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Abstract
Purpose  Immune checkpoint inhibitors (ICIs) have shown durable responses in various malignancies. However, the response 
to ICI therapy is unpredictable, and investigation of predictive biomarkers needs to be improved.
Experimental design  In total, 120 patients receiving ICI therapy and 40 patients receiving non-ICI therapy were enrolled. 
Peripheral blood immune cell markers (PBIMs), as liquid biopsy biomarkers, were analyzed by flow cytometry before ICI 
therapy, and before the first evaluation. In the ICI cohort, patients were randomly divided into training (n = 91) and validation 
(n = 29) cohorts. Machine learning algorithms were applied to construct the prognostic and predictive immune-related models.
Results  Using the training cohort, a peripheral blood immune cell-based signature (BICS) based on four hub PBIMs was 
developed. In both the training and the validation cohorts, and the whole cohort, the BICS achieved a high accuracy for 
predicting overall survival (OS) benefit. The high-BICS group had significantly shorter progression-free survival and OS 
than the low-BICS group. The BICS demonstrated the predictive ability of patients to achieve durable clinical outcomes. By 
integrating these PBIMs, we further constructed and validated the support vector machine-recursive and feature elimination 
classifier model, which robustly predicts patients who will achieve optimal clinical benefit.
Conclusions  Dynamic PBIM-based monitoring as a noninvasive, cost-effective, highly specific and sensitive biomarker has 
broad potential for prognostic and predictive utility in patients receiving ICI therapy.
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as liquid biopsy biomarkers, offer a promising approach for 
predicting ICIs therapy response [12, 13]. The frequencies 
of effector cells at baseline or during treatment tend to be 
correlated with better response, while high frequencies of 
suppressor cells such as regulatory T cells (Treg) are often 
associated with poor treatment outcomes [14]. However, 
the prognostic role of dynamic PBIMs and the comprehen-
sive relationship between integrated PBIMs and the clinical 
response to ICIs have not been well established.

Here, we focused on PBIMs before and after therapy with 
PD-1 blocking antibodies in patients with metastatic can-
cer. We screened immunotherapy-related PBIMs associated 
with patient prognosis using the Cox regression model with 
a least absolute shrinkage and selection operator (Lasso) 
penalty to build a peripheral blood immune cells-based sig-
nature (BICS). Next, we successfully divided patients into 
two subgroups (high- and low-BICS subgroups). The high-
BICS subgroup was not only found to be associated with 
poor prognosis, but also with no durable response to ICI 
therapy. Furthermore, we verified that BICS serves as an 
effective tool to identify patients with stable disease (SD) 
at the first scan who will eventually achieve durable clinical 
benefit (DCB). Finally, we established the SVM-RFE clas-
sifier model, which allows early identification of patients 
who are most likely to achieve optimal clinical benefit from 
ICI therapy.

Materials and methods

Patients

The retrospective study design is given in Fig. 1A. The 
ICI cohort participants were patients with recurrent and/or 
metastatic cancer who were treated with ICIs in the Affili-
ated Tumor Hospital of Zhengzhou University between June 
2018 and February 2021. The peripheral blood samples for 
immune phenotyping of patients treated with ICIs were col-
lected at baseline and before the first scan. Additionally, the 
peripheral blood samples of patients receiving chemotherapy 
and/or targeted therapy without ICIs were collected in the 
non-ICI cohort at baseline and before the first scan for con-
trolled validation. Patients could be enrolled independent 
of cancer entity. Patients were excluded if they did not have 
enrolled samples, or if they lacked information on tumor 
response assessment or survival follow-up.

Assessment of clinical outcomes

The clinical treatment response after anti-tumor therapy 
was identified as SD, progressive disease (PD), or partial 
response (PR) according to the Response Evaluation Criteria 

NDB_LS	� Long-term survival with no durable clinical 
benefit

NDB_SS	� Short-term survival with no durable clinical 
benefit
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Introduction

Cancer immunotherapies, mainly represented by immune 
checkpoint inhibitors (ICIs) that target the programmed death 
1 ligand (PD-L1)/PD-1 axis, have shown promising efficacy 
in the treatment of many types of cancer [1]. However, only 
a subset of patients show durable responses, and reliable 
immune-related biomarkers that can effectively identify these 
patients before or early during treatment have remained elu-
sive [2, 3]. Numerous studies have shown that patients with 
positive PD-L1 expression have a high response rate to ICIs 
[4, 5]. Moreover, a high tumor mutation burden (TMB) pre-
dicts ICI response across different types of cancer [6]. In 
addition to PD-L1 and TMB, various other biomarkers have 
been described for predicting response to ICIs, including 
IFN-γ signatures, proportion of CD8 + T cells, and genomic 
instability, as defined by microsatellite instability (MSI) 
[7–10]. Although tumor sampling is extensively employed 
for biomarker identification, obtaining tissue can be challeng-
ing owing to spatial heterogeneity, low tumor content, and 
difficulty with accessibility, resulting in lower than expected 
inter-observer concordance.

