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Abstract

For systemically delivered nanoparticles to reach target tissues, they must first circulate long 

enough to reach the target and extravasate there. A challenge is that the particles end up engaging 

with serum proteins and undergo immune cell recognition and premature clearance. The serum 

protein binding, also known as protein corona formation, is difficult to prevent, even with artificial 

protection via “stealth” coating. Protein corona may be problematic as it can interfere with the 

interaction of targeting ligands with tissue-specific receptors and abrogates the so-called active 

targeting process, hence, the efficiency of drug delivery. However, recent studies show that serum 

protein binding to circulating nanoparticles may be actively exploited to enhance their downstream 

delivery. This review summarizes known issues of protein corona and traditional strategies to 

control the corona, such as avoiding or overriding its formation, as well as emerging efforts 

to enhance drug delivery to target organs via nanoparticles. It concludes with a discussion of 

prevailing challenges in exploiting protein corona for nanoparticle development.
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1. Introduction

Nanoparticulate drug carriers are used to preserve drug stability in physiological conditions 

and improve drug delivery to target tissues. The premise of using nanoparticles (NPs) 

is that the nanosized particles have selective access to the tumor with leaky vasculature 

via the enhanced permeability and retention (EPR) effect [1]. Additionally, NPs may be 

coated with antibodies, peptides, and proteins that bind to the overexpressed receptors 

in target tissues, which further enhance target-specific retention and uptake. However, 

few nanoparticle formulations translated to clinical applications, with the majority still 

suffering from premature clearance by the mononuclear phagocyte system (MPS), resulting 

in suboptimal therapeutic benefits.

One of the critical challenges is that proteins in the physiological media bind to the NPs 

to form an assembly of various proteins on the surface, called protein corona (PC) [2]. The 

PC endows NPs with a new identity, distinct from the original physicochemical identity, 

driving the in-vivo fates of NPs in a manner that may not be consistent with the design 

[3–6]. Therefore, PC is considered a missing link between in vitro-in vivo correlation [7]. 

Understanding the nature of PC and its impact on the biological performance of NPs is 

critical to the successful development of NP products.

Since the initial recognition of PC and its impact on NP performance [8–12], numerous 

studies have investigated the relationship between PC profiles and NP attributes [9, 13–

16]. The early focus has been to develop analytical methods, identify the components of 

PC, and understand NP properties that govern the PC profiles [4]. With increasing data 

linking the PC profiles and in vivo performance of NPs, recent efforts are made to exploit 

the PC, which may not be entirely avoided by existing approaches, by identifying serum 

proteins promoting target-specific interactions and co-opting those proteins by design [17]. 

Several preclinical studies support that PC can help deliver drugs via NPs to specific 

organs, including the brain, which remains a tempting target. Once considered a foe, the PC 

deserves new attention as a potential friend to help improve NP-based drug delivery.
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With the new perspective on PC, we intend to compile recent literature to understand the 

current state of the art and explore new opportunities to take NP technology to the next 

level. We will first summarize known issues of PC formation and traditional approaches to 

control PC formation and discuss emerging strategies to exploit PC for NP delivery, focusing 

on articles published in the last five years. The review will conclude with a discussion of 

prevailing challenges in using PC for NP development.

2. Protein corona on nanoparticles

Once NPs enter the circulation, they interact with different components of biological fluid, 

especially serum proteins. The NP surface is first covered by proteins abundant in blood, 

forming a “soft corona,” which, over time, is replaced by high-affinity proteins to form a 

“hard corona” [18, 19]. A common in vitro method to profile PC on NPs is to incubate 

them with plasma or serum for a certain time, elute and digest the surface-bound proteins, 

and analyze them by gel electrophoresis and LS-MS/MS. Prior to the elution of PC, the 

NPs are typically separated from the excess solution by centrifugation and washing [20]; 

therefore, most in vitro results tend to focus on hard corona, which survives centrifugation 

and subsequent washing steps. Recognizing the significance of dynamic environment on 

PC formation, recent studies investigate the PC formed in vivo, where the NPs are injected 

intravenously and retrieved from blood [21]. Magnetic separation [22] or size exclusion 

chromatography [23] are employed to separate NPs from the blood for analysis. To 

investigate soft corona and temporal evolution of PC, in vitro methods are complemented by 

additional analytical tools, such as microscopy [24], spectroscopy [25] [26], zeta potential 

analysis [27, 28], or click chemistry that immobilizes soft corona in situ [29]. Techniques 

used to analyze PC have been thoroughly reviewed in recent literature [30].

The composition and quantity of proteins bound to NPs vary with their size and surface 

chemistry [3, 31]. A study with polystyrene NPs with differential sizes (50 and 100 

nm) and surface chemistry (plain, carboxyl-modified, and amine-modified), incubated with 

human serum, detected > 80 plasma proteins in 88% of the data sets, commonly involving 

immunoglobulins, lipoproteins, and complement proteins [3]. Selected proteins may be 

clustered according to their preference of size and surface chemistry, where the identity, 

lipid affinity, and post-translational modification of each protein contribute to the preference 

[3]. PC also depends on plasma composition and concentration [32, 33]. In addition, the 

medical condition of a patient has a profound impact on PC profiles [34]. For example, 

PC-bound liposomes in pancreatic cancer patients are less negatively charged than those of 

other cancer patients or healthy individuals due to the enrichment of tumor antigen-specific 

autoantibodies [35]. These findings demonstrate the dependence of PC on biological factors 

and underscore the importance of simulating in vivo conditions (e.g., serum concentration, 

disease status, species) in PC analysis, which may be overlooked in conventional in vitro 
assays based on cell culture media with animal sera.
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3. Effects of PC on NP performance

PC can alter the size and surface characters of NPs and confer different biological properties, 

causing unpredictable therapeutic outcomes. The following summarizes the influences of PC 

on NP functionality.

3.1. Colloid stability

There are mixed findings regarding the effects of PC on the colloidal stability of NPs. Some 

show that PC increases the risk of NP aggregation. Surfactant-stabilized gold nanorods 

(NR), precoated with PC by preincubation with equine serum, undergo differential degrees 

of aggregation depending on the stabilizing agents and the media in which they are tested 

[36]: With cationically stabilized gold NRs by cetyltrimethylammonium bromide (CTAB) 

or oligofectamine, the PC caused aggregation in deionized water but not in RPMI cell 

culture medium. On the other hand, the gold NRs stabilized with neutral surfactant Brij56 or 

anionic phosphatidylserine remained stable in both deionized water and cell culture medium 

[36]. Others report that the aggregation depends on the type and concentration of proteins: 

polystyrene NPs aggregated in medium containing cow serum, less so in cow serum depleted 

of immunoglobulin G (IgG), and did not aggregate in medium with fetal calf serum (very 

low on antibodies). Supplementing IgG or fibronectin to fetal serum caused the aggregation, 

indicating the two proteins to be responsible [37]. The diverse conclusions on the colloidal 

stability of PC-coated NPs may be attributable to the variability of test conditions: The 

interactions of PC-coated NPs vary with the pH and ionic strength of the medium, which 

influence the charges of NPs and proteins [38–42], types of ions [39, 43], and the protein to 

NP ratio (i.e., the protein concentration) [37, 44].

Proteins with relatively large molecular weights (> 40 kDa) and low isoelectric points (< pH 

7.4), such as albumin, catalase, hemoglobin, glucose oxidase, and horseradish peroxidase, 

have shown to help disperse gold NPs, based on the steric hindrance and/or negative charges 

in physiological pH [45]. Therefore, serum albumin is actively exploited to improve the 

colloidal stability of NPs, such as gold NPs that can accommodate the protein via cysteine 

residues [45, 46]. The albumin-coated gold NPs maintained colloidal stability in hypertonic 

conditions, extreme pHs [45], high concentrations, and the lyophilization process [46]. 

Nevertheless, the protective effect of surface-bound albumin varies with the type of NPs and 

ions in the media [43] and may not be generalized.

3.2. Cellular interaction

PC affects the cellular uptake of NPs in various ways. In many cases, the presence of 

PC, such as serum albumin, on the NP surface lowers the surface energy and decreases 

the NP–cell membrane interaction, thereby reducing the NP uptake [47, 48]. The extent of 

NP uptake reduction varies with the NP size and the cell types. A study with gold NPs 

showed that the PC effect on particle uptake increased with the particle size, with 50 nm 

gold NPs being more affected than 5 nm and 20 nm gold NPs, and phagocytic cells were 

more affected than nonphagocytic cells [49]. In addition, the surface chemistry and softness 

of NPs influence the extent of the PC effect. In LNPs with two PEGylated acyl chains of 

different lengths (C18 vs. C14), PC decreased the HepG2 cell uptake of LNPs with the 
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C18 acyl chain but increased the uptake of LNPs with the C14 chain [50]. Also, solid NPs 

showed a significant decrease in the uptake by human keratinocytes and endothelial cells 

upon PC binding, whereas soft nanogels made of dendritic polyglycerol were not affected by 

PC [51].

