morphological, and 

histochemical characteristics, it is difficult for radiologists to identify malignant chRCC 

from benign renal RO in clinical work, even when relying on renal biopsy due to intra-

tumoral heterogeneity. Despite the fact that some physiological parameters match, different 

management and follow-up procedures are used (26). From an oncologic standpoint, ROs 

do not require surgery due to their absent metastatic potential (27) while partial or radical 

nephrectomy is used to treat chRCC(28). As a result, distinguishing between chRCC and 

ROs is crucial when deciding on treatment options. The preferred and most prevalent 

non-invasive preoperative approach for the identification of renal tumorsis computerized 

tomography (CT), particularly dynamic contrast-enhanced (DCE)-CT. Due to overlapping 

imaging symptoms, radiologists still have difficulty distinguishing chRCC from RO (29).

Radiomics (13) is thus a promising technique for this diagnostic dilemma as it quantitatively 

assesses textures from medical images on a pixel basis, most of which is invisible to the 

human eye. It overcomes the potential sampling error of renal biopsy by comprehensively 

assessing the entire tumor (30–32) and has been employed as an imagingbiomarker for 

prognosis or prediction in a variety of studies (33, 34). Several studies have shown that 
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radiomics can help discriminate between benign and malignant tumors(35), as well as 

predict tumor stage and prognosis(36, 37).

On computed tomography (CT) images, Baghdadi et al. developed a machine learning 

algorithm that distinguished between clear ccRCC and ROs with 95% accuracy. They 

created their machine by segmenting normal and abnormal kidney tissue and then assigning 

peak early-phase enhancement ratio (PEER) to malignancies using 192 renal masses. 

With 100% sensitivity and 89 percent specificity, their system detected regions of interest 

and subclassified histologically proven malignancies (39). Zabihollahy et al. developed a 

convolutional neural network (CNN) that could classify solid renal cancers based on CT 

scans as well. With 83.5 percent accuracy and 89.05 percent precision, their approach 

distinguished RCC from benign tumors (40).

On the other hand, chRCC was not investigated as a prevalent kind of RCC. Yu et al.

(41) used a CT-based texture analysis model to distinguish between 46 ccRCC, 41 pRCC, 

22 chRCC, and 10 RO, among other renal malignancies (n = 119). Histogram and gray-

level characteristics were used in the texture analysis. The gray-level features were poor-

to-fair discriminators of chRCC from RO, whereas the histogram feature median allowed 

classification of chRCC from RO with an AUC of 0.88.

With five machine learning classifiers, Li et al(4). established a CT-based radiomics 

technique that focused on the differential diagnosis of RO from chRCC. Radiomics 

characteristics were used to extract 1029 features from 17 RO and 44 chRCC. With AUC 

values more than 0.850, all five classifiers demonstrated good diagnostic performance. 

However, the RO sample size was limited, and clinical considerations (such as conventional 

imaging characteristics) were not taken into account in the analysis. Xiaoli Li et al.(42) 

enlisted 47 RO and 94 chRCC in their study, and all features were retrieved from the 

radiomics signature. In the validation set, the diagnostic performance of the clinical 

model, the radiomics signature, and the radiomic nomogram was 0.895, 0.957, and 0.988, 

respectively. When compared to prior radiomics studies, they exhibited several differences 

and advances. First, they focused on distinguishing RO from chRCC in patients with a 

central scar, as this is a common cause of misinterpretation in clinical practice. Second, 

because RO is a very uncommon renal tumor, just 47 individuals were enrolled in their 

study. This is, to our knowledge, the biggest number of samples used to distinguish RO 

from chRCC using radiomics signature. Third, the diagnostic performance of various models 

was evaluated using an external validation data set. The radiomics nomogram’s AUC in the 

validation data set was 0.988, indicating that the model had good diagnostic performance 

in the validation data set. This also implies a good predictive value on unfitting new data, 

demonstrating its robustness and predictive capacity.

However, the most useful predictor for distinguishing RCC from benign renal tumors, 

lp-AML from RCC, and RO from chrRCC was shown to be entropy. The randomness 

or irregularity of the grey-value distribution is represented by entropy, and heterogeneous 

tumors have a higher entropy(43). When compared to benign kidney tumors, RCC had 

consistently higher entropy. At fine spatial filter (SSF2), entropy greater than 5.62 exhibited 

a high specificity of 85.7 percent but a low sensitivity of 31.3 percent for predicting 
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RCCs. In comparison to benign renal tumors, RCC showed decreased mean pixel value 

and maximum positive pixcel in addition to higher entropy. RCC, particularly ccRCC, is 

prone to degenerative alterations and central necrosis, which is the underlying cause. As a 

result, the average tumor attenuation is reduced(44–47). In the study by Deng et al.(48) RO 

had a higher entropy than chrRCC. A central stellate scar, haemorrhage, and a spoked-wheel 

enhancement pattern are all typical in RO, creating significant radiological intra-tumoural 

heterogeneity on post-contrast imaging, according to one theory(49–51). These findings 

backed up a prior study that revealed that RO had a higher standard deviation (SD) of 

attenuation values than chrRCC(49). Deng et al. also discovered a skewness difference 

between RO and chrRCC. The asymmetry of the histogram is measured by skewness. The 

left side of the histogram’s tail is longer than the right side, indicating negative skew(52). 

