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Cerebro-cerebellar networks facilitate
learning through feedback decoupling

Ellen Boven1,2,3, Joseph Pemberton1,3, Paul Chadderton 2, Richard Apps 2 &
Rui Ponte Costa 1

Behavioural feedback is critical for learning in the cerebral cortex. However,
such feedback is often not readily available. How the cerebral cortex learns
efficiently despite the sparse nature of feedback remains unclear. Inspired by
recent deep learning algorithms, we introduce a systems-level computational
model of cerebro-cerebellar interactions. In this model a cerebral recurrent
network receives feedback predictions from a cerebellar network, thereby
decoupling learning in cerebral networks from future feedback. When trained
in a simple sensorimotor task the model shows faster learning and reduced
dysmetria-like behaviours, in line with the widely observed functional impact
of the cerebellum. Next, we demonstrate that these results generalise to more
complex motor and cognitive tasks. Finally, the model makes several experi-
mentally testable predictions regarding cerebro-cerebellar task-specific
representations over learning, task-specific benefits of cerebellar predictions
and the differential impact of cerebellar and inferior olive lesions. Overall, our
work offers a theoretical framework of cerebro-cerebellar networks as feed-
back decoupling machines.

Learning ultimately depends on environmental feedback1,2. To learn
efficiently animals and humans must make good use of this feedback
to update their internal models of the world3,4. However, external
sensory feedback is inherently delayed and incomplete, thereby
reducing the rate and extent of learning in neuronal circuits3.
These observations suggest that the brain may employ a general
mechanism to facilitate learning when external feedback is not readily
available.

The cerebellum is a region of the brain specialised in building
predictive models4,5. In the classical view, the cerebellum learns pre-
dictive internal models on the motor domain5–10. Consistent with this
view are a large body of experimental observations for which cere-
bellar dysfunction causes motor learning deficits. However, more
recently, cerebellar dysfunction has also been associated with
impaired language processing, cognitive associative learning and
working memory11–15. An increasing body of behavioural12,14,16–20,
anatomical21,22 and imaging23 studies allude to a role of the cerebellum

in cognition in animals and humans. Taken together, these studies
suggest that the cerebellum learns internalmodels for bothmotor and
non-motor functions in linewith theproposeduniversal functional role
of the cerebellum across the brain, including the cerebral cortex9,24–26.

Despite growing experimental evidence there are no specific
computational models aiming to capture the functional roles of
cerebro-cerebellar interactions during learning of motor and non-
motor tasks. Building on recent deep learning developments we the-
orise that the cerebellum predicts future cerebral feedback signals
given current cerebral activity. This feedback predicted by the cere-
bellum is then sent back to the cerebral network to drive learning.
Specifically, we model a given cerebral area as a recurrent neural
network27–30 which receives feedback predictions from a feedforward,
cerebellar, network6,7. This view of cerebro-cerebellar interactions is in
line with the classical forward models of cerebellar function6,7, in that
in ourmodel the cerebellummakes forward predictions (i.e. generates
cerebral feedback predictions) given current cerebral activity.
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We test our model on a range of sensorimotor, pattern recog-
nition and visual-language tasks. Using these tasks we demonstrate
that cerebellar feedback predictions conveyed to the cerebral cortex
facilitate learning. Moreover, models without a cerebellar compo-
nent exhibit slower learning and dysmetria-like behaviours, con-
sistent with a wide range of behavioural observations11,14,31,32. Our
results indicate that the cerebellar-mediated facilitation of cerebral
learning relies on the ability of the cerebellum to provide effective
cerebral feedback predictions. Finally, we make several experimen-
tally testable predictions regarding cerebro-cerebellar representa-
tions, task-specific temporal feedback, cerebro-cerebellar activity
coupling and the different contributions of cerebellar output and
inferior olive for task learning.

Results
A systems-level computational model of cerebro-cerebellar
interactions
In order to understand how cerebellar computations may shape cer-
ebral processing, we introduce a cerebro-cerebellar systems-level
model based on a recent deep learning algorithm33. In line with pre-
vious work we model a given cerebral cortical area A as a recurrent
neural network (RNN)27–30 which is coupled with a cerebellar module
C— cerebro-cerebellar RNN (ccRNN). Wemodel the cerebellarmodule
as a simple feedforward network C (Fig. 1a) in line with the cerebellar
architecture6,7,9. The input layer of the cerebellar network mirrors
Granule cells (GC), and receives cortical activity a. The output layer
models Purkinje cells (PC) and provides cerebellar predictions back to
the cerebral cortex (see the “Methods” section). To capture the
dimensionality expansion observed between cerebral and cerebellar
networks we constrain ourmodel withM≫N, whereM corresponds to
the number of GCs, N the number of cerebral neurons and use the
same ratio found experimentally M

N ∼434,35.
We study the behaviour of our model in a range of tasks. To train

themodel we use a prediction error function Etask which compares the
model output with task-specific external feedback. Using standard
gradient descent methods we generate feedback signals of a specific
temporal horizon (see example of a RNN unrolled in time in Fig. 1b),
fbt, which is then used to update the RNN input and recurrent weights

(Fig. 1a; see the “Methods” section). For computational efficiency and
in line with previous models we use a time-discrete approximation of
time-continuous RNN models28.

Following our theoretical proposal, the cerebellar module C
learns continuously to predict cerebral feedback fbt given cerebral
cortical activity at. The cerebellar network is optimised through error
signals computed by comparing the actual cerebral feedback fbt at
time t with the cerebral feedback predicted by the cerebellum f̂bt .
We postulate that this comparison is done in an inferior olive-like
structure, EC

t = ∣∣fbt � f̂bt ∣∣
2, that generates error signals which are

used to optimise the cerebellar network (see the “Methods” section).
However, similar to external feedback, actual cerebral feedback is
not always available, which would impact the ability of the cerebellar
network to learn online to produce effective feedback signals. To
circumvent this problem we propose that the cerebellum learns
using its own feedback predictions when cerebral feedback is not
available (Fig. 1b)33. This leads to the following target feedback
fbt ∼ fbt +Cðat + 1Þ where fbt is the true cerebral feedback and
Cðat + 1Þ= f̂bt + 1 is a self-prediction term that enables the cerebellum
to learn online (see full details in Methods). Learning by self-
prediction (bootstrapping) is commonly used in reinforcement
learning and is of key importance in our model for the cerebellum to
learn to provide effective cerebral feedback predictions.

Cerebro-cerebellar model facilitates learning in a simple
sensorimotor task
Inspired by classical sensorimotor studies in the cerebellum, we first
test a simple visuomotor task11,31,32,36,37. In this task, the model must
draw a straight line in a two-dimensional space, expressed in x, y
coordinates, towards one of seven target locations given a target-
specific cue at the start of the task (Fig. 2a, top). We train a cerebro-
cerebellar RNN (ccRNN) and a cerebral-only RNN (cRNN) to perform
this task (see full details in “Methods” section). To train the models we
provide teaching feedback, by comparing the cerebral network output
with the optimal trajectory (i.e. a straight line between starting and end
points; Fig. 2a), where both feedback andmodel output are expressed
as x, y coordinates (but we observe similar outcomes using a more
realistic point-mass model for the output, Fig. S2). In addition, this
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Fig. 1 | Cerebro-cerebellar networks as feedback prediction machines.
a A recurrent cerebral cortical network A learns through external sensory feedback
given by a task-specific prediction errormodule ETask computed at the end of a task
fbT (top red arrow). The cerebellum aims to continuously predict the feedback
expected by the cerebral network f̂bt (blue) given current cerebral activity at
(black). The cerebellar network (i.e. granule cells; GC and Purkinje cells; PC) learns
through prediction errors (bottom red arrow) computed at the inferior olive
(diamond) by comparing predicted cerebral feedback f̂bt with actual cerebral
feedback fbt (light blue). Shaded boxes represent multiple cerebral areas and cer-
ebellar modules that may be interacting in parallel (see Fig. S1 for the same fra-
mework applied to decoupling across multiple brain areas). b Example of cerebro-
cerebellarmodel unfolded in time inwhich the cerebral network learns to associate

a cue given at t1 (x1, green) with feedback received at the end of the task, tT (cf.
Fig. 2). At the end of the task the cerebral network A receives external sensory
feedback fbT (red), which is transmitted to the cerebellar network as cerebral
feedback fbT (light blue). Here we highlight a case of cerebral feedback horizon
stopping at the end of the task T, but feedback may also be available earlier in the
task (dashed red arrows). The cerebellum generates cerebral feedback predictions
f̂bT (blue) givencerebral activityaT (black) and learns using inferior olive (diamond)
error signals (red arrow). Before tT cerebral feedback may not be readily available,
thus the cerebellum learns through self-predictions. In this case the inferior olive
(diamond) compares old cerebellar predictions (e.g. f̂bi) with the new one (e.g. f̂bT )
to generate cerebellar learning signals (red arrow; see main text and “Methods”
section for details).
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Fig. 2 | Cerebro-cerebellar model improves learning in a simple line drawing
sensorimotor task. a Schematic of a macaque monkey performing a simple line
drawing task (top left). A cerebro-cerebellar RNN (ccRNN) in the macaque’s brain
receives cue-specific input and learns to produce the desired trajectory (top right).
The temporal profile of input, output (dashed gray line represents the target tra-
jectory) and feedback are also shown (bottom right). There are six possible tar-
get lines (coloured dashed circles; plus a 7th target for which the model must
remain still) and feedback (dashed gray line) is provided at a regular interval
(bottom; see the “Methods” section). In the example shown themodel must draw a
straight line toward the green target. b Error between model output and desired
target trajectories for cerebellar RNN (gray, cRNN) and cerebro-cerebellar RNN
(orange, ccRNN). Insets: Model trajectory produced for all cues after learning.
c Dysmetria score for cRNN and ccRNN. The dysmetria score quantifies how
smooth the movement is after learning (see the “Methods” section). d Normalized
model mean squared error after learning for different cerebral feedback horizons.
Feedback horizon is denoted as a percentage of the total task sequence. Arrow
indicates the feedback horizon used by the cerebral network in the other panels.
e Euclideandistance between the cerebral RNNdynamics corresponding to the two
leading cue-specific principal components. Results are given for both the cRNN