The evaluation of blood at baseline and on-treatment 
provides insights into the patient’s immune profile and how 
this relates to the ICI response [11]. Several studies have 
shown that peripheral blood immune cell markers (PBIMs), 
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in Solid Tumors (RECIST), version 1.1 [15]. Patients were 
categorized into DCB, defined as PR or SD with progres-
sion-free survival (PFS) ≥ 6 months, and no durable benefit 
(NDB). For the ICI cohort, PFS was defined as the time from 
the start of anti-PD-1 therapy to the first disease progres-
sion or death from any cause. Overall survival (OS) was 
evaluated as the time from the start of anti-PD-1 therapy 
until death from any cause. Patients with RECIST PD at the 
first scan subsequently continued with ICI treatment. For the 
non-ICI cohort, PFS and OS were defined as the time from 
the start of the systematic anti-tumor therapy. The list of 
detailed patient information is displayed in Table S4.

Flow cytometry and data cleaning

Whole blood samples were collected from patients in the 
ICI cohort before ICI therapy and after two cycles of ICI. 
Peripheral blood was also collected from non-ICI patients 
before the treatment and before the first evaluation. Periph-
eral blood mononuclear cells (PBMCs) were isolated and 
PBIMs were determined by flow cytometry. Cell surface 
staining was performed for 30 min at 4 °C with the antibod-
ies listed in Table S5. Data acquisition was conducted with 
a BD FACSCanto II, and data analysis was performed using 
FlowJo software.

We compared the differential variations (before the first 
evaluation minus before the treatment value; DV) of each 
PBIM. Considering the dynamics of changes in the immune 
status, we incorporated the DV of PBIMs along with PBIMs 
as variables in the subsequent analysis. Considering the 
strong correlation between the variables, we performed 
preliminary cleaning of the data. First, the “nearZeroVar” 
function in the Caret package was used to identify near zero-
variance variables. Second, the “findCorrelation” function 
(Caret package) was applied to remove variables that were 
strongly correlated with other independent variables. Finally, 
the values of the remaining variables were quantile normal-
ized and log2 transformed.

Construction of the BICS

1)	 To assess the early forecasting benefit of PBIMs for 
binary classification (DCB vs NDB), the ICI cohort was 
randomly divided into training and validation cohorts, 
with the percentage of 0.75 to training using the Caret 
package.

2)	 We applied three well-established feature selection mod-
els (all-subsets regression (ASR); Lasso regression; and 
univariate Cox regression) to predict the prognosis. A 
detailed description of the Lasso and ASR regression is 
shown in the Supplementary Method section.

3)	 The performance of the three models was assessed 
based on two evaluation methods: (1) The five common 
model indices, including Akaike’s Information Criterion 
(AIC), Bayesian Information Criterion (BIC), r-squared 
value (R2), adjusted r-squared (R2_adj), and root-mean-
squared error (RMSE), were computed using the “com-
pare_performance” function in the performance package 
[16]; We used the function plot () for compare_perfor-
mance () to creates a “spiderweb” plot, where the dif-
ferent indices are normalized and larger values indicate 
better model performance[16]; (2) the time-dependent 
area under the receiver operating characteristic (ROC) 
curve (AUC) of the three different models was calcu-
lated using the timeROC R package. Then, the Lasso 
regression was selected for the prognostic prediction 
model.

4)	 The predictive performance of three penalized regres-
sions (Lasso regression, ridge regression, and elastic net) 
was assessed by Harrell’s concordance index (c-index). 
Finally, we obtained the best penalized regression model 
(Lasso) with the highest c-index, which was selected for 
the prognostic prediction model.

Validation of the BICS

The survival curves were drawn using the Kaplan–Meier 
methods, and the log-rank test was used to evaluate statis-
tical significance. On the basis of the correlation between 
BICS and the patients’ OS, the cut-off point of each database 
subgroup was determined using the survminer R package. 
The “surv-cutpoint” function, which repeatedly tests all 
potential cut points to establish the maximum rank statistic, 
was applied to dichotomize the BICS, and then patients were 
divided into high- and low-BICS groups. The time-depend-
ent AUC was calculated using the timeROC R package. The 
nomogram plot was constructed using the rms R package.

Construction and validation of the optimal clinical 
benefit predictor by multiple machine learning 
methods