RO had a higher skewness than chrRCC at both medium and coarse spatial filters, indicating 

more radiological tumor heterogeneity.

There are various drawbacks to this study. To begin with, the sample size of most studies 

were modest, which could be due to the low clinical incidence of chRCC and RO and it 

may cause overfitting. The study’s most significant drawback is the minimal number of 

studies in this field for renal cell masses, as we had to exclude studies that compared various 

subgroups and reported different results, such as mean sensitivity and specificity. Second, 

because most studies had retrospective design conducted at a single location, generalizability 

is limited. Furthermore, studies that employed MRI to detect these groups were omitted. 

Furthermore, the variation process used in radiomics analysis, which is based on the 

numerical extraction technique to image analysis, could influence the outcomes of research 

due to bias and variance, rather than underlying physiological effects. Image capture, 

segmentation, feature engineering, statistical analysis, and reporting format standards should 

be developed to improve the reliability and generalization of ML-based radiomics research.

Conclusion

CT radiomics has a high degree of accuracy in discriminating RCCs from RO including 

chRCCs from RO, according to this study. However, a consistent approach and extensive 

sample-based inquiry are required to ensure the diagnostic accuracy of CT radiomics.
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Highlights

1. CT radiomics has a high degree of accuracy in distinguishing RCCs from 

renal oncocytomas (ROs), including chRCCs from ROs

2. Radiomics algorithms have the potential to improve diagnosis in scenarios 

that have traditionally been ambiguous

3. For this modality to be implemented in the clinical setting, standardization 

of image acquisition and segmentation protocols as well as inter-institutional 

sharing of software is warranted.
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Figure 1. 
Prisma chart for included studies
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Figure 2. 
Summary of QUADAS-2 assessments of included studies
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Figure 3; 
Forest plot for sensitivity(A), specificity(B), and odds ratio(C) of CT radiomics for 

differentiating between oncocytoma from renal cell carcinomas
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Figure 4; 
Forest plot for sensitivity(A), specificity(B), and odds ratio(C) of CT radiomics for 

differentiating between oncocytoma from chromophobe renal cell carcinomas.
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Table 1.

Characteristics of related studies comparing RO with RCCs.

Number Author Year Methods Number 
of Patients

Segmentation 
Method

Segmented 
region (2D 
(Largest 
diameter), 
3D (whole 
volume)

Subtypes Best Performance of model (best performing combination of model)

Single 
institution/
multi 
center

Feature 
selection – 
Number 
(first, 
higher-
order, 
shape, etc.)

CT Phase 
(s)

Model Sensitivity 
(sd if 
mean 
available)

Specificity 
(sd if 
mean 
available)

1 Sasaguri 2015 CT texture 
features, 
Subjective 
radiology 
features

RCC: 123 
(128 
lesions: 24 
pap; 104 
cc and 
others), 
RO:43 (53 
lesions)

Manually 2D (largest 
possible 
ROI)-5 mm

1. RCC 
vs RO 2. 
RO vs cc 
and other 
3. RO vs 
pap

Single quantitative 
tumor 
texture 
parameters 
(part of first 
orders), CT 
tumor 
attenuation 
values

CMP, NP multinomial 
logistic 
regressi on 
model

77.7 28.3

2 Yajuan 
Li

2019 Radiomics/
CT Texture 
analysis

chRCC:44, 
RO:17

Manually 3D (2D on 
all 
slices)-2.5 
mm

RO vs 
chRCC

Single First order, 
Shape and 
NP, and 
texture 
excretory 
features 
phases 
(GLCM, 
GLRLM, 
GLZM), 
higher 
orders

CMP & NP, 
and 
excretory 
phases

SVM, k-
nearest 
neighbors, 
Random 
forest, 
Logistic 
regression, 
multilayer 
perception

99 80

3 Heidi 
Coy

2019 DL RO: 51 
ccRCC: 
128

Manually 3D (2D on 
all slices)