PC can also enhance the cellular uptake of NPs. PC can help negatively charged NPs to 

overcome the electrostatic repulsion between the cell membrane and NPs. For example, PC 

helps neutralize the surface charge of citrate-coated silver NPs and allows them to enter 

mouse embryonic fibroblasts, increasing cytotoxicity [52]. Fibrinogen, immunoglobulins, 

and complements bound to NPs respectively interact with integrin receptor, Fc receptor, 

and complement receptors of macrophages to facilitate phagocytosis of the NPs [53]. 

Apolipoproteins ApoE and ApoB-100 support the uptake of NPs by brain endothelial cells 

via the low-density lipoprotein receptor (LDLR) [54].

In addition, PC can change the uptake pathway of NPs. With gold NPs, PC interfered with 

classical caveolae- or scavenger receptor-mediated endocytosis or phagocytes but promoted 

clathrin-mediated endocytosis; in nonphagocytic hepatocellular carcinoma (HepG2) cells, 

clathrin-mediated endocytosis was favored in serum-containing medium, whereas caveolae-

mediated endocytosis dominated in serum-free medium [49]. Our group has also observed a 

change in the endocytosis pathway from clathrin-mediated endocytosis to caveolae-mediated 

endocytosis due to the albumin binding to NPs via polydopamine surface (more in Section 

6.1) [55].

The effect of PC on NP-cell interaction varies with the source of PC. For example, the 

adhesion of NPs to target cells was shown to be affected by PC differently according to 

the species from which the PC was obtained [56]. Here, organic and inorganic NPs (500 

nm) were modified with sialyl Lewis A (sLeA)_to target selectin-expressing endothelial 

cells. When the NPs were added to selectin-expressing human umbilical vein endothelial 

cells (HUVEC) in laminar flow, their binding to the cells was significantly affected (almost 

eliminated) by porcine plasma but not by mouse plasma. The adhesion inhibition of PLGA 

particles was also observed in human plasma [57]. The differential effect of protein binding 

to HUVEC was attributed to the difference in PC composition: the sLeA-modified PLGA 

NPs exposed to porcine plasma showed the binding of 150 kDa protein (likely IgG), like in 

human plasma, as well as >250 kDa protein, but those exposed to mouse plasma did not. 

This study underscores that the effect of PC on cellular interactions and other behaviors of 

NPs discussed below should be interpreted in the context of species.

Given the species dependence, it is worthwhile to reconsider the reliability of animal 

models (typically mouse models) in predicting the clinical consequences of PC formation. 

Neutrophils are identified to be a major phagocytic cell population that contributes to 

NP clearance in blood [58, 59]. Neutrophils showed a differential NP uptake pattern 

according to the medium in which the NPs were incubated: polystyrene NPs in human 

plasma were taken up by human neutrophils far more than those in bovine serum [58]. 

PC profiling and incubation with selected proteins suggest that complement components in 

human plasma bind to the NPs and mediate their preferential uptake by neutrophils [58]. 

PEGylated polystyrene NPs were even more prone to neutrophil uptake compared to naked 
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(carboxylated polystyrene) NPs. This difference is attributable, ironically, to the stealth 

function of PEG (Section 4): naked NPs were covered with benign PC, including albumin, 

whereas PEGylated NPs acquired less PC, leaving room for complement protein binding. 

This study suggests that the PC effect studied in one species may not be extrapolated to 

others. Species difference in the cell population (e.g., neutrophils representing 50–70% of 

circulating leukocytes in humans but 10–25% in mice [60]) brings an additional layer of 

complexity in interpreting the consequence of PC binding to NPs.

3.3. Cytotoxicity

NP introduced to the body continuously interact with various types of cells, including blood 

cells, endothelial cells, and cancerous cells. The carrier itself may have detrimental effects 

to the cell viability. PCs can affect the extent of cytotoxicity of the NPs either positively or 

negatively.

Many studies report that PC reduces the cellular toxicity of NPs [61–67]. The PC layer can 

block NPs from contacting and damaging cell membranes and reduce their cellular uptake. 

For instance, CTAB-coated gold NRs destabilize the cell membrane and cause necrosis; 

however, PC shielded the adverse effects of the cationic surfactant and reduced the toxicity 

on A549 cells [68]. Graphene oxide nanosheets induce reactive oxygen species (ROS) and 

directly damage the cell membrane via sharp edges [69, 70]; however, 10% FBS and bovine 

serum albumin PC reduced the damaging effect by making the edge of nanosheets dull 

and reducing their surface area available for lipid extraction [70]. Additionally, PC can 

scavenge ROS or reduce their production catalyzed by inorganic NPs. For example, titanium 

dioxide (TiO2) nanotubes induce phototoxicity upon UV irradiation by catalyzing ROS 

production. However, serum proteins bound to TiO2 nanotubes sequestered the photoinduced 

hydroxyl radicals and reduced phototoxicity [66]. Cadmium telluride quantum dots (CdTe 

QDs) impair mitochondrial activity by damaging the organelle membrane, resulting in ROS 

increase and ATP reduction. PC acquired in fetal bovine serum prevented the negative 

effects of QDs on mitochondria activities, alleviating the cytotoxicity to RAW 264.7 

cells [71]. The PC-mediated reduction of ROS production and cytotoxicity has also been 

reported with ZnO NPs [72, 73] and Fe3O4 NPs [74]. Meanwhile, the protective effect 

of PC may be dependent on the protein identity. Lysozyme, immunoglobulin G, and 

bovine serum albumin are shown to reduce the cytotoxicity of the poly(acrylic acid)-block-

polystyrene polymersomes on HeLa and HEK 293 cells [75]. Similarly, serum albumin 

corona attenuated the platelet aggregation caused by carboxylate-functionalized carbon 

nanotubes; however, IgG and histone H1 corona aggravated the platelet damage in distinct 

manners [76].

Conversely, PC can exert adverse effects on cell functions. For example, human serum 

albumin adsorbed on ultrasmall gold nanoparticles (AuNPs) underwent conformational 

change leading to increased α-helicity. The albumin with altered conformation damaged 

the cell membrane and increased cytotoxicity to BRL 3A rat liver cells and 293T embryonic 

kidney cells [77]. In another example, cadmium sulfide nanomaterials (CdS NMs) incubated 

with fetal bovine serum increased cytotoxicity to the cells while reducing macrophage 

uptake [78]. The apparently contradicting phenomenon was attributed to the PC-induced 
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expression of FcγRIIB receptors [78], which activate protein kinase B/Caspase 3 pathway to 

induce apoptosis but also downregulate phagocytic activity of macrophages [79]. This study 

illustrates that cellular uptake is not always a prerequisite for increased cytotoxicity. PC 

formation can also lead to abnormal proliferation of the cells. PC formed on the nanoscale 

airborne particulate matter by serum incubation stimulated the generation of ROS, which 

activated α-smooth muscle actin expression, causing aberrant proliferation of human lung 

fibroblasts [80]. Similarly, SiO2 NPs recruited transforming growth factor β1 (TGF-β1) from 

the supernatant of lung tissue homogenate, enhancing the epithelialmesenchymal transition 

and the development of pulmonary fibrosis [81]. In blood, naked amorphous SiO2 NPs (70 

nm) bound to coagulation factor XII, which activated the coagulation cascade and caused 

fatal toxicity in mice [82, 83].

3.4. Biodistribution

A prominent consequence of the altered NP-cell interaction due to PC is the loss of cell 

targeting function of the functional ligand. A seminal observation was made with Transferrin 

(Tf)-functionalized silica NPs, which lost the ability to specifically interact with cell Tf 

receptor (TfR) upon incubation in serum [84]. Similarly, polymeric NPs functionalized with 

HIV-1 trans-activating transcriptor (TAT) peptides (known to cross the blood-brain barrier, 

BBB) and antibodies to neural/glial antigen 2 (NG2) (known to target oligodendrocyte 

precursor cells, OPC) did not show enhanced brain delivery and OPC targeting, likely due 

to significant PC binding [85]. A study with sLeA -modified PLGA NPs suggests that 

IgA and IgM may be potential culprits [86]. As mentioned in Section 3.2, sLeA -modified 

PLGA NPs lose the ability to bind to E-selectin-expressing endothelial cells when incubated 

in human plasma [57]. The NPs incubated in Ig-depleted plasma maintained the binding 

ability, holding Igs accountable for the loss of ligand function [86]. Restoration of IgA and, 

to a lesser extent, IgM to the Ig-depleted plasma caused the inhibition of NP binding to the 

target cells, indicating that the two Igs are involved. Despite the abundance, IgG did not have 

a significant effect on NP-cell interaction [86].