(grey) and ccRNN (orange) models. Arrows highlight training sessions of cue-
specific demixed principal components (dPCs) plotted on the right for early (i),
early-mid (ii), mid (iii) and late (iv) learning, for both cRNN (top) and ccRNN (bot-
tom). Dashed lines represent the trajectory of the 2D neural dynamics throughout
the task (circle represents last timestep). f Normalised cue-specific explained var-
iance of the RNN for both cRNN (gray) and ccRNN (orange). Circular plot shows the
total explained variance for cue (medium-dark colours), time (light colours) and
cue-time interaction (dark colours) task variables. g Euclidean distance of the cue-
specific two-dimensional neural activity for the cerebellar network (orange, ccRNN
model). Arrows indicate training sessions highlighted on the right (i–iv) as in (e). In
contrast to the cerebral network (g) here there is no task trajectory enco-
ded—multiple circles represent the temporal points during the task.hNormalised
explained variance for cue-specific dPCs of the cerebellar network. Circular plot
colour-coding same as (f). ***p <0.001, ****p <0.0001 (two-sided paired t-test
between cRNN and ccRNN). The animal drawing used in (a) is available at https://
www.scidraw.io/drawing/445 with a Creative Commons license (https://
creativecommons.org/licenses/by/4.0/). Error bars represent mean± SEM across
10 different initial conditions. Source data are provided as a Source Data file.
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feedback is delayed with respect to the initial cue and incomplete (i.e.
only available every few time steps). This setupmodels amore realistic
setting inwhich task feedback is not always readily available.When this
feedback is available at time t we calculate the prediction error as
Etask = ∣∣lt � l̂t ∣∣

2, where lt is the desired two-dimensional trajectory (i.e.
set of feedback points; cf. Fig. 2 schematic) and l̂t is the current model
output given by a linear readout on the network activity at (see the
“Methods” section). Here we consider a feedback interval at every
other time step for both cRNN and ccRNN (but see below for more
general cases).

During learning the ccRNN model achieves near-zero error after
a relatively small number of training sessions, while the cRNN, which
lacks the cerebellar component, also learns butmore slowly and with
higher variability (Fig. 2b). These observations are in line with a large
body of cerebellar experiments11,31,32. In addition, we observe differ-
ences at the level of model output trajectories. While the ccRNN
produces smooth and straight trajectories, the cRNN displays amuch
more variable trajectory towards all targets (Fig. 2b). Due to the
sparse task feedback in the absence of a cerebellar network, the
cRNN is not able to learn a correct trajectory in points for which there
is no direct feedback thus overshooting the target trajectory. In
cerebellar patients, this effect is referred to as dysmetria38 which in
the motor domain results in ataxia. Ataxia is the lack of coordination
and fine control during voluntary movements, a defining
symptom resulting from cerebellar malfunction11,38. To evaluate the
degree of dysmetria-like output in our models we measure the error
between the model output and the optimal trajectory (i.e. a straight
line in this case; see the “Methods” section). When applying this
measure, the ccRNN shows a clear reduction in ataxia-like behaviour
compared to cRNN (Fig. 2c). Finally, we demonstrate the benefits of
our model compared to classical models in solving tasks of a
temporal nature. We trained both an Albus–Marr feedforward model
and a model with a fixed RNN on drawing tasks. Due to their
inability to perform temporal credit assignment, both models fail to
learn, and thus do not exhibit the same properties as the
ccRNN (Fig. S3).

To highlight the conditions for which the cerebellum may facil-
itate learning in cerebral networks we test different lengths of cerebral
feedback horizon (see the “Methods” section). Our results show that
the ccRNN only facilitates learning for short to medium feedback
horizons (<50%, Figs. 2d, S4). These results suggest that the cerebellum
is particularly important for cerebral learning in conditions in which
cortical networks do not have internal effective feedback available for
learning. This is consistent with experimental observations showing
that the cerebellum becomes more important in the presence of
challenging task conditions for which cerebral feedback might be
short39. In contrast, for long cerebral feedback, having a cerebellar
module harms learning. In this case, the cerebral network has the level
of feedback required to learn effectively, thus the noise inherent in the
cerebellar feedback can impair learning. This observation suggests
that the brain may use intermediate brain structures, such as the tha-
lamus and the pons to gate cerebro-cerebellar interactions depending
on task properties (see Discussion).

Next, to gain insight into how cerebral and cerebellar neu-
ronal representations evolve jointly during learning, we use a
dimensionality reduction method (demixed principal component
analysis (PCA); see the “Methods” section). Demixed PCA (dPCA)
enables us to extract low-dimensional neuronal representations
that capture maximum variance across task variables. First, we
focus on the two most informative cue-specific principal com-
ponents using the neural activities of the recurrent neural net-
work for both cRNN and ccRNN (see all components in
Figs. S5–7). Next, we calculated the two-dimensional Euclidean
distance across the seven different possible cues at each timestep
(see the “Methods” section). Our results show that the ccRNN

cerebral network is characterised by a stronger increase in the
separation of stimulus components over learning when compared
to the cRNN cerebral network (Fig. 2e). To contrast task-specific
components with general temporal information, we compare the
level of cue-specific and time-specific explained variance in both
models. In order to directly compare the cue-specific explained
variance of each component we normalise by the variance of each
component for the respective model. Overall, ccRNN captures
more cue-specific explained variance when compared with cRNN
(Fig. 2f), which demonstrates that ccRNN encodes more task-
relevant information in a task that requires the model to associate
the cue information with specific output trajectories. Next, we
applied dPCA to the activity of cerebellar neurons. Since the
cerebellar module facilitates cue-to-target learning we expected
cerebellar representations to be mostly dominated by task-
specific information. This is indeed what we find, our results
show that the distance between cue-related components is
stronger during periods of high learning (Fig. 2g; compare with
Fig. 2b; similar to a linear regression analysis, Fig. S8) and that
most of the variance is explained by cue-specific dPCs
(95.4%; Fig. 2h).

Overall, our results suggest that in the context of a simple sen-
sorimotor task, cerebellar-mediated decoupling of cerebral feedback
enables faster learning and smoothermotor trajectories. In addition, it
makes a number of experimentally testable predictions about the
evolution of task-specific cerebro-cerebellar representations
throughout learning.

Cerebro-cerebellar model improves learning in complex
sensorimotor and discrimination tasks
Under naturalistic conditions, both animals and humans have to learn
complex sensorimotor transformations40,41. To test whether the results
from the simple visuomotor task generalise to more realistic settings
we explore a range of more advanced sensorimotor tasks. In contrast
to the previous task in which sensory input (i.e. the stimulus) was only
provided at the start of the task, in these tasks the model receives a
constant stream of external input. In particular, ordered segments (i.e.
a row of 28 pixels; see the “Methods” section) of a handwritten digit
from the MNIST dataset (see the “Methods” section) are provided as
input and the model has to simultaneously draw a shape associated
with the digit (see a fewMNIST samples in Fig. S9).We refer to this task
setting in which input is provided over time as online. Given this input,
we consider two task variants (Fig. 3a) in which themodel has to either
draw a corresponding (i) straight line (online line drawing (LD) visuo-
motor task) or (ii) non-linear trajectory (online digit drawing (DD)
visuomotor task). Both tasks provide amore realisticmodel of drawing
tasks (cf. Fig. 2) in which lines must be drawn given complex con-
tinuous sensory input. As in the previous task, we consider cases of
sparse task feedback.

As in the simple visuomotor task, here the ccRNN learns faster
(Fig. 3b; across different stimulus noise levels, Fig. S10) than cRNN
while showing a strong reduction in dysmetria-like trajectories
(Fig. 3c). The ccRNN also facilitates learning when in the presence of
short to medium feedback horizon in the cerebral network (Fig. 3d).
Moreover, our model predicts that if the sensory input is compressed
in time, then the need for temporal credit assignment and therefore a
cerebellar module is reduced (Fig. S11).