The endpoints of optimal clinical benefit were used to 
achieve a binary classification, and the PBIMs were used 
as features for binary classification. The train-validation 
division was stratified by a ratio of 0.75. First, in the 
training cohort, elastic net, SVM-RFE, and random forest 
and Boruta (RFB) analyses with fivefold cross-validation 
were performed to determine the optimal features for each 
model via the Caret package in R. Elastic Net regres-
sion is a hybrid classification algorithm that blends both 
penalizations of the L2 and L1 regularization of lasso and 
ridge methods. SVM-RFE is a state-of-the-art algorithm 
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that is used for gene selection, and it is a good choice to 
avoid overfitting when the number of features is high [17]. 
Random forest is an ensemble classification scheme that 
utilizes a majority vote to predict classes based on the 
partition of data from multiple decision trees. The Boruta 
algorithm was developed to identify all relevant variables 
within a classification framework [18]. For SVM-RFE, 
the candidate function and kernel type were “lrFuncs” 
and “svmLinear,” respectively. For elastic net, the regu-
larization parameters λ and α were determined by fivefold 
cross-validation (λ = 0.09, α = 0.2). Here lambda (λ) is the 
penalty coefficient and alpha is for the elastic net mixing 
parameter α, with range [0–1]. Default parameters were 
used for other models. Accuracy was utilized as an evalu-
ation indicator to determine the optimal features for each 
model. Then, the predictive performance of the models 
was validated in the validation cohort. Finally, the AUCs 
and Kappa values generated by bootstrapping for stratifi-
cation were calculated using the “resampled” function in 
the Caret R package. Cohen's kappa is such a measure of 
inter-rater agreement for categorical scales when there are 
two raters [19]. The AUCs and kappa values were used to 
evaluate the accuracy of the stratification models.

Statistical analysis

All statistical analyses were performed in R (version 4.1.0). 
Student’s t-test and Wilcoxon test were used to compare 
the difference between two sets of continuous variables. 

One-way analysis of variance and Kruskal–Wallis test was 
applied to conduct comparisons of three or more groups. 
Pearson’s R correlation was applied to calculate the correla-
tion coefficient. The hazard ratio (HR) in the Cox regres-
sion model was calculated using the survival R package. 
The median follow-up period and its interquartile range 
were computed based on the reverse Kaplan–Meier method. 
P-values < 0.05 were considered statistically significant.

Lasso regression

The Cox regression model with a Lasso penalty was used to 
establish the best model in the training cohort using the R 
package glmnet [20]. This process was repeated 1000 times 
to ensure the robustness of predictive PBIMs and the stabil-
ity of the model. Then, the frequency of each model was 
calculated. We obtained the best regression model with the 
highest frequency, which was selected for the prognostic 
prediction model. Ultimately, four hub PBIMs with nonzero 
regression coefficients in the best gene model (with the high-
est frequency) were selected through Lasso regression model 
analysis with 1000 iterations, and the optimal lambda value 
was determined by tenfold cross-validation. Then, the BICS 
was constructed by the counts (absolute counts, and differen-
tial variations of the absolute counts) of the four hub PBIMs 
weighted by the multivariate Cox regression coefficient.

ASR regression

The ASR regression is a model selection method that 
involves testing all possible compositions of PBIMs, and 
then choosing the best model based on the adjusted r-squared 
(R2_adj). Briefly, the “regsubsets” function (leaps package) 
was applied to identify different best models of different 
compositions of PBIMs. Here, the adjusted R2 demonstrates 
that the best model is the one with nine important variables.

Results

Patient characteristics of the study cohorts.

The detailed clinical characteristics of the ICI cohort are 
shown in Table 1. One hundred and twenty patients who 
received ICI with PD-1 inhibitor were enrolled in the ICI 
cohort, all of whom had whole blood samples taken for 
immunopheno-typing pre-ICI and before the first scan. The 
ICI cohort included 30 patients with non-small cell lung can-
cer (NSCLC), 22 patients with renal cell carcinoma (RCC), 
16 patients with esophageal squamous cell carcinoma 
(ESCC), 13 patients with gastric adenocarcinoma (GAC), 
and 39 patients with other cancers (Fig. S1A). The median 
follow-up time was 14.6 months (range, 12.4–19.5 months). 

Fig. 1   A Study overview. a Consort diagram of patients with meta-
static cancer treated with ICI. b The pipeline for analysis of patient 
samples. B In the ICI cohort, of the 65 patients who achieved SD at 
the first scan, approximately 40% (n = 26) did not ultimately reach 
DCB. C The five common model indices, including AIC (Akaike’s 
Information Criterion), BIC (Bayesian Information Criterion), R2 
(r-squared value), R2_adj (adjusted r-squared), and RMSE (root-
mean-squared error) are normalized, and the Lasso model indicates 
better model performance than the ASR and Cox regression models. 
The weighted residuals of Cox Proportional Hazards (CoxPH) can-
not be calculated, so we couldn't obtain the residual standard devia-
tion (SIGMA) in CoxPH. (D) Time-dependent ROC curve at 1-year 
OS for the ASR, Lasso, univariate Cox regression in the training 
cohort (ASR AUC = 0.763, Lasso AUC = 0.796, and univariate Cox 
regression AUC = 0.792). (E) Time-dependent ROC curve at 2-year 
OS for the ASR, Lasso, and univariate Cox regression in the training 
cohort (ASR AUC = 0.681, Lasso AUC = 0.783, and univariate Cox 
regression AUC = 0.755). ICIs: immune checkpoint inhibitors; BICS: 
peripheral-blood-immune-cell-based signature; OS: overall survival; 
DCB: durable clinical outcomes; NDB: no durable benefit; NDB_LS: 
long-term survival with no durable clinical benefit; NDB_SS: short-
term survival with no durable clinical benefit; PD: progressive dis-
ease; PR: partial response; SD: stable disease; LASSO: least absolute 
shrinkage and selection operator; ASR: all-subsets regression; AUC: 
area under the curve; ROC: receiver operating characteristic

◂
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The anti-PD-1 drugs were sintilimab in 50 patients (65%), 
camrelizumab in 30 patients (23%), pembrolizumab in 20 
patients (9%), nivolumab in 9 patients (2%), and others in 
11 patients (1%) (Fig. S1B). Strikingly, we found that among 
the 65 patients who achieved SD at the first scan, approxi-
mately 40% (n = 26) did not ultimately reach DCB (Fig. 1B).