On the other hand, PC with an affinity for specific cell receptors may provide an opportunity 

to increase NP biodistribution to specific organs. For example, lipid nanoparticles (LNPs) 

are envisioned to recruit ApoE in circulation, which binds to the LDLR of hepatocytes [87–

89]. The ApoE-mediated liver tropism uniquely qualified LNPs for the delivery of nucleic 

acids addressing liver diseases, such as hereditary transthyretin amyloidosis [90, 91]. Serum 

proteins exploited for organ targeting are discussed in Section 6 with recent examples.

3.5. Immune responses

Some surface-bound proteins can activate immune systems, causing premature clearance of 

the NPs or promoting the release of proinflammatory cytokines [53, 92].

3.5.1. Complement activation—Several dextran-based magnetic resonance imaging 

agents (Sinerem, Combidex, Feridex) have been withdrawn from clinical use due to the 

complement-related side effects [93]. Dextran-coated ferrous NPs are known to activate 

the lectin complement pathway, starting with lectin binding, followed by the adsorption of 

mannose-binding lectin (MBL)-associated lectin serine protease 1 (MASP-1), and MASP-2, 
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and complement protein C3, then converted to the activated C3b [93, 94]. A study with iron 

oxide NPs (IONPs) and liposomes describes that C3b binding involves immunoglobulins, 

which first bind to PC and are attacked by C3b. The initially bound C3b recruits 

convertases, which induce the cleavage of C3 near the surface, causing additional C3b 

binding [95]. The complement-bound NPs undergo increased binding/uptake by immune 

cells via corresponding receptors, such as complement receptor (CR)1/2 and CR3 [96].

Polymer coating of IONPs affects the complement protein deposition and corresponding 

production of proinflammatory cytokines [97]. Among IONPs with a bare surface, PEG, 

or PVP coating, incubated in human serum, IONP-PEG, but not the other two, showed 

increased C3a and C5a binding, indicating complement activation via the alternative 

pathway. IONP-PEG also augmented the IL-1β, TNF-α, and IL-6 levels and showed an 

increased presence in the spleen compared to the other IONPs. The differential effect 

of IONP-PEG was attributed to the pre-existing anti-PEG antibodies, which may have 

activated the immunoglobulin-mediated complement pathway [97]. Silica NPs show a 

similar dependence on polymer coating in complement activation and cellular uptake 

[98]. Poly(2-methyl-2-oxazoline) (PMOXA)-coated silica NPs showed more deposition of 

C3b and C3c α′ chain fragment 2 than the PEG-silica NPs or the uncoated NPs after 

human serum incubation. The C3 opsonized PMOXA-silica NPs promoted cellular uptake 

by human monocytes, polymorphonuclear granulocytes, and macrophages. However, the 

complement activation and macrophage uptake were not observed with mouse counterparts, 

indicating species dependence [98], consistent with the case shown in Section 3.3.

3.5.2. Effects on immune cells—Several studies report that PC can increase NP 

interaction with immune cells to increase proinflammatory cytokine production. For 

example, PC on black phosphorus nanosheets (BPNSs) and black phosphorus quantum dots 

(BPQDs), mostly (70–76%) consisting of immune-relevant proteins, facilitated macrophage 

uptake of these NPs and the production of pro-inflammatory cytokines from the NP-treated 

macrophages [99]. Likewise, PC formed on PEGylated carbon nanotubes (CNT) induced 

the production of ROS and pro-inflammatory cytokines in macrophages and activated 

the immune cells in the spleen [100]. Such immunostimulatory effects depended on the 

conformation of the bound proteins. IgG and α1 acid-glycoprotein underwent unfolding on 

the surface CNT, causing the production of inflammatory mediators, whereas fibrinogen and 

vitronectin - with no structural changes - had negligible effects on ROS production [100].

The effects on immune cells also depend on the surface chemistry of NPs. Gold NRs were 

modified with cetyltrimethyl ammonium bromide (CTAB), poly(diallyldimethyl ammonium 

chloride) (PDDAC), polyethyleneimine (PEI), polystyrene sulfonate (PSS), and PEG. Of 

these, PEI- or PDDAC-coated gold NRs increased the IL-1β production in macrophages 

upon PC binding, enriched with acute-phase proteins and complements [101].

PC may also reduce the proinflammatory effects. For example, PC-covered nanosilica 

(SiO2) showed lower cytotoxicity and reduced production of IL-8 in human epithelial 

cells and TNFα in macrophages, compared to bare SiO2 particles, despite the increase 

of cellular uptake [102]. Another study reports the dependence on the environment in 

which PC was formed [103]. Poly(methacrylic acid) (PMA) hollow capsules (CAPs) and 
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core-shell particles (CSPs) were incubated with a cell-conditioned medium or medium 

supplemented with specific proteins (FBS, human serum, or human plasma) to form 

PC. Upon incubation with the PC-NP combinations, the production of pro-inflammatory 

cytokines in macrophages or monocytes changed in either direction compared to PC-free 

NPs, depending on the source of PC, i.e., the type of proteins bound to the NPs [103].

4. Strategies to avoid protein corona formation

Given the aberrant effects of PC on nanoparticle performance, drug delivery scientists have 

made diverse efforts to manage protein corona formation. One of the approaches is to 

prevent the formation of PC on NPs. A common method is to modify the NP surface by 

grafting hydrophilic polymers [104].

Polyethylene glycol (PEG) is most widely used for modifying the NP surface due to its 

hydrophilicity and low toxicity [105]. PEG chains grafted on the NP surface provide a 

hydrated layer to prevent protein adsorption [106], a phenomenon so-called the “stealth” 

effect. The surface density, molecular weight, and chain architecture of the polymer affect 

the PEG conformation on the NP surface, hence the effectiveness of the stealth effect [107]. 

It was shown that PEG density determines the extent of PC formation on gold NPs and the 

composition of PC [108]. With the fixed PEG grafting density, relatively small NPs form 

greater PC formation due to the high curvature that leaves more room for each PEG to 

spread out and lowers the thermodynamic barrier to protein adsorption [108]. The examples 

and the effects of PEGylated NPs have been thoroughly reviewed in recent literature [109].

Poly(2-oxazoline)s (POx) is a potential alternative to PEG. POx is synthesized by 

cationic ring-opening polymerization of 2-oxazolines, amenable to variations in architecture 

and hydrophilic-lipophilic balance [110]. Due to the versatile synthesis, POx has been 

applied to various formulations, including drug-polymer conjugates, polymeric micelles, 

complexes, and hydrogels [111–113]. In a head-to-head comparison with PEG (2000 

Da), poly(2-ethyl-2-oxazoline) was comparable to PEG in reducing protein adsorption to 

poly(organosiloxane) NPs in serum and non-specific uptake of the NPs by macrophage-like 

cells and endothelial cells [114].

Another alternative stealth polymer is zwitterionic polymers, represented by polybetaines 

such as poly(sulfobetaine) or poly(carboxybetaine) [115]. As zwitterionic molecules, the 

polymers bind to water molecules via electrostatic interactions, more strongly than other 

hydrophilic polymers relying on hydrogen bonding [115]. When grafted on hydrophobic 

substrates, zwitterionic polymers form a well-hydrated layer, which resists protein 

adsorption [116].

Polyglycerols are nonionic aliphatic polyether polyols with high protein resistance and have 

been used as stealth coating [117, 118]. In a recent study, polyglycerol was compared with 

PEG as stealth coating to prevent serum protein binding to supraparamagnetic IONPs [119]. 