There is growing evidence suggesting that the cerebellum is also
involved in non-motor tasks12,14,16–20. To test whether our observations
in the sensorimotor tasks generalise to non-motor domains while
using similar input statistics as the previous taskswe trained themodel
in a visual discrimination task. In this task, themodel receives the same
handwritten digits presented sequentially over time but now must
discriminate between the 10 classes of digits (online visual dis-
crimination task, Fig. 3a) and only receives external feedback at the
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end of the input presentation. In linewith the results in the visuomotor
tasks, wefind that ccRNN also facilitates learning in this task, achieving
higher accuracy after only 10 training sessions (Fig. 3b). Here we use
the certainty the model has about the current class as a measure of
dysmetria of thought42 (see the “Methods” section). Similarly to the
tasks above, we find that dysmetria-like behaviours are reduced in the
ccRNNmodel, which in this case shows that themodel produces more
accurate decisions (Fig. 3c). In line with previous tasks, a cerebellar
module facilitates learning in the presence of weak cerebral feedback
(Figs. 3d, S12). Finally, we have also used this task to highlight the
importance of cerebellar learning by self-prediction (i.e. boot-
strapping; Fig. S13). These results are in line with the growing number
of studies implicating the cerebellum in sensory discrimination and
decision-making tasks19,43,44.

Cerebellar-mediated learning facilitation depends on task
feedback interval
In sensorimotor tasks, there are physiological constraints inherent to
animals and humans which impose limits on the rate at which external
sensory feedback is available45–47. To determine the rate of external
feedback forwhich cerebellarpredictions aremost valuablewe trained
the model in two tasks (simple LD and LD visuomotor tasks) with a
range of external feedback intervals. This feedback interval defines the
rate at which external feedback is available for learning, resembling
sensorimotor feedback which is typically sporadic rather than
continuous11,48,49. We find that when external feedback is given at short
intervals there is little advantage of the feedback predictions from the
cerebellar component for both the simple LD and online LD visuo-
motor tasks, which is evident in dysmetria score (Fig. 4a, b) and

Fig. 3 | Cerebro-cerebellar model improves learning in online complex sen-
sorimotor and sensory discrimination tasks. a Model behaviour across three
tasks using a dataset of handwritten digits, each presented sequentially to the
network (Methods and main text). Online line drawing (LD) visuomotor task: given
temporally varying visual input themodel is trainedwith sparse feedback (red dots)
to draw a straight line (top left). Online digit drawing (DD) visuomotor task: given
temporally varying visual input the model is trained to draw a digit following a
template (top middle); target trajectories are in dotted grey and model input/
output is coloured by digit. Online visual discrimination task: pattern recognition
variant in which the model is trained to discriminate between 10 different digits
given as sequential input. A representation of the structure of the input (green),
output (green; target in grey) and feedback (red) for each task is also given (bottom

of each task). b Learning curves for the three tasks for both cerebral RNN (gray,
cRNN), cerebro-cerebellar RNN (orange, ccRNN). The cerebral network in all
tasks uses approximately cerebral feedback horizon of 10% (cf. d). c The
dysmetria score quantifies the irregularity in movement during the testing
phase of the model (online LD and DD visuomotor tasks) or the uncertainty in
the sensory discrimination (online visual discrimination task). d ccRNNmodel
performance relative to cRNN across different degrees of cerebral feedback
horizon (ns denotes not significant: p = 0.921 in the online LD visuomotor and
p = 0.567 in the online DD visuomotor). Arrow indicates the feedback horizon
used in (b, c). **p < 0.001 ***p < 0.0001, ****p < 0.0001 (two-sided paired t-test
between cRNN and ccRNN). Error bars represent mean ± SEM across 10 dif-
ferent initial conditions. Source data are provided as a Source Data file.
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training error (Fig. 4c). When the interval between external sensory
feedback is increased, the benefits of the cerebellar-to-cerebral feed-
back predictions in the ccRNN model become clear. In contrast, for
long feedback intervals, the feedback is too infrequent for either cRNN
and ccRNN to be able to successfully learn the task. Next, we per-
formed a detailed analysis of the co-dependency of the task (external)
feedback interval and the cerebral feedback horizon (Fig. 4d). Our
results show that ccRNN benefits learning and reduces dysmetria-like
behaviours for intermediate feedback intervals provided that the cer-
ebral feedback horizon is no longer than the task (external) feedback
interval. This is a consequence of the cerebellum in our model being
well placed to help the cerebrum learnwhenboth internal and external
feedback is not readily available.

Similarity between cerebellar and cerebral feedback is task and
learning dependent
The cerebro-cerebellar facilitation of learning shown above depends
on the ability of the cerebellum to provide the cerebral network with
effective feedback predictions. To study the level of similarity between
the predicted cerebral feedback and the theoretically optimal cerebral
feedback as provided by gradient descent methods, we calculated the
cosine similarity between cerebellar predictions and the optimal cer-
ebral feedback in a range of tasks (Methods).

First, we measure the cosine similarity for tasks in which external
sensory feedback is only provided at the end of the task — a variant of
the simple LD task with feedback only at the end and the online visual

discrimination. This task setup allows for an easier interpretation of
the similarity between cerebellar and cerebral feedback which should
decay gradually from the end to the beginning of the task sequence.
Indeed, we observe that the cerebellar-cerebral feedback similarity is
higher closer to the point in which external sensory feedback is
available (i.e. end of the task; Fig. 5a, b top; cf. Figs. 2, 3) and remains
high over learning in particular for later points in the task (Fig. 5a, b
bottom).

Next, we analyse the cosine similarity for conditions in which
external feedback is available throughout the task. For thiswe consider
the same visuomotor tasks as above (simple LD visuomotor, online LD
visuomotor and online LD visuomotor). In these tasks, we observe
more complex dependencies of the cerebro-cerebellar feedback
similarity on task properties (Fig. 5c, d). For the simple LD task, we
observe that the predictions made during earlier points in the task
become more similar than those at later points throughout learning
(Fig. 5c, d). These results suggest that the model tries to first learn to
align later points in the task and then gradually attempts to learn to
adjust earlier points. However, this is only possible in tasks such as the
simple LD, which have regular feedback and can be fully learnt (i.e.
achieve zero error). For the two remaining tasks, online LD and DD
visuomotor tasks, and in contrast with the simple LD the similarity
remains high throughout learning for later time points (Fig. 5d). This
reflects the more challenging nature of these tasks and the need
to continuously predict feedback as these tasks are never fully learnt
(i.e. error remains higher than zero; cf. Fig. 3).

Fig. 4 | Cerebellar-mediated facilitation of learning depends on task feedback
interval. a Dysmetria score during learning for short (light red), medium (red) and
long (dark red) levels of feedback interval for the simple and online LD visuomotor
tasks and both models cRNN (gray) and ccRNN (orange). Degrees of redness
b Difference in dysmetria score between ccRNN and cRNN for varying degrees of
task feedback intervals (ns denotes not significant: p =0.122 (30%),p =0.268 (40%),
p =0.142 (50%) for simple LD and p =0.444 (36%), p =0.209 (46%) for online LD).
Degrees of red in arrows indicate the respective interval as in (a) while the white
arrow indicates the feedback interval used in Figs. 2 and 3. Task feedback interval is

given as a percentage of the total task time. c Difference in training error between
cRNN and ccRNN for varying degrees of task feedback interval (ns for simple LD:
p =0.099). d Normalised training error integrated over learning (left) and dysme-
tria score at end of learning (right) of ccRNN with respect to cRNN for varying
degrees of cerebral feedback horizons and task feedback intervals (left: sim-
ple LD task; right: online LD task). **p <0.01, ***p <0.001, ****p <0.0001 (two-sided
paired t-test betweencRNNand ccRNN). Error bars representmean± SEMacross 10
different initial conditions. Source data are provided as a Source Data file.
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These results make predictions on when the cerebellum is able to
better align with the cerebral feedback, which depends on task com-
plexity, the properties of the task feedback, the exact taskposition and
the learning stage. In particular, (i) for tasks with feedback only at the
end (Fig. 5a), it predicts that cerebro-cerebellar feedback alignment
should decay rapidly, and (ii) for tasks with regular external feedback
(Fig. 5c) it predicts that cerebro-cerebellar feedback alignment should
be stronger when more external feedback is provided.

Learning shapes cerebro-cerebellar activity coupling
The cosine similarity results show that the cerebellar module learns to
predict cerebral feedback. Because the cerebellum maps cerebral
activity onto (predicted) cerebral feedback, this suggests changes in
the coupling between cerebellar and cerebral neuronal representa-
tions throughout learning. To study the degree of cerebro-cerebellar
couplingwe calculate the pairwise correlations betweenneurons in the
cerebral recurrent neural network and the neurons of the cerebellar
network (see the “Methods” section). Although we observe a relatively
small rise in the average cerebro-cerebellar coupling during the first
few training sessions, as training progresses, there is a consistent
decrease in the correlations (Fig. 6a).