The non-ICI cohort included 22 patients with NSCLC, 
7 patients with small-cell lung cancer (SCLC), 4 patients 
with colorectal cancer (CRC), and 7 patients with other can-
cers. In the non-ICI cohort, 51% of the 20 patients reached 

DCB. The median follow-up time was 15.5 months (range, 
10.6–23.9 months).

PBIMs are associated with clinical outcomes

To analyze PBIMs and their correlation with clinical 
outcomes, patients in the ICI cohort were divided into a 
high and low group using the median value of PBIMs. 
The Kaplan–Meier plot revealed that four PBIMs, includ-
ing differences in the variation of absolute T cell count 
(p = 0.0035, p = 0.0041), absolute lymphocyte count 
(p = 0.033, p = 0.046), absolute CD3 + CD4 + T cell count 
(p < 0.001, p = 0.0085), and absolute CD3 + CD8 + T cell 
count (p = 0.0065, p = 0.034), were significantly associated 
with PFS and OS (Fig. S2A and B). Patients with a highly 
differential variation of Treg cells (p = 0.0077), a low per-
centage of CD3 + CD8 + T cells before therapy, and a high 
absolute CD19 + B cell count before the first scan showed a 
shorter OS, suggesting that changes in peripheral biomarkers 
after initial treatment may also predict prognosis (Fig. S2B).

Additionally, we found that in NDB patients the abso-
lute lymphocyte count, T cell count, CD19 + B cell count, 
CD3 + CD4 + T cell count, and CD3 + CD8 + T cell count 
showed a strong decrease in the peripheral blood, while 
DCB patients showed a significant increase in the absolute 
CD3 + CD4 + T cell count, lymphocyte count, T cell count, 
and CD3 + CD8 + T cell count (Fig. S3A).

Construction of the BICS.

To uncover the practicability and accuracy of the BICS for 
patients with metastasized cancer treated with ICIs, the 
ICI cohort was divided randomly into the training (n = 91) 
and validation (n = 29) cohorts. The clinicopathological 
characteristics were comparable among the two cohorts 
(p > 0.05) (Table 1). After the data cleaning steps, in the 
training cohort, 43 PBIMs and the clinicopathological infor-
mation were included in univariate Cox survival analysis. 
Finally, we found that five of them were associated with 
OS (p < 0.05) (Table S1). However, we observed high cor-
relation and multicollinearity (variance inflation factor > 10) 
among some PBIMs (Fig. S4A), which would prejudice the 
results of traditional Cox regression analysis. To select opti-
mal features, we applied two other well-established feature 
selection algorithms (ASR and Lasso regression). The ASR 
process with the “regsubsets” function was applied to iden-
tify the best nine-features model with the highest R2_adj 
(Fig. S5A). The Lasso process using the glmnet R package 
was repeated 1000 times to ensure the robustness of pre-
dictive PBIMs, and the stability of the model. After 1000 
iterations, five emergent models and the associated PBIMs 

Table 1   Clinical characteristics of patients in the ICI cohort from 120 
patients with metastatic cancer receiving ICI therapy

DCB durable clinical outcomes, NDB no durable benefit, NDB_LS 
long-term survival with no durable clinical benefit, NDB_SS short-
term survival with no durable clinical benefit

Features Training cohort Validation cohort P-value
(N = 91) (N = 29)

Sex
 Male 61.0 (67.0%) 20.0 (69.0%) 1
 Female 30.0 (33.0%) 9.00 (31.0%)

Age
 ≤ 60 38.0 (41.8%) 15.0 (51.7%) 0.468
 > 60 53.0 (58.2%) 14.0 (48.3%)

Brain metastases
 No 83.0 (91.2%) 26.0 (89.7%) 1
 Yes 8.00 (8.8%) 3.00 (10.3%)

PD-L1
 < 1% 16.0 (17.6%) 2.00 (6.9%) 0.389
 1%–49% 9.00 (9.9%) 0 (0%)
 50%–100% 7.00 (7.7%) 0 (0%)
 Missing 59.0 (64.8%) 27.0 (93.1%)

Response
 PR 23.0 (25.3%) 9.00 (31.0%) 0.823
 SD 50.0 (54.9%) 15.0 (51.7%)
 PD 18.0 (19.8%) 5.00 (17.2%)

Clinical status
 DCB 52.0 (57.1%) 15.0 (51.7%) 0.407
 NDB_LS 10.0 (11.0%) 6.00 (20.7%)
 NDB_SS 29.0 (31.9%) 8.00 (27.6%)