RO vs cc 
RCC

Single N/A Unenhanced, 
CMP & NP, 
and 
excretory 
phases

neural 
network 
model

85.2 52.9

4 Amir 
Baghdadi

2020 DL chRCC: 
11, V RO: 
9

Manually 3D RO vs 
chRCC

Single tumor-to-
cortex peak 
early-phase 
enhancement 
ratio (PEER)

Non-contrast 
phase and 
the earliest 
phase of 
post-contrast 
in multiple 
phases

convolutional 
neural 
networks 
(CNNs)

100 89

5 Deng 2020 CT Texture 
analysis

Total: 354 
RCCs 
(ccRCC: 
244, 
pRCC: 46, 
chRCC: 
56), RO: 
111, fp-
AML: 31

Manually 2D RO vs 
chRCC

Single CT texture 
analysis 
using 
filtration 
histogram 
based 
parameters

portal 
venous 
phase

LR 34 93

6 Xiaoli Li 2021 Radiomics/
CT Texture 
analysis

chRCC: 94 
(56 
training, 
38 
validation), 
RO: 47 (28 
training, 
19 
validation)

Manually 3D (2D on 
all slices)

RO vs 
chRCC

2 Centers Subjective 
CT analysis 
+ First order, 
second 
order, and 
higher order 
features + 
Radiomics 
Nomogram

CMP & NP, 
and 
excretory 
phases

LASSO 
logistic 
regression 
model, 
radiomics 
nomogram 
model

89.5 97.4

RO, renal oncocytoma; MLA, machine learning algorithm; CNN, Convolutional Neural Networks; SVM, support vector machine; UP, Unenhanced 
phase; CMP, corticomedullary phase; NP, nephrographic phase; GLCM, gray-level co-occurrence matrix; GLSZM, gray-level-size zone matrix; 
GLRLM, gray-level run-length matrix; NGTDM, gray-tone difference matrix; GLDM, gray-level-dependence matrix
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Table 2.

Information of five studies with unavailable data.

Number Author Year Methods Number 
of 
Patients

Segmentation 
Method

Segmented 
region (2D 
(Largest 
diameter), 
3D (whole 
volume)

Subtypes Best performance of model (best combination of model) performing

Single 
institution/
multi 
center

Feature 
selection 
– 
Number 
(first, 
higher-
order, 
shape, 
etc.)

CT Phase 
(s)

Model Sensitivity 
(sd if 
mean 
available)

Specificity 
(sd if 
mean 
available)

1 HeiShun 
Yu

2017 Radiomics/
CT Texture 
analysis

Total: 124, 
RO:10, 
chRCC: 
22, 
ccRCC:46, 
papillary 
RCC: 41

Manually 2D on 10 
consecutive 
slices

1. RO vs 
ccRCC, 
2. RO vs 
chRCC, 
3. RO vs 
RCC

Single Histogram 
features, 
second 
orders 
(GLCM, 
GLRLM, 
and 
GLCM), 
and Law’s 
features

portal 
venous 
phase

SVM - -

2 Bino A. 
Varghese

2019 Wavelet 
CT Texture 
analysis

ccRCC: 68 
RO: 28

Manually 3D RO vs 
ccRCC

Single wavelet-
based 
texture 
features, 
Haralick 
texture 
features

Unenhanced, 
CMP & NP, 
and 
excretory 
phases

multivariate 
model

- -

3 Fatemeh 
Zabihollahy

2020 DL RCC: 238 
(ccRCC: 
123, 
papRCC: 
69, 
chRCC: 
46) RO: 
57

Manually 3D (2D on 
all slices)

RCC vs 
RO

Single N/A portal 
venous and 
NP

CNN - -

4 Johannes 
Uhlig

2020 Radiomics/
CT Texture 
analysis

ccRCC: 
131, RO: 
16

Manually 3D RO vs 
ccRCC

Single First 
order, 
shape, and 
second 
order 
features + 
age and 
gender

venous 
phase

xgboost in 
SMOTE 
(has other 
Algorithms 
as well in 
table 10)

- -

5 Akshay 
Jaggi

2021 Radiomics/
CT Texture 
analysis

RO: 42, 
chRCC: 
60

Semi-
automatic

3D (cluster 
of 
connected 
spherical 
samples)

RO vs 
chRCC

Single First 
order, 
second 
order 
(GLCM), 
Haralick′s 
features 
and 
Laws′ 
filters

NP random 
forest and 
AdaBoost

- -

RO, renal oncocytoma; MLA, machine learning algorithm; CNN, Convolutional Neural Networks; SVM, support vector machine; UP, Unenhanced 
phase; CMP, corticomedullary phase; NP, nephrographic phase; GLCM, gray-level co-occurrence matrix; GLSZM, gray-level-size zone matrix; 
GLRLM, gray-level run-length matrix; NGTDM, gray-tone difference matrix; GLDM, gray-level-dependence matrix
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