To study more subtle changes in the correlation structure we use
standard principal component analysis on the obtained pairwise cor-
relations (Fig. 6b). The first principal component reflects the changes
in the average cerebro-cerebellar coupling (Fig. 6b). The second
principal component shows adelayed increasewith respect to thefirst,
followed by a sustained decrease in the cerebro-cerebellar coupling
(see Fig. S14 for remaining components). These results are consistent
with the need for the cerebellum to provide more effective feedback
and thus be more coupled in the earlier learning phases. To study
learning periods of consistent increases or decreases in coupling as
training progresses we tracked the changes in correlations of cerebro-

cerebellar pairs in early, mid and late learning (Fig. 6c). We observe
that early in learning—whenmost learning occurs— a large part of the
population shows a consistent increase in correlations, but this rapidly
changes as learning progresses with only a very small number of pairs
showing increases in correlations later in learning.

To better assess the contribution of a plastic cerebellum to the
cerebro-cerebellar coupling, we analysed a ccRNN in which the cere-
bellum does not learn. In this case we can still observe changes in
cerebro-cerebellar coupling over learning for some tasks, which reflect
changes in the RNN itself, but these are weaker when compared to the
normal ccRNN (Fig. S15a). Cerebro-cerebellar correlations remain high
throughout learning compared to a ccRNN with a plastic cerebellum.
This is supported by their low-dimensional representations: whereas a
plastic cerebellum leads to principal components that approach near-
zero values after the initial learning phase (Figs. 6b, S14), in the case of
the fixed cerebellum the principal components continue to fluctuate
throughout learning (Fig. S15).

Althoughourmodel suggests a long-termdecrease in the cerebro-
cerebellar activity coupling, it highlights sub-populations that increase
their coupling during specific periods of learning. This observation
follows from our proposal in that the cerebellum is trained to map
cerebral neuronal activity on cerebral feedback which depends on
learning.

Differential impact of cerebellar output and inferior olive on
learning
In experimental neuroscience, a common paradigm is to inactivate
the cerebellum in order to study its role in learning and behaviour.
Here we perform in silico lesion experiments to reveal the impact of
the modelled cerebellar feedback predictions during learning. First,
we test cerebellar output lesions at different points during learning.
In all tasks, we observe that inactivating the output of the cerebellar

Fig. 5 | Similarity between cerebellar and cerebral feedback is task and
learning-dependent. a Cerebro-cerebellar cosine similarity throughout task
sequences that do not require intermediate external feedback: a simple line
drawing with feedback only at the end of the task (LD end-only) and online visual
discrimination (ns denotes not significant: simple LD visuomotor p =0.212 (0%),
p =0.520 (25%); online LD visuomotor p =0.312 (0%), p =0.06 (25%),
p =0.067 (50%), p =0.386 (60%). Here and in subsequent panels, red arrows indi-
cate points inwhich external feedback is available. Cosine similarity throughout the
tasks is calculated across all training sessions (see the “Methods” section).
b Cerebro-cerebellar cosine similarity over learning for three-time points in the

task: early (turquoise), mid (blue) and late (purple) in the task (cf. a). c Cerebro-
cerebellar cosine similarity throughout the sequence for tasks with intermediate
external feedback: simple line drawing (LD), online LD, online digitdrawing (DD).
d Cerebro-cerebellar cosine similarity over learning for three different time points
in the task (early, mid and late as in b). Dashed black line represents zero similarity.
**p <0.01, ***p <0.001, ****p <0.0001 (two-sided paired t-test between cosine
similarity and zero). Error bars represent mean± SEM across 10 different initial
conditions (20 for the simple LD visuomotor end-only task). Source data are pro-
vided as a Source Data file.
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module in early learning impairs further learning and performance
(Fig. 7a, b). This is expected as the cerebellar network provides
feedback predictions that facilitate cerebral learning. Interestingly,
we observe that when the cerebellum is suddenly removed learning
becomes worse than in the baseline model. This is likely due to the
additional time taken to adapt to a new learning trajectory that no
longer relies on cerebellar prediction. In contrast, cerebellar lesions
performed later in learning do not have an impact on the simple LD
visuomotor task, which is explained by the fact that for this task the
model can achieve near-zero error, thus learning signals provided by
the cerebellum are no longer needed. However, for all the online
tasks we observe that inactivating the cerebellum even at later stages
damages task performance. In these more realistic tasks, the cortical
network still relies on the feedback provided by the cerebellum as it
does not fully learn the task. Our results indicate that lesion studies
should reveal a task-dependent nonlinear role of the cerebellum on
cerebral learning.

Next, we assess the impact of disrupting cerebellar learning by
modelling a complete lesion of our inferior olive-like error module
(see the “Methods” section). This manipulation effectively stops
cerebellar learning, thereby impacting the ability of the cerebellum
to provide informative feedback learning signals to the cerebral
network which may prevent the cerebral network from learning by
perturbing its own learning trajectory. For all of the tasks that we
model, inactivating cerebellar learning has a strong impact
throughout training, making the model return to naive performance
(Fig. 7c, d). Thus, simulated “inferior olive” lesions predict that if the
cerebellum cannot learn it would result in a stronger negative impact
on task learning than ablating the cerebellum itself, in line with
recent experimental observations50. This further suggests that it is

critical for the cerebellum to learn rapidly to be able to provide
informative predictions.

Cerebro-cerebellar model facilitates learning in a
visual-language task
Our framework does not only apply to sensorimotor tasks but should
generalise to virtually any task within the grasp of current neural net-
work models. To test the generability of our model and inspired by
language tasks in which cerebellar patients have shown deficits14,51–54

we test our models in a caption generation task which models the
recreating sentence task studied by Guell et al.14. In this task the net-
work needs to generate a textual description for a given image, similar
to the task conducted by Guell et al.14. All models have two compo-
nents: a pretrained convolutional neural network (CNN) that extracts a
lower dimensional representation of the image, and a cRNN or ccRNN
on top which is trained to map the low dimensional visual input to
captions that describe the image (Fig. 8a).

We use a standard machine learning dataset55 and the networks
are trained to predict the next word (see the “Methods” section). We
find that ccRNN models can exhibit faster learning (Fig. 8b) and
better generalisation56 (Fig. S16) when in the presence of short cer-
ebral feedback horizons (≤40%, Fig. 8d). All models produce rea-
sonable captions for images unseen during training, but ccRNN
models tend to produce captions that better capture the context and
semantics of the task (Figs. 8c, S17), consistent with the poorer
descriptions of images generated by cerebellar patients14. In our
model, the ability to generate more accurate textual descriptions of
images is due to the ability of the ccRNN model to perform better
temporal credit assignment by providing feedback estimates beyond
the cortical feedback horizon.

Fig. 6 | Cerebro-cerebellar neuronal activity coupling over learning.
aDistribution of pair-wise cerebro-cerebellar absolute correlation coefficients over
learning for four tasks: simple LD, online LD, online DD and online visual dis-
crimination. Orange line shows mean correlation coefficient. Boxplot shows med-
ian (horizontal dark orange line), interquartile range (IQR; box with centre at
mean); whiskers show respective quartiles extended by 1.5 × IQR, where circles
denote individual outliers beyond this range. Fully fixed ccRNN (i.e. without any
formof plasticity inboth networks) is given for reference (dashed line).bChange in

first two principal components of cerebro-cerebellar pair-wise correlation coeffi-
cients over learning (all components available in Fig. S14). c Cumulative plot of
cerebro-cerebellar pairs with positive and negative changes in absolute correlation
coefficients in early (session 1),mid (session 25) and late (session 80) learning. Data
grouped across 10 different initial conditions, where for each condition we sample
600 active pairs for the simple LD visuomotor task and 1000 active pairs for the
online tasks (see the “Methods” section). Source data are provided as a Source
Data file.
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Finally, we use a language metric (SPICE57) to measure the quality
of the generated captions. These results show that the ccRNN gen-
erates richer captions and that it is particularly beneficial for longer
captions (Fig. 8e). This suggests that ccRNN is able to learn richer
visuo-language contextual information.

Discussion
Inspired by recent deep learning developments, here we have intro-
duced a systems-level computational model in which cerebellar net-
works predict cerebral feedback (Fig. 1). In this scheme cerebro-
cerebellar loops decouple cerebral cortical networks from future
feedback signals. We show that the ccRNNmodel accelerates learning
and improves task behaviour in a range of sensorimotor and cognitive
tasks (Figs. 2, 3 and 8). Our results are consistent with observedmotor
and cognitive deficits in cerebellar patients. Our model makes a
number of predictions in terms of (1) task properties (Figs. 4 and 5), (2)

cerebro-cerebellar representations and coupling (Figs. 2 and6), and (3)
thedifferential roleof the cerebellumand the inferior olive throughout
learning (Fig. 7).