Previous lines of treatment
 1 34.0 (37.4%) 13.0 (44.8%) 0.591
 2 38.0 (41.8%) 8.00 (27.6%)
 3 14.0 (15.4%) 6.00 (20.7%)
 > 3 5.00 (5.5%) 2.00 (6.9%)

PD-1 inhibitor type
 Camrelizumab 26.0 (28.6%) 4.00 (13.8%) 0.288
 Nivolumab 6.00 (6.6%) 3.00 (10.3%)
 Others 10.0 (11.0%) 1.00 (3.4%)
 Pembrolizumab 14.0 (15.4%) 6.00 (20.7%)
 Sintilimab 35.0 (38.5%) 15.0 (51.7%)
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incorporated into the models were determined and are listed 
in Table S2. Then, the frequency of each model was cal-
culated. As illustrated in Fig. S5B, we identified the best 
Lasso model, which had the highest frequencies compared 
to the other four models. We evaluated the performance of 
three models based on the indices of model performance, 
and the AUC through tenfold cross-validation. The differ-
ent indices were normalized and the Lasso model indicates 
better model performance than the ASR and Cox regres-
sion models (Fig. 1C). The predictive value of the Lasso 
model exceeded the ASR and Cox regression models in both 
the time-dependent ROC curve at 12 and 24 months of OS 
(Fig. 1D, E). Finally, we obtained the best penalized regres-
sion model (Lasso) with the highest c-index compared to the 
two other penalized regressions (ridge regression and elas-
tic net) (Fig. S5C). The final signature, named ‘BICS’ was 
computed for each patient formulated by the values and risk 
coefficient of each PBIM (Fig. S5D). The four hub PBIMs 
with nonzero regression coefficients in the best model are 

summarized in Table S3. The absolute values of the cor-
relation coefficients of four variables in the Lasso model 
were < 0.5 (Fig. S5E), indicating that these four variables are 
no longer strongly correlated, and contain more information 
than noise.

Prognostic and predictive values of BICS in response 
to ICIs

We classified the training cohort into two groups based on 
the BICS. In the training cohort, the Kaplan–Meier plot 
revealed that patients in the high-BICS group had a poorer 
PFS and OS than those in the low-BICS group (Fig. 2A 
and S6A). The BICS showed strong clinical significance 
for predicting progression based on the ROC curves in 
Fig. 2C (0.5-year: 0.807, 1-year: 0.79, and 2-year: 0.774). 
In line with the training cohort, Kaplan–Meier analysis 
demonstrated significant differential survival outcomes 
between the high- and low-BICS groups in the testing 

Fig. 2   A Kaplan–Meier 
analysis showed that patients 
with a higher BICS exhibited 
a worse OS in the train-
ing cohort. B Kaplan–Meier 
analysis showed that patients 
with a higher BICS exhibited 
a worse OS in the validation 
cohort. C Time-dependent ROC 
curve at 0.5-, 1-, and 2-year 
OS for BICS in the training 
cohort (0.5-year AUC = 0.807, 
1-year AUC = 0.79, and 
2-year AUC = 0.774). D 
Time-dependent ROC curve 
at 0.5-, 1-, and 2-year OS for 
BICS in the validation cohort 
(0.5-year AUC = 0.818, 1-year 
AUC = 0.705, and 2-year 
AUC = 0.707). BICS: periph-
eral-blood-immune-cell-based 
signature; AUC: area under the 
curve
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Fig. 3   A Multivariate Cox analysis independently evaluating the pre-
dictive ability of BICS and other clinical characteristics for OS in the 
training cohort. The square data represent the estimated hazard ratios. 
The error bars indicate 95% CIs. B Multivariate Cox analysis inde-
pendently evaluating the predictive ability of BICS and other clinical 
characteristics of OS in the validation cohort. The square data repre-

sent the estimated hazard ratios. The error bars indicate 95% CIs. C A 
nomogram was constructed with the training cohort for predicting the 
probability of 1-year and 2-year OS. D A nomogram was constructed 
with the validation cohort for predicting the probability of 1-year and 
2-year OS. BICS: peripheral-blood-immune-cell-based signature

clinical factors, we performed multivariate Cox regres-
sion analysis. The results indicated that the BICS was 
remarkably associated with OS after adjustment for clini-
cal characteristics, such as sex, age, treatment line, and 

cohorts (Fig.  2B and S6B). Similarly, the BICS still 
exhibited efficacy in prognostic value assessment in the 
validation cohort (Fig. 2D). To investigate whether the 
prognostic value of the BICS is independent of other 
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brain metastases, thus confirming its robustness in inde-
pendently predicting GC prognosis (hazard ratio [HR]: 
4.21, 95% confidence interval [CI]: 2.23–7.9, p < 0.001) 
(Fig. 3A). A similar result was observed in the valida-
tion cohort (HR: 8.12, 95% CI: 2.46–30.5, p < 0.001) 
(Fig. 3B). We also established a nomogram based on the 
BICS, treatment line, age, sex, and brain metastases in 
the training cohort, which was also tested in the valida-
tion cohort (Fig. 3C, D). The BICS was found to contrib-
ute the most risk points compared to the other predictors 
(Fig. 3C, D).