At the same weight content, polyglycerol reduced protein adsorption to the NPs in serum 

and NP uptake by macrophages more efficiently than PEG [119].
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Polymers of natural origin, such as polysaccharides, have also been explored as potential 

stealth polymers [120]. For example, hyaluronic acid, a glycosaminoglycan consisting of 

(1➔4)-β-D-glucuronic acid and (1➔3)-β-N-acetyl-D-glucosamine, was used for coating 

chitosan NPs to reduce PC formation in comparison with alginic acid [121]. Hyaluronic 

acid coating reduced the extent of protein adsorption to chitosan NPs upon incubation 

in serum solution. Despite the overall low protein binding, the hyaluronic acid coating 

allowed the binding of anti-inflammatory proteins, suggesting the potential to reduce the 

immunogenicity of NPs [121]. Similarly, polyacrylamide-grafted guar gum (PAm-g-GG) 

was used to mitigate PC formation on ZnO NPs [122]. The PAm-g-GG-coated ZnO NPs 

reduced the binding of complement protein C3 and IgG compared to bare ZnO NPs. 

Consequently, PAm-g-GG-coated ZnO NPs experienced lower immune cell recognition and 

caused less liver inflammation than bare ZnO NPs, resulting in an extended circulation 

half-life and systemic exposure [122]. Chitosan, especially low molecular weight chitosan 

or water-soluble derivatives, is another natural polymer used for stealth function [120]. 

Coated on PLGA NPs, low molecular weight chitosan reduced protein binding to the NPs 

and macrophage uptake [123]. In a recent study, chitosan coating, together with albumin, 

prevented a negative effect of PC on the interaction of sLeA-modified PLGA NPs with 

the target, selectin-expressing endothelium [124]. Chitosan or albumin alone was not as 

effective as their combination (or not effective at all) in counteracting the PC effect. It is 

postulated that the chitosan coating may have enhanced the binding of albumin, which helps 

interact with endothelium via albumin-specific receptors, such as glycoprotein 60 (gp60). 

On the other hand, the analysis of PCs on chitosan/albumin-dual coated NPs showed the 

enrichment of histidine-rich glycoprotein, which has a dysopsonin function. This study 

suggests that the stealth function of chitosan coating may be ascribed to promoting the 

albumin binding followed by dysopsonin binding, which is in line with Section 6 – the 

piggyback strategy.

Another approach that has gained significant interest in the last decade is to coat NPs 

with cell membranes (“cloaking”) [125]. The rationale of the cloaking approach is that 

the cell membrane-coated NPs may simulate the cell’s interactions with the physiological 

environment, including blood proteins, other cells, and tissues. Therefore, this method was 

mainly adopted to promote the delivery of NPs to target tissues [126–129] but has also 

proven to be effective in reducing PC formation [130]. A study with inorganic NPs for 

cancer imaging demonstrated that coating with red blood cell membrane protected the NPs 

from protein adsorption in 100% human plasma, showing no change in size or surface 

property, unlike the uncoated counterpart [130].

The examples shown here are only a limited subset of diverse approaches employed 

to prevent PC formation. Interested readers are referred to more comprehensive reviews 

dedicated to stealth modification of NP surfaces [131–133].

5. Pre-functionalization: Strategies to override protein corona

While the stealth polymers help reduce protein adsorption to the NP surface, they do 

not completely prevent it. Major efforts have been made to modify the NP surface with 
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antibodies, ligands, and other functional proteins that may override protein corona and 

facilitate NP distribution to specific organs or tissues.

5.1. Functionalization with antibodies or ligands

Recent efforts for functionalizing NP surfaces with cell-interactive ligands have been 

thoroughly reviewed elsewhere [134]. These approaches help retain the NPs in target tissues 

and have achieved a varying degree of success in improving target-specific drug delivery 

with preclinical models. However, PC may shield the ligands and interfere with the intended 

cell-ligand interactions, as mentioned earlier. For example, silica NPs modified with a model 

ligand bicyclononyne, which undergoes click reaction with an azide counterpart, did not 

react with the corresponding substrate after incubation with serum solution [135]. Similarly, 

Tf-functionalized silica NPs, covered with PC, lost the specificity for TfR [84]. The protein 

binding was reduced by PEG linkers between the NP surface and Tf but not completely 

prevented [84]. The extent of ligand-receptor binding interference varies with the type of 

ligands and the origin of serum [136, 137]. Nevertheless, due to the prevalence, PC is 

often considered one of the reasons for the lack of clinical success in the so-called “active 

targeting.”

Accordingly, efforts have been made to overcome the interference of PC with the ligand/

antibody recognition of the target receptors. One approach is to “backfill” the NP surface 

unoccupied by targeting ligands with extra PEG. For example, gold NPs were modified with 

Herceptin, an ErbB2 receptor-targeting antibody, via a 5 kDa PEG linker, and the remaining 

surface was saturated with methoxy-PEG (mPEG) [138]. mPEG shorter than 5 kDa (1 or 2 

kDa), but not 5 kDa or 10 kDa mPEGs, allowed the antibody to retain the receptor binding 

ability by preventing the formation of PC by reducing the nonspecific protein adsorption 

and PC formation [138]. Another study showed the reduction of PC formation by blocking 

residual maleimide groups on NP surface with 2-mercaptoethanol [139]. The authors argue 

that the small molecular weight and neutral charge of 2-mercaptoethanol were important 

because other thiolated compounds with charges or larger molecular weights were less 

efficient in reducing PC formation. Here, the charged groups would still interact with serum 

proteins via electrostatic interactions, and the steric hindrance of PEG limit the number of 

maleimides that can be blocked [139].

As envisioned from these examples, the likelihood of PC formation depends largely on the 

NP surface underlying the functional layer. Unlike polystyrene NPs, hydroxyethyl starch 

NPs were already resistant to protein binding [140]. When the hydroxyethyl starch NPs 

were modified with mannose via a PEG linker, they withstood the preincubation with human 

plasma and retained the ability to interact with the target C-type lectin and lectin-expressing 

immature dendritic cells [140].

These studies illustrate that backfilling the surface with a short stealth layer or using 

inherently nonfouling NPs as a platform may reduce the effect of PC on the ligand/antibody-

mediated recognition of target cells. Nevertheless, the effectiveness of these approaches 

needs to be rigorously measured since the common practice of isolating PC-bound NPs 

may underestimate the function of loosely bound proteins. With a similar rationale, cysteine 

was used as a zwitterionic blocking agent [141]. Here, silica NPs were functionalized 
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with cysteine in tandem with a model ligand biotin. The presence of zwitterionic amino 

acids reduced protein adsorption to NPs, allowing the NPs preincubated in serum to 

retain the ability to interact with the corresponding substrate (streptavidin-modified surface) 

or biotin receptor-positive cells. However, the cysteine modification was not enough to 

overcome the effect of the soft corona, which bound to the NPs relatively weakly (and 

hence were removed during NP washing). Accordingly, the cysteine/biotin-modified NPs, 

upon simultaneous incubation with serum, did not bind to biotin receptor-positive cells as 

effectively as those preincubated in serum and washed [141].

5.2. Pre-coating with functional proteins

5.2.1. Albumin—Albumin is the most abundant plasma protein with a molecular weight 

of 66.5 kDa, responsible for the transport of nutrients and hydrophobic drugs in circulation 

[142]. Albumin has attracted significant interest as a carrier or a component of an NP carrier 

in recent years [143–145]. In NP formulation, albumin is employed to improve colloidal 

stability and drug loading, reduce nonspecific cellular uptake, and prolong the circulation 

half-life of the NPs [146–151]. In addition, albumin may promote NP delivery to target 

tissues via proteins naturally interacting with albumin, such as glycoproteins (gp60) or 

secreted protein acidic and rich in cysteine (SPARC) [145, 152, 153], and/or by taking 

advantage of pathological conditions that increase albumin consumption [154]. As such, 

various NPs have been pre-coated with albumin [155], most commonly by incubating the 

NPs with albumin to let it physically adsorb to the NP surface (physisorption) [151, 156].

Our group has reported that pre-coating paclitaxel nanocrystals with albumin increases the 

colloidal stability of the nanocrystals and their cellular uptake by SPARC+ melanoma cells 

compared to a non-albumin coated counterpart [157]. The albumin-coated nanocrystals 

took advantage of NP configuration that allowed for the EPR effect, showing greater 

bioavailability, tumor distribution, and antitumor efficacy than Abraxane at the same dose 

of paclitaxel in a murine model of melanoma [157, 158]. Similarly, albumin has been used 

to coat silver NPs for anticancer applications [159]. The albumin-coated silver NPs showed 

more selective toxicity to cancer cells and generated greater ROS than bare silver NPs. 

While not explicitly explained, the difference between bare and albumin-coated silver NPs 

may be attributable to the changes in NP interaction with the cell membrane due to the 

albumin coating.