Experimental studies have shown that incomplete or delayed
external sensory feedback is important for learning46,58,59. Our model
proposes that the cerebellum plays an important role in facilitating
motor learning when in the presence of incomplete or delayed feed-
back. Furthermore, our work suggests that cerebro-cerebellar networks
are ideally placed to facilitate learning when task feedback is presented
intermittently, at medium frequencies with respect to the task
sequence. Similarly, our results suggest that cerebellum-dependent
dysmetria should bemore prevalent for tasks with intermediate to long
inter-feedback intervals. Although there is a wide range of studies
investigating the role of external sensory feedback in learning58,60 and
the precise timing of feedback is known to be important for cerebellar
function10,61, it remains to be tested what are the optimal properties of

Fig. 7 | Inactivating cerebellar output and inferior olive have a differential
impact on learning. a Complete cerebellar lesion at different points during
learning. Vertical lines represent at which point during training the cerebellumwas
inactivated in the ccRNN model. In gray and orange are shown the baseline per-
formances of the cerebral RNN and ccRNN, respectively. b Normalised error after
cerebellar lesion throughout learning with respect to ccRNN (ns denotes not sig-
nificant: simple LD visuomotor p =0.062 (session 150), p =0.162 (session 475)).
Gray denotes normalised error for cRNN. c Complete inferior-olive lesion at

different points during learning. Vertical lines represent point of lesion of the
ccRNN model. In gray and orange are shown the baseline performances of the
cerebralRNNandccRNN, respectively.dNormalised error after inferior-olive lesion
throughout learning with respect to ccRNN. Gray denotes normalised error for
cRNN. *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001 (two-sided paired t-test
between ccRNN (ablation) and ccRNN (control)). Error bars represent mean± SEM
across 10 different initial conditions. Source data are provided as a Source Data file.
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task feedback for learning. Taken together, we suggest cerebellar-
mediated feedback predictions to be particularly important for tem-
porally challenging tasks with sparse feedback.

Our representational analyses demonstrate that the cerebellum
develops task-specific representations. Recent fMRI studies have
observed that different regions of the cerebellum encode task-
specific representations for different task domains23,62. Similarly, our
model predicts the need for different cerebellar modules to provide
feedback estimations to the cerebral cortex for specific task
domains. We have also studied the level of coupling between cere-
bellar and cerebral neural activity. Our results demonstrate an initial
rise in correlations which coincides with steep periods of learning
followed by a general decay in the coupling during the remaining
periods of learning. This general decay in coupling is also reflected in
our simulated cerebellar lesions which echo the existing literature in
that after a task is consolidated in the cerebrum it becomes less
cerebellar-dependent63,64.

In line with previous theoretical accounts6,7,9 we suggest that the
cerebellar error function is computed by the inferior olive, which
drives learning in the cerebellum via the climbing fibres. This cere-
bellar error function is a combination of true sensory feedback and
self-predicted (bootstrapped) error signals (Fig. 1b), which is analo-
gous to the bootstrapping principles commonly used in reinforce-
ment learning65. The use of self-predictions in the cerebellum
suggests the existence of different forms of feedback to the inferior
olive from potentially multiple cerebellar modules66, consistent with

cerebellar-inferior olive connectivity67. Moreover, when ablating the
inferior olive we show that task performance becomes severely
impaired. This is due to the cerebellum being unable to learn,
thereby providing irrelevant feedback signals back to the cerebral
cortex. These results suggest non-trivial consequences of lesions for
cerebro-cerebellar interactions.

While our model is consistent with experimental observations,
there are several biological features that we have not considered. In
particular, experimental studies suggest that the cerebellum can influ-
ence cerebral learning processes via its projections via the thalamus68–71.
This is in line with ccRNN in which the cerebellum predicts feedback
signals that contribute directly to cerebral learning. However, we have
assumeddirect long-rangeprojectionswith the cerebral cortexwhereas
in biology these projections are mediated through the thalamus and
pons. It is possible that both structures may provide bottlenecks that
filter out non-relevant information, such as poor estimated feedback
(Figs. 2d, 3d) that would impair cerebral learning. In addition,
cerebellar-thalamic-cerebral projections are known to target distal
dendrites of pyramidal cells72,73, which have been proposed to encode
feedback error signals by biologically-plausible deep learning
models74,75. These dendritic-encoded error signals are akin to the gra-
dient descent errors that we use to model cortical feedback signals. In
futurework, it would be of interest to combine our workwith biological
gradient descent models.

Throughout this paper, we have assumed the existence of cerebral
prediction errormodules,which compare theoutput of a given cerebral

Fig. 8 | Cerebro-cerebellar model facilitates learning in a visual-language task.
a Schematic of the model used in a visual-language task. The image is first pro-
cessed by a (pretrained) convolutional neural networkmodelling the visual cortex.
The resulting featurevector is thenprovided to the cerebral RNNwhich is trained to
predict the next word given the previous words of a provided “gold standard”
image caption. The cerebellummodule C is only applied to the cRNN. Top left: task
structure with example input image and words (green), ccRNN output words
(orange) and target caption (red). b Learning curves in bits per word (BPW), lower
values indicate better understanding of the language on validation set for cerebral
feedback horizon of four timesteps (inset shows complete learning curve). c Two

example images from the validation set with corresponding model captions and
gold standard captions (black). The images shown here were generated on dee-
pAI.org for illustration purposes only. d Normalised model performance across
different degrees of feedback horizon in the cerebral network (ns denotes not
significant: p =0.891 (40%), p =0.116 (45%)). e Normalised caption score (see the
“Methods” section) as a function of caption length (ns: p =0.075 (short), p =0.189
(medium)). *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001 (two-sided paired t-test
between cRNN and ccRNN). Error bars represent mean± SEM across 10 different
initial conditions. Source data are provided as a Source Data file.
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areawith the desired task output to generate a feedback teaching signal
for the cerebral cortex. There is evidence of prediction errors across
different brain areas, for example, sensorimotor prediction errors in the
neocortex76,77 or reward prediction errors in the VTA1,78. For simplicity,
here we have focused on supervised (Figs. 2, 3) and unsupervised
(Fig. 8) prediction errors, but these can in principle be readily replaced
by reward-based prediction errors1,79. This would predict reward-
specific encodings in the cerebellum as observed recently80–82. Indeed,
our model is of particular relevance to reinforcement learning due to
the prevalence of sparse and delayed rewards (Fig. 4).

Finally, our model shares common features with classical internal
models of the cerebellum6,7 (Table S1). In the forward model of sen-
sorimotor control, the cerebellum receives an efferent copy of the
motor commands and the respective external sensory feedback8,83.
With these two input streams, the forwardmodel learns to predict the
sensory consequences of motor commands. We and others have
argued that a similar predictive model can in principle be applied to
higher-order brain regions such as the prefrontal cortex and the
temporo-parietal cortex which are involved in the planning of cogni-
tive behaviour and decision-making16,17,24,26 (Fig. 1a). In line with for-
ward models, the cerebellar module of ccRNN receives an efferent
copy of the cerebral neural activity and cerebral feedback. Given these
signals, the cerebellum learns to predict future cerebral feedback.

Overall, our work offers a theoretical framework with which to
study cerebro-cerebellar interactions, being consistent with experi-
mental observations while making a large number of testable predic-
tions across multiple levels of interrogation.

Methods
In all our experiments wemodel a cerebral area A as a long short-term
memory recurrent neural network (LSTM)84 with parameters θ which
has recently been mapped onto cortical microcircuits85. A (trained)
linear readout is attached to the LSTM output states which provides
the final model output to a supervised error module Etask, which below
we refer to as E.

In the cerebro-cerebellar RNN model (ccRNN) we attach a feed-
forward cerebellar module C with independent parameters Ψ to the
RNN with reciprocal connections (Fig. 1). The cerebellar module is
equivalent to the “synthesiser” as used by Jaderberg et al.33 in the
backward case. That is, the cerebellar module receives a copy of the
RNN activity at (both cell and output LSTM states) and sends back a
prediction of the future feedback (or error gradients) with respect to
that activity, C(at).

To generate the desired cerebral temporal feedback (error gra-
dients) we use backpropagation through time (BPTT86). To highlight
the link between BPTT-derived feedback and the cerebellar predicted
feedback we start out from first principles closely following Jaderberg
et al.33,87. BPTT is the standard solution to generate feedback with
respect to parameters θ in artificial recurrent neural networks. Sup-
pose that the task is of length T, full BPTT considers all error signals

from current time t up to the end of the task T,
PT

t0 = t Et0 , and defines

parameter updates as θ← θ−αΔθ where Δθ=
PT

t0 = t
∂Et0
∂θ . Note that the

summation goes forward in time, but for each t0 with external feedback
there is a BPTT feedback that is calculated backward in time until t
(Eq. 1). However, doing full BPTTmeans thatwehave to store the entire
sequence of computational steps to then generate feedback with
respect to a given point in time t. Instead, in practice, BPTT over a
limited time horizon (or truncation) K— known as truncated BPTT— is
commonly used (Fig. 1):

XT

t0=t

∂Et0

∂θ
≈
XK

t0 = t

∂Et0

∂at

 !
∂at
∂θ

= fbt0
∂at
∂θ

ð1Þ

where fbt0 designates the gradient information derived from the K-
horizon BPTT and which we refer to as cerebral feedback (see dashed
red lines in Fig. 1b). This is appealing both from a computational and
biological perspective as it prevents long sequences of BPTT. Indeed,
one might consider the imposed horizon K as a constraint of the ner-
vous system in retaining temporal information.