To evaluate whether the BICS predicts prognosis in non-
ICIs patients, we additionally examined its association with 
outcomes in patients who received non-ICIs. Interestingly, 
there was no significant difference in PFS and OS between 
the high- and low-BICS subgroups in the non-ICI cohort 
(Fig. S6D, E). In the total ICI cohort, we confirmed that the 
BICS retained its ability to predict PFS and OS (Fig. 4A 
and S6C). Furthermore, ROC analysis showed that the BICS 
had excellent accuracy regarding 0.5-, 1-, and 2-year OS 
(AUC = 0.657, 0.701, and 0.746, respectively; Fig. 4B). In 
addition, patients with a high BICS had similarly reduced 
OS, regardless of treatment regiments, while patients with 
low BICS had equally prolonged OS (Fig. 4C). Strikingly, 
the BICS exhibited predictive value in patients who will 
achieve DCB (Fig. 4D). A combination of four variables 
was preferred to distinguish between the two clinical ben-
efit groups: increased variations of Treg cells were associ-
ated with NDB patients, whereas an increased percentage of 
CD3 + T cells, absolute CD19 + B cells, and CD3 + CD4 + T 
cells before the first scan was related to DCB (Fig. 4D).

BICS in patients with initial SD stratification

In patients whose first scan after treatment initiation was 
classified as stable, high-BICS patients had a worse OS 
than low-BICS patients (Fig. 5A), and the low-BICS group 
accurately identified 84% of patients eventually achieving 
a DCB (Fig. 5B). The results of two representative patients 
emphasize that BICS can identify patients with SD at the 
first evaluation, who may obtain a DCB from ICI. P26 had a 
low BICS before the first scan, while P47 had a high BICS. 
As predicted by BICS, at 14 weeks after therapy initiation, 
P47 exhibited progression at the second scan, while P26 had 
a durable benefit from ICI and achieved radiographic PR at 
40 weeks (Fig. 5C).

Use of the SVM in predicting optimal clinical benefit

To stratify our ICI cohort, “long-term survival with no dura-
ble clinical benefit (NDB_LS)” was defined using a com-
posite end point of NDB with OS > 1 year; these patients 

showed early progression from ICI (PFS < 6 months), but 
their OS exceeded 1 year (n = 16) (Fig. 6A). “Short-term 
survival with no durable clinical benefit (NDB_SS)” was 
defined as NDB with OS < 1 year (n = 37) (Fig. 6A). NDB_
LS patients were independent of anti-PD-1 regiments and 
cancer types (Fig. 6B). These NDB_LS and DCB patients 
were collectively referred to as “optimal clinical benefit” and 
they achieved a long PFS or an OS benefit from ICI therapy.

Unfortunately, BICS showed low values in optimal 
clinical benefit patient stratification (Fig. 6C). To address 
the patients with optimal clinical benefit stratification, we 
developed a series of machine learning algorithms (Materi-
als and Methods). First, these machine learning algorithms 
were used to perform a dimension reduction to reduce noise 
or redundant features. Based on the RFB, it was concluded 
that four important features affect the final stratification (Fig. 
S7A). The RFE recommends six features for the model with 
the highest level of accuracy (Fig. S7B–C). The elastic net 
model, using 20 of the 43 features, provides an impres-
sive segregation between optimal clinical benefit and non-
optimal clinical benefit (Fig. S7D). We further evaluated 
the classification performance of the SVM-RFE, RFB, and 
elastic net models and found that the SVM-RFE model out-
performed other models in both the training and validation 
cohorts (Fig. 6D). In the ICI cohort, the bootstrapping-gen-
erated accuracy and kappa value of optimal clinical benefit 
classification were compared across the SVM-RFE, RFB, 
elastic net, and BICS models. Consistent with the AUC com-
parison performance, the SVM-RFE model had significantly 
higher accuracy and kappa value compared to other models 
(Fig. 6E).