The pre-coated albumin layer is not static and may attract or be replaced by other serum 

proteins. In a serum-free medium, the pre-coated albumin reduced cellular uptake of gelatin-

oleic NPs irrespective of cell types, suggesting the interference of albumin with cell-NP 

interaction [160]. However, in a serum-supplemented medium, the albumin-coated gelatin-

oleic NPs showed a consistent reduction in cellular uptake by A549 cells compared to bare 

gelatin-oleic NPs, whereas the opposite was observed in HEK293 cells. This result suggests 

that the pre-coated albumin attracted or was replaced by other serum proteins, which may 

exert differential effects depending on the cell types [160].

A caveat of pre-coating albumin on NPs is the potential to perturb the protein 

structure [155]. We have modified the surface of poly(lactic-co-glycolic acid) (PLGA) 

nanoparticles with albumin by two methods (interfacial embedding and polydopamine-
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mediated physisorption) and compared albumin functionality (Fig. 1a) [161]. The interfacial 

embedding method caused denaturation of surface-bound albumin, offering no particular 

benefit to the interaction with cancer cells but rather promoting macrophage uptake via 

interactions with scavenger receptor A. In contrast, albumin adsorbed to the polymerized 

dopamine, serving as an adhesive layer on PLGA NPs, retained the native structure, evident 

from the resistance to thermolysin digestion and retention of the esterase-like activity 

(Fig. 1b). With the native conformation, the albumin pre-coating helped PLGA NPs avoid 

macrophage uptake, travel across the endothelial layer, and interact with SPARC-expressing 

tumors (Fig. 1c) to deliver more drugs to tumors than the NPs with denatured albumin 

(Fig. 1d) [161]. The differential protein conformation, although often overlooked, may 

explain some of the conflicting reports on the effects of surface-bound albumin on NP 

performance (e.g., enhancement of particle uptake by phagocytes [59] vs. prevention of liver 

accumulation [162]).

5.2.2. Apolipoproteins—Apolipoproteins are responsible for regulating plasma lipid 

levels [163]. As part of lipoproteins, apolipoproteins mediate the intracellular transport of 

the lipoproteins via LDLR or heparan sulfate proteoglycans [163]. ApoE is often identified 

to be one of the main components of PC that forms on NPs in human serum and affects their 

cellular uptake [164, 165].

Apolipoproteins have been pre-coated on NPs to enhance their transport across the brain 

endothelium. For example, ApoE [166] or ApoA-I [167] were covalently attached to 

albumin NPs, increasing endocytosis and transcytosis of the NPs by brain endothelial cells. 

Based on early observations of preferential ApoE binding to surfactant-stabilized NPs [168] 

and their brain tropism [169], ApoE4 was also pre-adsorbed on polysorbate 80-stabilized 

lipid NPs by simple mixing before the administration [170]. The ApoE4-bound NPs crossed 

the blood-brain barrier via an LDLR and reached the brain parenchyma. This approach 

is amenable to extemporaneous preparation; however, excess ApoE4 rather interfered with 

brain delivery due to the competition for the receptor [170]. Thus, a tight titration of ApoE4 

would be critical to the successful delivery to the brain. An ApoE-coating on gold NPs 

has also been used for carrying hydrophobic sensitizer chlorin e6 (Ce6), achieving greater 

loading efficiency than albumin-coated gold NPs [171] and intracellular delivery of Ce6 

[172].

On the other hand, ApoJ, also known as clusterin, is shown to be a PC component with a 

stealth effect [173, 174]. Polystyrene NPs were modified with PEG or poly(ethyl ethylene 

phosphate) (PEEP) to reduce protein adsorption [173]. The NPs showed a difference in 

macrophage uptake only in the presence of serum protein, indicating that the surface-bound 

protein was necessary for the stealth effect. A proteomic analysis found that the PC, albeit 

reduced, was enriched with clusterin and it was responsible for reducing nonspecific cellular 

uptake of the NPs [173]. Clusterin corona is similarly credited with silver- and silica 

NPs [174]. Like the previous study, the silver and silica NPs showed reduced monocyte 

uptake after incubation with human serum or plasma. Clusterin was identified as a protein 

accountable for the stealth effect [174]. These results prompted the consideration of clusterin 

for the stealth coating of NPs [173]. However, clusterin is also associated with microglia 
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activation leading to inflammation and neurotoxicity [175]; therefore, its utility as a stealth 

coating remains to be determined.

5.2.3. Cluster of Differentiation 47 (CD47)—CD47 is a highly glycosylated ~50 

kDa plasma membrane protein, consisting of a single IgV-like domain at the N-terminus, a 

hydrophobic membrane-spanning domain, and a cytoplasmic C-terminus, broadly expressed 

in all tissues [176]. As a marker of “self,” CD47 interacts with signal-regulatory protein 

alpha (SIRPα, also known as CD172a) expressed at high densities on macrophages to 

prevent their recognition and engulfment of host cells [177–179]. The deficiency of CD47 in 

red blood cells leads to lethal hemolytic anemia in nonobese diabetic mice [180]; conversely, 

CD47 is exploited by most human tumor cells to evade macrophage surveillance [181].

Due to its role in preventing phagocytosis, CD47 or its derivatives have been explored as a 

stealth (self) ligand [182, 183]. For example, polystyrene NPs were surface-modified with 

the extracellular domain of CD47 or a small peptide (“self-peptide”) with a sequence most 

responsible for the interaction with SIRPα [183]. The CD47 or self-peptide-coated NPs 

persisted in circulation and accumulated in the tumor better than the control peptide-coated 

NPs [183].

6. Join them if you can’t beat them: Strategies to piggyback on PC in situ

As the tenacity of PC formation is increasingly recognized, recent efforts have focused on 

designing NPs such that they attract PC specifically recognized by the target cells or tissues 

during circulation.

6.1. Attracting albumin

Recently, our group has reported soft polydopamine nanocapsules called Nanosac for siRNA 

delivery [55]. Nanosac is produced by sequential attachment of siRNA and polydopamine on 

sacrificial mesoporous silica NPs (MSN), followed by the removal of the MSN core (Fig. 

2a). Unlike the bare MSN core, Nanosac enters cells via caveolae-mediated endocytosis, 

bypassing lysosomal sequestration (Fig. 2b), which occurs with traditional NPs and is 

detrimental to siRNA stability. Gel electrophoresis showed that the polydopamine surface 

reduced protein adsorption. Proteomics analysis identified albumin to be the dominant 

protein of the few proteins binding to the Nanosac (Fig. 2c), suggesting selective recruitment 

of albumin by polydopamine surface. Systemically administered, Nanosac delivered siRNA 

targeting PD-L1 to CT26 tumor, resulting in significant suppression of CT26 tumor growth 

compared to the monoclonal PDL1 antibody-treated group (Fig. 2d) [55]. However, it 

remains to be determined whether the albumin co-option occurred in vivo and contributed to 

Nanosac distribution in tumors.

In another example, PLGA NPs were deliberately decorated with maleimide for albumin 

binding in circulation [184]. The distance between NP surface and maleimide was varied 

by the length of the PEG linker (none, 500 Da, 2000 Da) to control the avidity of 

albumin binding. PEG 2000 Da was needed to avoid excessive protein binding, and 

the maleimide terminus helped attract albumin conjugating with Cys-34 residue. The 

albumin binding, maleimide-PEGylated PLGA NPs underwent reduced accelerated blood 
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clearance phenomenon upon the second administration and improved tumor accumulation 

via interactions with SPARC and CD31 as compared to PEGylated PLGA NPs (with no 

maleimide) [184].

For the same purpose, NPs were prepared by molecular imprinting using albumin as a 

template [162]. NPs were produced by polymerizing albumin binding monomer (pyrrolidyl 

acrylate) and acrylamide monomers in the presence of albumin, followed by the removal 

of albumin by size-exclusion chromatography. The molecularly imprinted NPs captured 

circulating albumin in situ, as demonstrated by in vivo fluorescence resonance energy 

transfer microscopy, and accumulated in tumors taking advantage of the dysopsonin function 

of albumin [162].

6.2. Attracting apolipoproteins

As mentioned earlier, apolipoproteins bind to polysorbate-stabilized NPs and promote their 

delivery to the brain via the LDLR [168]. Accordingly, subsequent studies employed 

polysorbate 80 as a surface modifier of an NP carrier to improve drug delivery to the brain 

[185]. The amount of apolipoproteins binding to NPs depends on the hydrophilic-lipophilic 

balance of polysorbate and the corresponding NP surface: more lipophilic polysorbate 

attracted more ApoE to the lipid NP surface. However, this trend may not be generalized to 

other NPs [168].