However, by enforcing a temporal horizon of K steps RNNs lose
the ability to perform long temporal credit assignments. In ourmodel,
the cerebellum recovers the ability to perform longer temporal credit
assignments. In particular, the cerebellum in the ccRNN is tasked with
predicting future feedback/gradients giving the current state of the
cerebral RNN (Eq. 1), thereby providing feedback estimates to the RNN
that go beyond theK-horizon. The final error gradient used by the RNN
is then a combination of cerebral and cerebellar feedback as follows:
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where C(aK) denotes the cerebellar predictions of future feedback
beyond horizon K and ∂aK

∂at
represents the changes in cerebral activity

over time. Note that the cerebellum predicts future feedback with
respect to the RNN activity at the end of cerebral feedback horizon
(i.e. aK). Also note that if we set CðaK Þ=0 then we simply have the
standard truncated-BPTT formulation (Eq. 1). The parameters
updates can then, in principle, be performed at the beginning of
each horizon (i.e. K time step) or accumulated with the other
updates and performed jointly at the end (see more on this point in
the Experimental Details below).

A key consequence of the cerebellum predicting future feedback
is that strong or long feedback signals (i.e. T≫0) are no longer
necessary, thus decoupling learning in the cerebral network from
future feedback signals. For this reason, we focus on weak forms of
BPTT with relatively small temporal horizons, in which we model only
K time steps of feedback into the past froman error signal E (truncated
BPTT as defined above). In our experiments the size of K — which we
report as a percentage of the task length (cerebral temporal hor-
izon) — varies but is generally small. For example, for the simple line
drawing taskwe used a one-stepBPTT (i.e.K = 1; Fig. 2). Note that in the
main text as we describe a simpler case of K = 1 (as used in the simple
line drawing task) we use C(at) to refer to the cerebellar feedback
prediction from the end of the current horizon, i.e. CðatÞ=CðaK Þ ∂aK∂at

.

Cerebellar learning
The cerebellar parameters Ψ are themselves learnt but to optimise a
distinct, specialised error EIO which we posit to be computed at the
inferior olive, the classical teacher of the cerebellum6,7. This is defined
by the difference between cerebellar output and a target feedback
signal fbt , i.e. E

IO
t = ∣∣CðatÞ � fbt ∣∣. Similar to the cerebral network we

update cerebellar parameters using gradient descent: Ψ←Ψ−αIOΔΨ,
where ΔΨ= ∂EIO

∂Ψ .
Ideally, we would simply set the target feedback as the true

(desired) cerebral feedback. However, this would require an arbi-
trarily long number of steps of true cerebellar feedback, exactly what
we propose that is not required with a cerebellar network. How
should the cerebellum itself learn about future feedback? One ele-
gant solution, which we take from Jaderberg et al.33, is to combine the
currently available error with bootstrapped future cerebellar pre-
dictions (i.e. self-predictions). Formally, using the same notation as
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Eq. 2, the trained target for C(aT) is

fbT =
∂E ≤ 2T

∂aT
+Cða2T Þ

∂a2T
∂aT

ð3Þ

Note the resemblance of Eq. 3 to Eq. 2: in each case, we consider a
mixture of nearby “cerebral” error signals beyond which we rely on
cerebellar prediction. It is also useful to compare Eq. 3 with standard
reinforcement learning rules (e.g. temporal difference learning algo-
rithm) which rely on similar bootstrapping principles65. We verify the
importance of the bootstrap component in the online visual dis-
crimination task (Fig. S13).

Continuous and discrete time versions of RNN
To infer approximate timescales of the RNNwe follow the approach of
Song et al.88 in considering its continuous-time dynamics. In particular,
we canexpress a general continuous timeversion of LSTMdynamics as

f = σ θin
f x+ θrecf a+bf

� �
ð4Þ

i= σ θini x +θrec
i a +bi

� �
ð5Þ

o= σ θin
o x+θrec

o a+bo

� �
ð6Þ

~c= tanh θinc xt +θ
rec
c a +bc

� �
ð7Þ

τ _c= � ð1� f Þ � c+ i � ~c ð8Þ

a=o � c ð9Þ

where f, i, o denote the LSTM forget, input, and output gates,
respectively, ~c, c, a denote the candidate cell state, cell state, obser-
vable state, respectively. σ denotes the logistic function
σðxÞ= 1

1 + expð�xÞ. We use _c= ∂c
∂t to denote the derivative of the cell state

with respect to time which is scaled by the neuronal time constant τ.
We set τ = 100ms in line with previous RNN-based models88,89 for all
tasks except the more cognitive image captioning task for which we
assume a slower time constant τ = 200ms. Theweight and bias vectors
θin, θrec, b are to be learned during training.

Applying a first-order Euler approximation on equations with a
time-discretization step Δt then yields

f t = σ θinf xt +θ
rec
f at�1 +bf

� �
ð10Þ

it = σ θin
i xt +θ

rec
i at�1 +bi

� �
ð11Þ

ot = σ θin
o xt + θ

rec
o at�1 +bo

� �
ð12Þ

~ct = tanh θinc xt +θ
rec
c at�1 +bc

� �
ð13Þ

τct = ð1� αÞct�1 +αf � ct�1 +αi � ~ct ð14Þ

at =ot � ct ð15Þ

where α = Δt
τ . In our experiments, we use α = 1 which recovers the

standard dynamics of the discrete LSTM84. In this case, the length of
each timestep is the same as the neuronal time constant, i.e. Δt = τ.

Other biological mappings of our framework
Here we describe other possible mappings between the proposed
framework (cerebellum as a decoupling machine) and forward and
feedback processing in the cerebral cortex.

Cerebellum as a spatial feedback decoupler. Our paper focuses on
temporal problems being solved by a cerebral area modelled as a
recurrent neural network (RNN) to which a cerebellar network pro-
vides predictions of future errors/feedback with respect to that area.
An analogous biologically relevant system also arises, however, when
one considers cerebral processing in space using feedforward com-
putations involving several distinct regions (Fig. S1).

This setup—where the “main” (cerebral) network is a feedforward
composition of multiple brain regions — was also considered in
Jaderberg et al.33. Now, as opposed to predicting errors that occur
strictly at later points in time, the role of the cerebellar network is to
predict errors which occur in later brain regions. The result is that an
earlier region has access to its feedback (predicted by the cerebellum)
without the need to wait for the later forward/backpropagation of
spatial activity. Formally, if (with abuse of notation) we assume cere-
bral processing as a sequence faigNi= 1 of feedforward computations:
A(x) = (aN ∘ aN−1 ∘⋯ ∘ a1)(x) which defines a final error function E AðxÞð Þ,
then the cerebellar network can provide predicted feedback at a given
brain area as soon as its activities are computed: CðaiÞ : = f̂bi =

∂̂E
∂ai

≈ ∂E
∂ai
.

This perspective could effectively speed-up feedback processing
across the brain. This interpretation of the model is consistent with
cerebellar-thalamo-cerebral projections targeting distal dendrites,
which have been proposed as the site of error or feedback encoding
which underlies efficient hierarchical learning74,75.

Cerebellum as a forward decoupler. In classical cerebellar theory,
the complement to the forwardmodel hypothesis is the inversemodel,
in which the cerebellum predicts motor commands5, or even implicit
mental predictions to solve a problem24, directly. Again we can con-
sider this under the proposed framework, but now using its forward
prediction version.

In this case, the role of the cerebellum is not to predict future
feedback activity, but the feedforward activity itself, i.e., CðaiÞ= âj for
some later region j > i. âj is fed as a replacement to region j, making it
forward decoupled from a potentially slower intermediate processing
aj ∘ aj−1 ∘⋯ ∘ ai+1.

Functionally thiswould provide the organismwith fast inputs (e.g.
motor commands or potential mental solutions) without the need for
potentially slower cerebral processing (Fig. S1b). We also point out the
relevance of direct predictions of later activity in the temporal case,
where the cerebellum strictly predicts motor activity at later time-
steps, as suggested in ref. 90. A broad comparison between this fra-
mework and the cerebellar internal model hypothesis is shown in
Table S1.

Experimental details
To reduce learning instability we scale the cerebellar predicted feed-
back (Eq. 2) by 0.133. Both cerebral and cerebellar parameters are
optimised using the feedback described above together with ADAM
for overall learning efficiency91. Training the model involves iterating
over training sessions for a given dataset, which is split into batches.
During training, model parameter gradients are accumulated over the
truncations within the batch (as defined by the cerebral feedback
horizon) and the parameters are updated at the end of the batch. Note
that for ccRNN these updates could in principle take place after each
individual truncation since the error gradient will always at least con-
tain the cerebellar prediction. However, because ADAM increases the
learning rate in the presence of small gradients, as is the case of
cerebellar-derived gradients, updating at every truncationwouldmake
the ccRNN–cRNN comparison unfair. We conducted tests in which we
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updated parameters at every truncation and we get qualitatively
similar results.