Discussion

Compared to traditional therapies, ICI treatments have 
demonstrated durable responses in various malignancies. 
However, not all patients experience durable responses, or 
prolonged survival in response to ICIs [21]. Recent analysis 
of TMB and tumor-infiltrating immune cells gene expression 
has provided value in recognizing patients most likely to 
respond to pembrolizumab, indicating the prospective value 
of these biomarkers in the selection of patients for immuno-
therapy [6, 22]. Although tumor biopsies are broadly used 
for assessing tumor PD-L1 expression and TMB, obtaining 
tissue can be challenging due to the heterogeneity of biopsy 
sites, risk of adverse events, and limited accessibility. In 
addition, some trials have shown that PD-L1 expression has 
an unsatisfactory predictive power, and, as such, the TMB 
still undergoes clinical evaluation [6, 23]. Given that the 
availability of predictive biomarkers is limited, there is a 
pressing need to identify a prognostic biomarker for immu-
notherapy. As one of the readily accessible biomarkers, 
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PBIMs enables early assessment of treatment response, 
which will facilitate early changes in management. Our study 
compared and integrated the differential variations of each 
PBIM before and after therapy, and subsequently included 
these differential variations as variables in the regression 
models. Despite data cleaning, complex patterns of corre-
lation between variables still existed. The high correlation 
present in the independent variables leads to an expansion 
of the standard errors of the regression coefficients, which 
makes the current regression model unstable [24]. The reg-
ularization of the coefficients can be applied to overcome 
the overfitting problem caused by multicollinearity [25]. 
Through the comparison of a series of machine learning 
algorithms, Lasso, as a type of regularized regression, can 
better limit the impact from multicollinearity. We utilized 
the Lasso Cox algorithm to identify immune-related PBIMs 
affecting OS and constructed a BICS based on PBIMs. The 
BICS proved to be a valid prognostic immune-related bio-
marker for patients with metastatic cancer, with better sur-
vival observed in BICS-low patients and worse survival in 
BICS-high patients in our ICI cohort.

The BICS comprised four PBIMs, including different 
variations in the percentages of Treg cells, CD3 + T cells, 
and the absolute CD19 + B cell and CD3 + CD4 + T cells 
counts. Indeed, alterations in Treg number and function 
have been previously described in patients receiving immu-
notherapy [26, 27]. Several studies have linked the accumu-
lation of Tregs to poor prognosis due to suppression of the 
antitumor immune response [14, 28, 29]. A decrease in early 
CD19 + B cells was also observed in NDB patients in our 
study, highlighting that B cell monitoring might more accu-
rately identify patients who will achieve NDB. In a study 
of patients with non-small-cell lung cancer, flow cytometry 
and RNA analysis revealed that the percentage of circulating 
CD4 + and CD8 + T cells correlated with inflamed tumors, 
indicating that all of these markers play an important role 

in the anti-tumor responses [30]. In the calculation formula 
of the BICS, the coefficients of Treg cells were negative, 
while the coefficients of CD3 + T cells, CD19 + B cells, and 
CD3 + CD4 + T cells were positive. Therefore, there was 
a negative relationship between BICS and CD3 + T cells, 
CD19 + B cells, and CD3 + CD4 + T cells, and a positive 
relationship between BICS and Treg cells. These data are 
consistent with the utility of these PBIMs in influencing the 
prognosis of metastatic cancer and the response to therapy in 
the ICI cohort. In conclusion, the BICS is a novel peripheral 
blood biomarker correlated with immunosuppression and 
tumor progression.

The BICS showed an early, robust, and non-invasive 
classification of DCB and NDB in a training and validation 
approach. In addition, the BICS performed well in differ-
ent subgroups of patients, such as those receiving various 
PD-1 treatment types, anti-PD-1 therapies with chemo-
therapy, or targeted-therapy. More importantly, patients 
with SD at the first efficacy assessment were better classi-
fied using BICS. The immune response elicited by immu-
notherapy prevents conventional imaging from accurately 
assessing its efficacy [31]. Indeed, 40% of patients (26/65) 
who achieved SD at the first scan eventually underwent 
NDB, demonstrating that objective responses evaluated 
by radiographic images do not accurately capture patients 
who are gaining benefit. The BICS consists of a range of 
immune cells and serves as an effective tool to identify 
patients with SD at the first scan who will benefit from ICI 
treatment in the long term.

Several clinical trials have demonstrated that immuno-
therapy significantly improves long-term OS, but does not 
influence PFS [32, 33]. Consequently, we aimed to combine 
the ICIs efficacy assessment and prognostic prediction. The 
designation “NDB_LS” is derived from the above clini-
cal trials in which some patients progressed early from ICI 
therapy (PFS < 6 months) but had an OS pattern lasting more 
than 1 year. The final aim of ICI therapy in patients with 
metastatic cancer is to yield long-term durable responses. 
There is an urgent need to recognize patients who may 
achieve optimal clinical benefit from ICI therapy (NDB_
LS and DCB) and to identify the non-durable responders 
(NDB_SS) for alternative anti-tumor options. We applied 
a series of machine learning models with the integration 
of PBIMs to identify which patients will achieve optimal 
clinical benefit from ICIs. Zhou and colleagues previously 
reported a prognostic model that was trained with immune 
cell profiles from the peripheral blood of multitype advanced 
cancer patients [34]. In the same notion, although differ-
ences in cancer types, our SVM-RFE model has shown 
unexpected performance in the ICI cohort, indicating that 