Alternatively, there has been an attempt to control the apolipoprotein binding to LNPs by the 

length and amount of the surface-exposed PEG [186]. LNPs were made with PEGylated acyl 

chains in two different lengths (C18 vs. C14) in two amounts (6 mol% vs. 3 mol%). Upon 

incubation in mouse serum, LNPs with 3% PEG acquired more ApoA4 than those with 6% 

PEG. LNPs with C18 PEG showed greater accumulation in LDLR-expressing HepG2 than 

those with C14 PEG. However, there appears to be no explicit relationship between PC and 

biodistribution [186].

Another example shows biodegradable nonionic poly(phosphoester) (PPE)-surfactants 

adsorbed on polystyrene NPs helping attract apolipoproteins [187]. The PPE-surfactants 

consist of hydrophilic and hydrophobic blocks, where the lengths and side chains are varied 

to control protein adsorption and aggregation. The PPE-surfactant-coated polystyrene NPs 

were enriched with clusterin and ApoA-I upon incubation with human plasma. The NPs 

coated with the PPE surfactant and plasma showed reduced macrophage uptake, supporting 

the potential of the polymer surfactant to recruit “stealth” apolipoprotein in circulation 

[187].

A recent study uses dihydroartemisinin (DHA) to decorate PLGA NPs and attract ApoE to 

the NP surface [188]. DHA is a metabolite of artemisinin, an antimalarial drug known for its 

affinity for albumin and transferrin. When conjugated to PLGA NPs, DHA rather recruited 

ApoE (than albumin or transferrin) in serum, which helped the NP uptake by LDLR+ 4T1 

cells, and extended the NP circulation half-life and delivery to 4T1 tumors compared to plain 

PLGA NPs [188].
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6.3. Attracting vitronectin

Vitronectin is a glycoprotein with a molecular weight of 75 kDa, abundant in blood and 

extracellular matrix [189]. The Arg-Gly-Asp (RGD) sequence of vitronectin binds to cell 

surface integrins such as ανβ3, ανβ5, ανβ1, αIIββ3, ανβ6, and ανβ8, facilitating cellular 

adhesion, spreading, and migration [189]. Of these, ανβ3 has gained particular interest in 

cancer therapy due to its implication in angiogenesis and metastasis [190] and has been 

targeted by various RGD-based peptides [191–195].

Liposome/DNA complexes (lipoplexes) comprising 1,2-dioleoyl-3- trimethylammonium 

propane (DOTAP) were shown to acquire a PC enriched with vitronectin and albumin 

upon preincubation with human plasma [196]. Similarly, LNPs containing 3β-[N-

(N’,N’-dimethylaminoethane)-carbamoyl]cholesterol (DC-cholesterol) showed vitronectin 

enrichment in PC upon incubation with mouse serum [186]. In both cases, the binding 

of vitronectin to the lipid particles, which is attributed to charge interaction (negatively 

charged vitronectin vs. cationic lipids) [197], increased the particle uptake by ανβ3-

positive cells (but not by the ανβ3-negative cells) [196]. Accordingly, cationic lipids have 

been incorporated in LNPs to facilitate their delivery to the αvβ3-expressing tumor via 

vitronectin corona [198]. Nevertheless, the presence of serum was detrimental to the cellular 

uptake of LNPs irrespective of DOTAP inclusion [198]. In vivo, DOTAP-containing LNPs 

showed higher accumulation in the αvβ3-expressing A375.S2 tumor than in the ανβ3-

negative HepG2 tumor. However, DOTAP LNPs did not deliver the RNA payload to the 

tumor cells, suggesting that the accumulation might have occurred in the αvβ3-expressing 

endothelial cells rather than in the tumor cells [198].

6.4. Attracting other proteins

Transferrin (Tf) is a 79 kDa glycoprotein supplying irons to cells. Due to the high 

demand for irons, TfR is overexpressed in malignant cells, making an important target 

for cancer therapy [199, 200]. To enable in-situ binding of Tf to NPs, a Tf-binding peptide 

was designed by iterative multiscale-modeling coupled with quantitative structure-activity 

relationship analysis and evolutionary algorithms [201]. Gold NPs conjugated with the 

Tf-binding peptide attracted serum Tf, which in turn increased the NP uptake by TfR+ Mia 

PaCa-2 cells in a Tf-specific manner [201] (Fig. 3).

Another example of PC-binding NPs is a retinol-conjugated polyethylenimine (RcP) NP, 

developed for the delivery of antisense oligonucleotide (ASO) [202]. The RcP NP recruited 

retinol-binding protein 4 (RBP) as well as albumin, where the protein binding prevented 

lethal aggregation of the NPs and led to the cellular uptake profile skewed to hepatic 

stellate cells (HSC). Controlled in vitro studies identified that the two proteins had distinct 

functions: albumin preventing macrophage uptake and RBP promoting HSC uptake of RcP 

NPs. Consistently, in a mouse model of liver fibrosis, the RcP NPs entered HSC in the liver, 

unlike free ASO that was stuck in endothelial cells and macrophages, and delivered ASO 

downregulating collagen I to HSC to reduce hepatic fibrosis. Of note, the retinol ligand of 

RcP played a significant role in controlling the functions of two proteins: as a hydrophobic 

compound, it helped keep the conformation of albumin, unlike cationic PEI; retinol was also 

critical to maintaining the functionality of RBP (uptake by HSC) [202].
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7. Application of protein corona to organ/disease-specific nanoparticle 

delivery

7.1. Brain

Based on the early observation of brain tropism of apolipoprotein-coated NPs, the NP 

surface was deliberately engineered to co-opt apolipoproteins to enhance NP delivery to the 

brain [203]. Here, liposomes were decorated with a short peptide (Aβ25–35 with amide 

form in the C-terminal, SP) derived from β-amyloid peptides, which captured plasma 

ApoA1, ApoE, and ApoJ. On the surface of liposomes (SP-sLip), SP interacted with the 

lipid-binding domain of the apolipoproteins, exposing their receptor-binding domains to 

respective receptors (SR-B1, LRP1, and LRP2) and inducing brain transport of liposomes 

via LRP1/LRP2/SR-B1 mediated transcytosis. As a carrier of doxorubicin (DOX), SP-sLip 

showed significant improvement in drug delivery to the brain and extended the survival of 

mice bearing intracranial tumors compared to plain liposomes [203]. A similar approach was 

applied to polymeric micelles, with the amide-terminated Aβ25–35 as a ligand to bind to the 

lipid-binding domain of ApoE [204]. The ApoE binding increased the uptake of micelles 

by C6 glioma cells and human umbilical endothelial cells. The Aβ25–35-modified micelles 

increased paclitaxel (PTX) delivery to the orthotopic glioma in the mouse brain, extending 

the survival of glioma-bearing mice, compared to the micelles without the peptide [204].

TfR is another receptor highly expressed in glioma cells and may be targeted by Tf. Since 

Tf is abundant in blood, NPs were designed to bind Tf in circulation for the improvement of 

brain delivery (Fig. 4a) [205]. Covalent organic framework (COF) NPs were decorated with 

T10 peptide, which interacts with Tf without affecting its binding to TfR. The T10 ligand of 

COF helped recruit Tf-rich PC, facilitating the NP uptake by TfR+ U87 cells (Fig. 4b). The 

T10-coated COF NPs delivered more DOX to the orthotopic glioma (Fig. 4c) and extended 

the survival of mice than unmodified COF NPs [205].

A recent study reported that exosome mimetics (EMs) decorated with angiopep-2 (Ang) 

peptide, a ligand specifically interacting with lipoprotein receptor-related protein 1 (LRP1) 

to facilitate BBB transport, can retain the ligand function despite PC and deliver docetaxel 

(DTX) to the glioblastoma (GBM) in mice [206]. Here, Ang peptide was integrated into 

EM as DSPE-PEG-Ang. The Ang-decorated EM (Ang-EM) showed relatively low protein 

binding compared to Ang-liposomes and enhanced DTX delivery to orthotopic GBM 

compared to Ang-liposomes. However, due to the lack of comparison with the unmodified 

EM, it is unclear whether the improved brain delivery is due to the ligand effect of Ang or 

other attributes of EMs, such as CD47 [206].