In each experiment, all initial RNN parameters are drawn from a
uniform distribution Uð� 1ffiffiffiffiffiffiffiffi

nRNN
p , 1ffiffiffiffiffiffiffiffi

nRNN
p Þ, where nRNN is the number of

RNN units. The weights of the readout network and the feedforward
weights of the cerebellar network (other than the final layer) are
initialised according to Uð�bk ,bkÞ where bk denotes the “kaiming

bound” He et al.92 (slope s =
ffiffiffi
5

p
), and the biases are drawn from

Uð� 1ffiffiffiffiffi
nin

p , 1ffiffiffiffiffi
nin

p Þ, where nin denotes the input size of the layer. The last

layer (both weights and bias) of the cerebellar network is zero-initi-
alised, so that the estimated feedback at the start is zero33. This initi-
alisation makes learning overall more stable but does not change our
results qualitatively. To demonstrate this we do not zero-initialise the
cerebellar output in one of the tasks (simple visuomotor task).

During learning, we employ truncated BPTT as follows. Given
an input sequence of N timesteps x1, x2,…, xN and a temporal
horizon K, we divide the sequence into K sized truncations. In
other words, the sequence is now made up of truncations of
(x1,…, xK),…, (x(m−1)K+1,…, xmK), (xN−r,…, xN), where N =mT + r for
positive integers m, r with 0 ≤ r < K. Note that, along with the value
K, how well the sequence is divided into truncations (i.e. values
m, r) can itself influence learning (e.g. Fig. 3d).

In the all visuomotor tasks, to test the effectof predicted feedback
against the availability of task feedback signals which occur at any
timestep where an external teaching signal is provided, we vary the
external feedback interval. Given feedback interval n, the target is only
available every n timesteps. This is analogous to the rate at which one
receives sensory information whilst performing a task (e.g. drawing
freehand).

The error with respect to these (potentially sparse) available tar-
gets is reported as the training error in the main text, or simply error.
For the drawing tasks, we also consider the total error with targets at
every timestep, whether available during training or not. This quanti-
fies the “smoothness’ of the model output (i.e. the straightness of the
line between two available targets).We refer to thismetric at the endof
training as the dysmetria score. For the visuomotor discrimination task
we define the dysmetria score as 1minus the probability of themodel’s
most likely choice, which quantifies the model uncertainty.

Hyperparameters are standard and were selected based on mul-
tiple trial runs.

Delta and normalised error: To calculate the delta and normalised
error with respect to a given model we take the difference or ratio of
total errors during learning (all training sessions). For example, the
normalised errorof ccRNNwith respect to cRNN is errorðccRNNÞ

errorðcRNNÞ . Note that
in the ablation case we compare against a “healthy” ccRNN and only
consider the respective errors post-ablation. e.g. the normalised error
for a model with cerebellar ablation at session 50 is errorðablatedÞ > 50

errorðccRNNÞ > 50
.

Cerebro-cerebellar coupling: To analyse how the coupling between
the cerebral and cerebellar networks changes over learning we con-
sider the (absolute) Pearson correlation between a given cerebral
(LSTM) unit and a given unit in the cerebellar hidden (granular) layer
over different bins during training. Values given are the average cor-
relation over all RNN/cerebellar unit pairs. The PCA analysis is per-
formed on the time × cerebro-cerebellar pairwise correlation
coefficient matrix.

We found that towards the end of learning, several units in the
cerebellar hidden layer became silent. This led to undefined pairwise
correlations for those units. For this reason, we sampled pairs of units
that were active (non-zero) throughout training. For the simple LD
visuomotor task, we sampled 600 pairs for each initial condition
(6000 pairs in total); for the online tasks, we sampled 1000 pairs for
each initial condition (10,000 pairs in total).

Computing details: All experiments were conducted on the Blue-
Pebble supercomputer at the university of Bristol; mostly on GPUs

(GeForce RTX 2080 Ti) and some on CPUs. We estimate the total
compute time (including unreported results) to be in the order
of ~2000 h.

Simple line drawing visuomotor task. In the simple line drawing
task, an LSTM network receives a discrete input cue that signals the
network to either (1) do notmove or (2) draw a line in 2D space over a
period of 10 timesteps. Here we set 6 distinct non-zero input-target
pairs fðxi,yiÞg6i = 1, where each input xi is a (one dimensional) inte-
ger∈ {±1, ±2, ±3}, and the targets fyig6i = 1 are lines whose endpoints lie
equidistantly on a circle centred on the origin with radius 10. To
make the task more realistic we also consider a 7th target in which
the network must remain quiet at the centre of the drawing screen,
modelling periods in which the animal is not actively performing the
task. Once an input cue is received at timestep t0, themodel receives
no new information (i.e. all future input is set to zero). The model is
trained to minimise the mean squared error (MSE) between its
output and the cue-based target. External sensory feedback is pre-
sented as the target line sampled every other time step starting from
the first time step.

The cerebral network ismodelled by one hidden layer of 50 LSTM
units and the cerebellar network by one hidden layer of 400 neurons.
The learning rate is set to 0.001. Each epoch comprises 16 batcheswith
50 randomised examples. Unless explicitly stated we use a truncation
size of K = 1 which covers 10% of the total task duration. Model results
are averaged over 10 random seeds (with error bars), where each seed
determines the initial parameters of the network.

Online visuomotor tasks. For each online visuomotor task (Fig. 3) we
use a standard dataset of handwritten digits (MNIST dataset). Unlike
the simple line drawing task, the model now receives a temporal
stream of input. In particular, given a 28 × 28 handwritten (MNIST)
digit, the input at timestep t is a vector of pixel values at the row t
model of the image (see Fig. 3a, right). The input is thus of dimension
28 and is presented over a total of 28 timesteps.

In each case, we have one hidden layer of 30 LSTM units in the
main model and one hidden layer of 300 hidden units in the feedfor-
ward cerebellar network. Data was presented in batches of 50 with a
learning rate of 0.0001.

Training and validation data were assigned a 4:1 split, containing
48,000 and 12,000 distinct image/number pairs, respectively. Unless
explicitly stated, the truncation value was K = 3 which is ~10% of the
task duration. Model results are presented over 10 random seeds.

Online line drawing visuomotor task. In this variant, each number
0–9MNIST image is allocated an associated xy position on the edge of
a circle centred at 0 with radius 10, and during the presentation of the
input must draw a line of equally spaced points towards that position
(Fig. 3a, left). With the model output being a vector of size 2, the
training loss is defined at the end by the mean squared error (MSE)
between the output of the model and the points forming the
target line.

Online digit drawing visuomotor task. Like the online line drawing
task, in this variant, themodel outputs a sequence of 2D coordinates
during input presentation. The target sequence however is now
highly non-linear, and in this case is a template of the number
represented by theMNIST image (Fig. 3a, middle). Themodel is then
trained to minimise the MSE between the model output and that
target shape.

For each digit, the corresponding target drawing lies in
[0, 1] × [0, 1], such that the gap between each successive point is
equivalent. All model drawings begin in the top left corner (except for
digit 1which begins below-right).MSE scores are reported as 100 times
their raw values to ease comparison with the line drawing case.
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Online visual discrimination. This case differs from the others as it is a
classification (or decision-making) task, where at the end of the pre-
sentation of the MNIST image the model must decide which number
the digit belongs to (between 0 and 9). Since the decision is onlymade
at the end of the sequence and targets are unavailable at intermediate
points, this is a task with hard temporal credit assignment. The output
of themodel is a vectorwith probabilities of size 10 (one entry for each
number), and the model was trained to maximise the likelihood of the
target number using a standard cross-entropy error function.

Visual-language task. The architecture for the caption generation
task consists of a pretrained convolutional neural network (CNN)
coupled with an RNN (LSTM). The cerebellar network only commu-
nicates with the LSTM. The LSTM network has one layer of 256 LSTM
units and the cerebellar network has two hidden layers (i.e. here we
explicitly model a layer of Granule Cells and one of Purkinje Cells) of
1024 neurons.

The process from image to model-generated caption follows
previous work93 and is described next. As part of image preprocessing
anddata augmentation, whichhelps preventmodel overfitting, a given
image is randomly cropped to size 224 × 224, flipped horizontally with
even chance, and appropriately normalised to be given to a pretrained
Resnet model94. A feature vector X of size 256 is then obtained and
passed to the LSTMat timestep0. The LSTM is subsequently presented
the “gold standard” caption fwigni= 1 one word per timestep, each time
learning to predict the next word; i.e., at the timestep t the model
learns Pðwt ∣X,fwigt�1

i= 1Þ. The network simultaneously learns a word
embedding so that eachwordwi is first transformed to a feature vector
of size 256 before being given as input to the LSTM (as illustrated in
(Fig. 8a). With a preset vocabulary of 9956 distinct words, the final
output of the model (P(wi)) is a probability vector of size 9956.