Fig. 4   A Kaplan–Meier analysis showed that patients with a higher 
BICS exhibited a worse OS in the ICI cohort. B Time-dependent 
ROC curve at 0.5-, 1-, and 2-year OS for BICS in the ICI cohort (0.5-
year AUC = 0.657, 1-year AUC = 0.701, and 2-year AUC = 0.746). C 
OS from the start of therapy stratified by BICS in patients in the ICI 
cohort treated with PD-1 single-agent blockade, PD-1 and chemother-
apy combination therapy, or a combination of PD-1 and targeted ther-
apy. D Clustered heatmap showing the four immune-related PBIMs 
that classify patients (represented in columns) into DCB or NDB 
groups. BICS: peripheral-blood-immune-cell-based signature; ICIs: 
immune checkpoint inhibitors; AUC: area under the curve; PD-1: 
programmed death 1; PD-L1: programmed death 1 ligand; DCB: 
durable clinical outcomes; NDB: no durable benefit; RCC: renal cell 
carcinoma; ESCC: esophageal squamous cell carcinoma; GAC: gas-
tric adenocarcinoma; SCLC: small-cell lung cancer; NSCLC: non-
small cell lung cancer; HCC: hepatocellular carcinoma

◂
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PBIMs influence immune function systemically and inde-
pendently of cancer type. Moreover, a recent report suggests 
that the prediction can be improved when integrating cir-
culating immune cell profiling and ctDNA [35]. Therefore, 
we expect that the performance of our model can be further 
improved by incorporating other peripheral immune-related 
analytes, including soluble plasma proteins, ctDNA, circu-
lating tumor cells, and cytokines.

Our study has some limitations. First, this was a ret-
rospective analysis, which included patients with dif-
ferent types of cancer who were exposed to heterogene-
ous PD-1 regimens. Nevertheless, we observed that the 
BICS exhibited similar performance regardless of the 
PD-1 regimen and tumor type. Second, we validated the 
BICS and SVM-RFE models in a relatively small number 
of patients, resulting in relatively broad CIs. Therefore, 

further validation in prospective and multicenter clinical 
trials will be necessary. Third, using flow cytometry alone 
may not capture the dimensionality of the factors respon-
sible for the ICI response. Therefore, the application of 
high-dimensional single-cell technologies to the analysis 
of cancer immunotherapy will be necessary. Finally, the 
efficacy of the BICS and classical immunotherapy-related 
markers was not assessed due to the lack of MSI, PD-L1 
protein expression, and TMB-related metrics. We will 
attempt to test this comparison in future studies.

In conclusion, our study provides evidence that PBIMs 
represent both prognostic and predictive factors for out-
comes. Moreover, our newly developed BICS based on 
early response assessment can stratify metastatic can-
cer patients into subgroups with different prognoses 
and diverse responses to ICI therapy. In addition, we 

Fig. 5   A Kaplan–Meier analysis showed that patients with RECIST 
SD at the first scan with a higher BICS exhibited a worse OS in the 
ICI cohort. B Pie charts demonstrate the proportions of patients with 
RECIST SD at the first scan. The analysis is split by those patients 
with a high BICS (n = 21) versus those with a low BICS (n = 44). C 

P26: Vignette for a patient with low BICS and SD at the first scan. 
P47: Vignette for a patient with high BICS and SD at the first scan. 
BICS: peripheral-blood-immune-cell-based signature; PD: progres-
sive disease; PR: partial response; SD: stable disease; DCB: durable 
clinical outcomes; NDB: no durable benefit
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Fig. 6   A Patients were stratified 
into response groups based 
on RECIST criteria (PR, SD, 
and PD), duration of OS, and 
duration of PFS. “Long-term 
survival with no durable clinical 
benefit (NDB_LS)” was defined 
as patients who achieved NDB 
with ICI therapy (OS > 1 year) 
(n = 37). An additional cohort 
of patients who achieved short-
term survival (OS < 1 year) after 
ICI treatment with early tumor 
progression (PFS < 6 months) 
was considered separately 
(n = 16). B Pie charts dem-
onstrating the proportions of 
NDB_LS patients. C Waterfall 
plot showing the correla-
tion of BICS with clinical 
status (NDB_LS, NDB_SS, 
and DCB). BICS: peripheral-
blood-immune-cell-based 
signature; DCB: durable clinical 
outcomes; NDB_LS: long-term 
survival with no durable clinical 
benefit; NDB_SS: short-term 
survival with no durable clinical 
benefit; NDB: no durable ben-
efit; PD: progressive disease; 
PR: partial response; SD: 
stable disease; RCC: renal cell 
carcinoma; ESCC: esophageal 
squamous cell carcinoma; 
NSCLC: non-small cell lung 
cancer; HCC: hepatocellular 
carcinoma. D Bar plot showing 
the AUC of each model for clas-
sifying NDB versus NDB_LS& 
DCB in both the training and 
validation cohorts. E The 
accuracy and kappa generated 
by bootstrapping for classifying 
NDB versus NDB_LS& DCB 
using the SVM-RFE, RFB, elas-
tic net, and BICS models. BICS: 
peripheral-blood-immune-cell-
based signature; SVM-RFE: 
support vector machine-recur-
sive and feature elimination; 
RFB: random forest and Boruta
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established the SVM-RFE classifier model with moderate 
performance in predicting optimal clinical benefit (NDB_
LS and DCB), which may improve the personalization of 
immunotherapy for patients with metastatic cancers.
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