7.2. Tumor

In controlling PC for enhancing NP delivery to tumors, the focus has been to increase the 

circulation time for the EPR-based tumor accumulation and/or to improve the interaction 

with tumor cells. The former may be achieved by decreasing opsonin binding or promoting 

the binding of dysopsonin, whereas the latter depends on the binding to specific proteins 

interactive with tumor-specific receptors.
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Surface components are the primary variable to control the PC profile. For example, DNA 

coating on cationic liposome/DNA complexes (lipoplexes) formed opsonin-deficient PC in 

low concentration (5%) plasma, which helped the lipoplexes to avoid immune cell uptake 

[207]. The DNA-coated lipoplexes, then coated with plasma proteins before injection, 

outperformed traditional PEGylated lipoplexes in avoiding RES uptake in mice [207]. When 

PEG is used as a surface stabilizer, its molecular weight plays a key role [208]. For example, 

2.4 nm gold particles were modified with 350, 550, and 1000 Da PEG, forming 100–200 

nm NP assemblies. The PC profile varied with the PEG size, thereby hydrophilicity of 

the surface. The NPs with 550 Da PEG had more Tf in PC than those with 350 or 

1000 Da PEG. Conjugated with DOX, the 550 Da PEG-bound gold NPs delivered more 

drugs to TfR+ HepG2 tumors than the other two NPs [208]. Albumin was another protein 

enriched on the 500 Da PEG-covered surface; though the increased albumin binding did 

not explicitly increase the circulation, it may have contributed to tumor accumulation via 

interactions with albumin-binding proteins (Section 5.2.1). A cabazitaxel nanocrystal study 

also shows that a surface stabilizer alters the pharmacokinetics/biodistribution profiles and 

antitumor effect of the drug via PC [209]. Here, the nanocrystals were stabilized with D-α-

Tocopherol polyethylene glycol 1000 succinate (TPGS), which formed a PC enriched with 

albumin, ApoA-IV, ApoE, and Tf upon incubation with mouse plasma. The TPGS-stabilized 

nanocrystals showed a longer circulation half-life and greater tumor accumulation in 4T1 

orthotopic tumor-bearing mice than those covered with an additional layer of lipid. The 

prolonged circulation was attributed to the reduced binding to IgM, and the enhanced tumor 

distribution to Tf, ApoA-IV, and ApoE in the PC [209].

NP components have also been varied to control the PC. With carbonate apatite NPs, a 

pH-sensitive drug carrier consisting of Ca2+, PO4
3−, and CO3

2−, it was found that partial 

replacement of Ca2+ with Mg2+ and Fe3+ changes the PC formation in both quantity 

and components [210]. The PC change resulted in reduced NP aggregation in serum-

containing medium, increased cancer cell uptake, and changes in biodistribution profile 

[210]. Alternatively, the variation of NP components may help recruit specific proteins that 

interact with cancer cells via overexpressed receptors. For example, NPs were produced 

with pheophytin carbon dots (PCD), a lipoid compound derived from natural chlorophyll, 

to impart the affinity for apolipoproteins [211]. Coated with an optimal amount of DSPE-

mPEG, the PCD NPs attracted major apolipoproteins (ApoA-I, ApoC-III, and ApoE) better 

than those without a lipoid component, showed enhanced uptake by LDLR+ cancer cells, 

and distributed more in the lungs with metastatic LDLR+ MDA-MB-231 tumors than in 

normal lungs [211].

7.3. MPS organs

The FDA-approved LNP products deliver siRNA mainly to the liver due to the binding 

of ApoE, which interacts with LDLR of hepatocytes [88, 89]. A similar principle was 

applied to DNA tetrahedrons, which, upon conjugation with trivalent cholesterol, bound to 

various apolipoproteins and showed liver-selective delivery, achieving comparable activity 

to a trivalent N-acetylgalactosamine-conjugated system in a liver fibrosis model [212]. 

Meanwhile, a series of recent studies inform that the structure of a lipid or a lipidoid 

(lipid-like) component of NPs resulted in the variation of the PC profile and altered the 
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organ tropism: LNPs containing imidazole-based lipidoids target the spleen [213], LNPs 

containing lipidoids with an ester bond in the tail (O-series LNPs) tend to go to the liver 

[214], whereas those with an amide bond in the tail (N-series LNPs) showed predominant 

deposition in the lung [215]. The analysis of PC on O-series and N-series LNPs revealed 

a difference that may be responsible for the differential distribution (Fig. 5): following 

albumin (the most abundant protein for both LNPs), ApoE and complement 1 constituted 

dominant PC components in O-series LNPs, whereas N-series LNPs were enriched with 

fibrinogen beta and gamma chains, which enhance endothelial cell adhesion [215].

7.4. Inflammation

While opsonin binding followed by immune cell engagement is traditionally considered 

an undesirable event, it may be exploited to deliver drugs to active immune cells and 

control inflammation. For example, dextran-coated ferrous NPs (DEX-NPs), which activate 

the lectin complement pathway, resulting in the binding of C3b and its cleavage products, 

can target B cells in the spleen via the interaction of C3b with CR1/2 [94]. As such, 

DEX-NPs delivered a model antigen ovalbumin (OVA) and immunostimulant CpG to 

splenic B cells by systemic administration, eliciting OVA-specific IgG2a production better 

than soluble OVA/CpG mixture and preventing anaphylactic shock and asthma in mice 

[94]. Similarly, liposomes made of 2-((2,3-bis(oleoyloxy)propyl)dimethylammonio)ethyl 

hydrogen phosphate (DOCP), an anionic lipid, were shown to target active neutrophils by 

binding to C3 fragment iC3b, which interacts with CR3 of the cells. The neutrophils took up 

DOCP liposomes (but not the control DOPC liposomes), extravasated in the inflamed lungs, 

and delivered drugs intracellularly or to neutrophil extracellular traps [216].

Other anionic liposomes comprising 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG) 

are shown to recruit C1q, which facilitates their uptake by BMDCs via the scavenger 

receptor, leading to the induction of immunosuppressive regulatory T cells (Tregs) 

[217]. The DSPG liposomes were superior to another anionic liposomes based on 

phosphatidylserine or cationic liposomes in inducing antigen-specific Tregs. As a carrier 

of atherosclerosis-related antigen (p3500), DSPG liposomes suppressed plaque formation 

in a mouse model compared to PBS or free antigen, indicating the potential utility in 

Treg-mediated treatment of atherosclerosis [217].

PC has also been used to guide IONPs, a magnetic resonance imaging agent, to plaques in 

the inflamed arteries for the diagnosis of atherosclerosis [218]. Here, iron oxide magnetites 

were clustered in a phosphatidylcholine coat, forming 75 nm NP. The phosphatidylcholine 

coat binds to ApoB-100, which takes the NPs to the plaque, where the polar head of the 

coat is cleaved by phosphatidylcholine-specific phospholipase C upregulated in the plaque 

endothelium. The cleavage induces the aggregation of NPs, increasing T2 contrast in the 

plaque sites [218].

7.5. Eyes

PC can affect the activity of NPs in the ocular application. Gold NPs have been explored 

as an antiangiogenic agent in treating ocular neovascularization based on the affinity for 

vascular endothelial growth factor (VEGF). Bare NPs nonspecifically bind to proteins in 
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the vitreous, losing the ability to bind to VEGF. Pre-functionalizing the gold NPs with the 

top five vitreous PC proteins helped gold NPs to maintain the VEGF-binding properties 

in the vitreous compared to bare gold NPs [219]. In a recent application of PC to ocular 

delivery, cationic lipoplexes were prefunctionalized with artificial PCs, such as fibronectin 

or Val-Gly-Asp (VGA) tripeptide, to improve the uptake by corneal epithelial cells [220]. 

Bare lipoplexes bound to mucin, losing the ability to enter corneal epithelial cells, whereas 

fibronectin or VGA peptide-coated lipoplexes were taken up by the cells via epithelial 

receptors. However, it remains to be seen whether the artificial PCs retain such ligand 

functions despite mucin [220].

8. Future perspectives

There are numerous cases where uncontrolled PC interferes with the intended function of 

NPs, leading to MPS accumulation, immunological responses, and loss of target-specific 

interactions. Meanwhile, emerging evidence indicates that specific proteins in the blood, 

such as albumin, transferrin, and apolipoproteins, can enhance NP delivery to particular 

organs, as shown with ApoE-bound LNPs trafficking to hepatocytes [87–91]. Therefore, it is 

reasonable to envision pre-functionalizing NPs with desirable serum proteins or engineering 

the surface to co-opt those proteins preferentially in situ. Preclinical studies reviewed in this 

article demonstrate the feasibility of this approach in different disease models. At the same 

time, one must be aware of the remaining challenges that may complicate the maneuver of 

PC formation.