We found the models to be generally prone to overfitting the
training data. For this reason, we apply dropout (during training Sri-
vastava et al.95) on the input to the LSTM, where a given input element
is set to zero with p =0.5 probability. Once training is complete the
models can generate their own captions to previously unseen images
(Fig. 8, S17). Given an image at timestep 0, the model output at time-
step i is the word with the highest probability, and the same word is
then provided as input to the model at timestep i + 1. In this way, the
model can autonomously output an entire sequence of words which
forms a predicted caption. In the (highly) rare case where the model
generates a sequence of > 20 words, we consider only the first 20
words as its caption.

We used the COCO training data set ILSVRC-2012-CLS. This is a
commonly used dataset available for our purposes under a Creative
Commons license55, which holds 414,113 image-caption pairs with
82,783 unique images while the held-out validation set (used for
Fig. 8b, c) holds 202,654 with 40,504 unique images; note that each
image, therefore, has ~5 distinct gold standard captions. Training takes
place in batches of 100 image-caption pairs, with a learning rate of
0.001. Model performance is averaged over 10 random seeds. The
performance is quantified in bits per word, whichmeasures how good
the model is at predicting the validation set. More specifically if a
model assigns high probability to the test set (low BPW) it means it is
not surprised by it hence indicating a good understanding of the
language.

In order to judge themodels beyond their learning curves in BPW,
we quantify their ability to generate captions using a variety of lan-
guagemodellingmetrics popular in the field of language evaluation. In
particular, we compare model-generated captions against the gold
standard captions using standard metrics in language modelling. We
use the Semantic Propositional Image Caption Evaluation or SPICE
metric referred to as caption score. This metric has been shown to be
more accurate as it better captures the semantic structure of the
generated captions57. We compare the SPICE metric across different

groups of model-generated caption lengths (Fig. 8e), which we cate-
gorise as short (9 timesteps or less, ≤1.8 s),medium (between 10 and 13
timesteps inclusively, 2.3 s), and long (14 timesteps or more, >2.8 s).
For both cRNN and cRNN, these caption lengths roughly comprise
39%, 59% and 2% of the total generated captions respectively.

Our code implementation is based on https://github.com/yunjey/
pytorch-tutorial/tree/master/tutorials/03-advanced/image_captioning.
To avoid issues with copyrights the photos illustrated in Figs. 8 and S17
were replaced with artificial ones generated using copyright-free
DeepAI.org.

Point-mass model
In order to demonstrate the capacity of ccRNN in a more realistic
motor output setting, we evaluate the model’s ability to perform the
simple line drawing task using a simple physics point-mass motor
model. In this setting, the model must produce a movement with a
non-zero mass m. One could consider it to represent an hand or the
pen/cursor that it manipulates96.

Instead of the model directly predicting 2D coordinates as in the
other drawing tasks, this model predicts a pair of orthogonal forces
(Fx, Fy) which drive the point mass object along the x and y axis,
respectively. The object then obeys the classical laws of motion. We
describe the motion dynamics along the x direction (the y direction is
analogous). Given the initial coordinate xt−1 and the velocity vxt�1 of the
object in the x direction, the application of model-propelled force Fx

t
results in the following dynamics:

ax
t =

Fx
t

m

sxt = v
x
t�1 � Δt +

1
2
� ax

t � ðΔtÞ2

xt = xt�1 + s
x
t

vxt = v
x
t�1 +a

x
t � Δt

where ax
t , s

x
t represent the acceleration and displacement of the point

mass object at time t, respectively. The motion dynamics are dis-
cretised into timewindowsof lengthΔt = 0.1 s. The initial coordinate x0
and velocity vx0 are both set to zero and a mass m =0.1 kg is used.

We apply these dynamics to the same task setup as in the simple
line-drawing task. That is, the model must learn to translate external
input at the first timestep to an associated temporal trajectory of the
point mass object. To predict the forces ðFx

t ,F
y
t Þ the RNN also receives

as input the prior coordinates (xt−1, yt−1) and speed ðvxt�1,v
y
t�1Þ of the

object. As in the simple line drawing task, the task error at the current
timestep is E = ∣∣ðxt ,ytÞ � ðx̂t ,ŷtÞ∣∣2 where ðx̂t ,ŷtÞ is the target coordinate.
To obtain the cerebral feedback signal (i.e. gradient) of the task error
with respect to the model-applied force, i.e. ∂Et

∂Fx
t
, we backpropagate

through the motion dynamics above. We limit this backpropagation
through thedynamicsonly to the immediate impact of themodel force
on the coordinate of the current timestep. The learning rate for this
task is set as 0.003.

Demixed principal component analysis
To study the response dynamics specific to task variables we perform
demixed principal component analysis (dPCA)97. Demixed PCA
extracts low-dimensional components that explain maximum popu-
lation variance constrained by task-specific variables, such as the input
stimulus. As a result we obtain principal components that are specific
to task variables. The simulated neural data we provide as input to
dPCA is a three-dimensional array (n, s, t) with neuronal activity across
seeds, stimulus identity and time, respectively. In order to compare the
cue-specific variance explained for each principal component across
models we normalise against the variance explained for each principal
component.
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Linear regression analysis
Linear regression was performed to determine how much variation of
the unit activities in the hidden layer (i.e. Granule cells) of the cere-
bellar component is explained by the inputs, targets (i.e. external
feedback) or true cerebral feedback signals. In particular, the activities
of the hidden cerebellar component Y are modelled as

Ŷ=β0X+β1 ð16Þ

Where Ŷ are the predicted activities, X is the feature matrix which is
one of the inputs, targets or true cerebral feedback signals, β0 is the
fitted coefficient of these features, and β1 is a fixed bias term. This
function is fitted using an ordinary least-squares method to minimise
the residual sum-of-squares between the predicted activities Ŷ and
observed activitiesY. These activities are sampled across the time span
of each task at the start of each cerebral horizon window. For the
simple line-drawing visuomotor task the cue (the only non-zero input)
provided at the first timestep is used as the input to regress with
throughout the task sequence. We fit this linear model at each epoch
during training for each of the 10 random initialisations. Results are
presented as averages with error bars.

Measuring cerebro-cerebellar feedback similarity
The learning curves of ccRNN plotted against cRNN with a limited
feedback horizon highlight the benefit of the feedback predicted by
the cerebellar network. This indicates that the predicted feedback can
indeed approximate the desired cerebral feedback. To verify this, we
quantified the cerebro-cerebellar feedback similarity using cosine
similarity — “cossimilarity” — between the predicted feedback and the
optimal temporal cerebral feedback (as derived by gradient descent).
Specifically given two arbitrary vectors x and y

cossimilarityðx,yÞ= x � y
∣∣x∣∣2∣∣y∣∣2

ð17Þ

where x is the predicted feedback and y the true optimal feedback, ⋅
denotes the dot product, and ∣∣∣∣2 is the Euclidean norm.

It is important to emphasise that true feedback is never actually
provided to the model (as it goes beyond the feedback horizon K
considered). Instead, the cerebellum only learns through a combina-
tion of cerebral feedback within horizon K and a bootstrapped term
(see details above). This measure allows us to evaluate how much
information about this ideal feedback can the cerebellum approx-
imate. The final result is shown in Fig. 5a. To provide the reader with
intuition about how feedback information degradeswehighlight cases
of external feedback available just at the end, which would lead to a
gradual loss of the ability of the cerebellum to make good predictions
for earlier points in the task. In particular, we highlight two task var-
iants in which the task error is only defined at the end: visual dis-
crimination and a simple line drawing variant where the external task
feedback is only provided at the end of the task.

Statistical analysis
Because the initial conditions of these types of models influence their
learning trajectory we run our models across 10 different randomly
chosen seeds. For all relevant figures except in Figs. S5–S7, significance
was tested using a two-sided paired t-test across the different seeds on
the relative changes; significance levels are represented as *(p <0.05),
**(p <0.01), ***(p <0.001) and **** (p <0.0001). For Figs. S5–S7, we
apply a one-sided t-test as in ref. 97 (see figure legends for details);
* denotes p < 0.001.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We have used standardmachine learning data sets: theMNIST Dataset
of handwritten digits (http://yann.lecun.com/exdb/mnist/) and COCO
ILSVRC-2012-CLS training data set (https://cocodataset.org). Note that
the example images shown in Figs. 8 and S17 were generated with
deepAI.org to illustrate the visual context and are copyrights free.
Source data are provided with this paper.

Code availability
We used the PyTorch library for all neural network models. Our deep
learning implementation is based on that of github.com/koz4k/dni-
pytorch. The code and respective simulated data used for our
experiments are available at https://github.com/neuralml/ccDNI98. For
demixed PCA we used the following implementation https://github.
com/machenslab/dPCA.
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