First, there is a considerable variation in specific protein content according to the medical 

conditions and diseases [221]. The interpatient variability generates an opportunity to 

develop a personalized diagnostic tool based on the protein fingerprint [222–224]. On the 

other hand, the variability may undermine the utility of PC identified by population-based 

studies. A potential alternative is to couple with a computer-assisted prediction of PC-NP 

interaction [225] and tailor the NP design to each patient’s condition.

Second, there is limited understanding of the roles non-protein biomolecules play in NP 

performance [92]. For example, lipid corona can be highly relevant when the NPs are 

introduced via the lungs, where pulmonary surfactants form the first layer that inhaled 

NPs encounter [226]. Therefore, future studies are needed to understand the functions of 

non-protein corona and the interplay of corona components.

Third, while PC profiling has become a common practice in the characterization of NPs, 

most studies rely on in vitro incubation of NPs in sera of animal origin. The current method 

is limited in many ways: (i) blood protein composition varies with the species; thus, the 

information obtained with animal serum may not be extrapolated to humans; (ii) the in vitro 
studies are performed in static conditions and do not involve shear stress in blood flow 

that may affect the NP-PC interactions [227]. (iii) Moreover, the typical protocol of PC 

analysis [20] focuses on hard corona and does not reflect the contribution of soft corona 

that is constantly remodeled in circulation [228]. A recent review elaborates on additional 

limitations of the current methodology [229]. Robust in vitro methodologies reflecting 
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dynamic in vivo conditions are critical to accurate prediction of NP-PC interactions and 

corresponding design of NPs.
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Highlights

• Protein corona interferes with the intended function of nanoparticles, such as 

target-specific interactions.

• Previous efforts have focused on avoiding protein corona formation or 

overriding the effect of the protein corona.

• Specific proteins in the blood, such as albumin or apolipoproteins, can 

enhance nanoparticle delivery to particular organs.

• To exploit the functions of specific serum proteins, nanoparticles are 

prefunctionalized with the proteins or designed to attract them in situ.

• The remaining challenges include interpatient variability in serum protein 

contents, poor understanding of non-protein corona, and limited research 

methodologies.
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Figure 1. 
(a) Different methods to coat PLGA NPs with albumin. NP×Al: interfacial embedding; 

NP-pD-Al: polydopamine-mediated physisorption. (b) Top: Representative SDS-PAGE gel 

image of albumin after pulse proteolysis. Native albumin (nAlb), denatured albumin (dAlb), 

NP×Al, and NP-pD-Al were treated with thermolysin for 3 min. Lane 1: nAlb; Lane 2: 

dAlb; Lane 3: NP×Al; Lane 4: NP-pD-Al; Lane 5: nAlb + thermolysin; Lane 6: dAlb + 

thermolysin; Lane 7: NP×Al + thermolysin; and Lane 8: NP-pD-Al + thermolysin. Bottom: 

% digestion albumin was defined as (1-albumin band intensity after proteolysis/albumin 

band intensity prior to proteolysis) × 100. (c) Schematic of a Transwell co-culture system 

with HUVEC in the insert and B16F10 cells in the bottom of the basolateral side (left top); 

Transendothelial electrical resistance (TEER) indicating the confluence of HUVEC layer at 

the time of NP application (left bottom); NP associated with B16F10 cells, measured at 24 

h after 6 h incubation with a Transwell containing NPs and the confluent HUVEC layer. 

(d) Dosing schedule of PTX-loaded NPs (top); PTX content in B16F10 tumors treated 

with PTX-loaded NP×Al (PTX@NP×Al) or PTX-loaded NP-pD-Al (PTX@NP-pD-Al) 

(bottom left); % injected PTX dose per gram of each tissues (%ID/g) of PTX@NP×Al 

or PTX@NP-pD-Al in B16F10 tumor bearing mice 24 h after i.v. injection. %ID/g is 

defined as percentage of injected dose per gram of tissue weight. Reprinted from [161] with 

permission.
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Figure 2. 
(a) Schematic illustration of Nanosac (MSNa/siRNA/pD) preparation and transmission 

electron microscopy images of Nanosac and Nanosac precursors. Nanosac is produced 

by sequential coating of mesoporous silica nanoparticles (MSNs) with siRNA and 

polydopamine, followed by removal of the sacrificial MSN core. (b) Confocal microscope 

images of cy5-labeled MSNa, MSNa/pD, and Nanosac relative to lysosomes in CT26 

cells and fluorescence intensity profiles along the white lines in confocal images. Green: 

Lysotracker (lysosome); red: cy5- labeled NPs; and blue: Hoechst 33342 (nuclei). Scale 

bars: 10 μm. (c) SDS-PAGE of protein corona composition formed on MSNa, MSNa/pD, 

and Nanosac. The protein corona bound on each NPs were further analyzed by LC-MS/MS 

for most abundant proteins. 4 mg/mL of each NPs were incubated in 50% FBS for 2 h 

and rinsed with PBS twice. (d) Average tumor size after treatment of anti-PD-L1 antibody 

and siPD-L1-Nanosac to Balb/c mice bearing CT26 tumors. (anti-PD-L1 antibody: 200 

μg/mouse/time, intraperitoneal injection; siPD-L1:1.5 mg/kg/time, IV injection; q2d × 5). 

Reprinted from [55] with permission.
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Figure 3. 
(a) Schematics Illustration of gold NPs targeting TfR overexpressed on cancer cells. (b) Five 

potential binding sites, Pocket 1 through 5, identified on the human Tf predicted by Fpocket. 

Tf is represented with the blue-ribbon diagram, and part of the ectodomain of the transferrin 

receptor dimer23 is rendered by its accessible surface. Due to the adequate volume for 

peptide and the distance from transferrin or iron binding site, Pocket 3 (orange) is chosen 

to dock the peptide. (c) 3D docked pose of the synthesized Tf-binding peptide (Tf2) created 

by coarse-grained molecular dynamics simulation. Atoms are colored according to their 

root mean squared displacement. Blue: rigid regions; red: flexible regions; green dashed 

lines: hydrogen bonds; red dashed lines: salt bridges; black dashed lines: solvent exposed 

atoms. (d) Cell uptake of gold NPs conjugated with Tf2. Various gold NPs were prepared 
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using different percentage of PepN-Tf2 (0, 1, and 10% w/w). NPs were incubated in human 

plasma for 1 h at 37 °C and then with Mia PaCa-2 cells for 1 h at 37 °C in DMEM with 

(right, suffix +Tf2) or without (left) a Tf2. The results were normalized to the amount of 

internalized gold in AuNP-0. Reprinted from [201] with permission.

Kim et al. Page 39

Adv Drug Deliv Rev. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Tf targeting in glioma by DOX-loaded, T10-coated COF NPs (DCPT) NPs. (a) Schematic 

illustration of endogenous Tf corona-mediated DCPT delivery across the BBB. (b) SDS-

PAGE analysis of PC on DCPT-2 before and after passage through the in vitro BBB model 

(left). FBS-Tf: Formation of Tf corona on the surface of DCPT-2 mediated by Tf from 

the FBS. SD rat-Tf: Formation of Tf corona on the surface of DCPT-2 mediated by Tf 

from the SD rat serum. Cellular uptake of DOX and COF formulations incubated with U87 

cells under different conditions (right). (c) Ex vivo imaging of DOX in main organs of 

glioma-bearing mice after intravenous injection of DOX, Caelyx, DCP (DOX-loaded COF, 

no T10) and DCPT-2 at 12 h (left). Immunofluorescence images of brain sections from 

orthotopic glioma mice after 12 h post-injection of DCP, Caelyx and DCPT-2, respectively. 

Blue: nuclei; purple: U87 cells; red: DOX; green: anti-CD31 labeled blood vessels. White 

arrows: co-localization of DOX and blood vessels; Yellow arrows: co-localization of DOX 

and glioma cells. Bar: 200 μm. Reprinted from [205] with permission.
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Figure 5. 
Schematic illustrations of (a) differential organ distribution of O- and N-series LNPs and 

(b) interaction of LNPs with proteins in the blood vessel. Quantification of the percentage 

of total proteins of the top three protein components in the protein corona of (c) the 

O-series LNPs (306-O12B) and (d) the N-series LNPs (306-N16B). Top 20 most abundant 

corona proteins based on (e) their calculated molecular weight, (f) isoelectric point, and (g) 
biological function. Reprinted from [215] with permission.
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