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Recently, several quantum benchmarking algorithms have been developed to
characterize noisy quantum gates on today’s quantum devices. A fundamental
issue in benchmarking is that not everything about quantum noise is learnable
due to the existence of gauge freedom, leaving open the question what
information is learnable and what is not, which is unclear even for a single
CNOT gate. Here we give a precise characterization of the learnability of Pauli
noise channels attached to Clifford gates using graph theoretical tools. Our
results reveal the optimality of cycle benchmarking in the sense that it can
extract all learnable information about Pauli noise. We experimentally
demonstrate noise characterization of IBM’s CNOT gate up to 2 unlearnable
degrees of freedom, for which we obtain bounds using physical constraints. In
addition, we show that an attempt to extract unlearnable information by
ignoring state preparation noise yields unphysical estimates, which is used to

M Check for updates

lower bound the state preparation noise.

Characterizing quantum noise is an essential step in the development
of quantum hardware'. Remarkably, despite recent progress in both
gate-level and scalable noise characterization methods®, the full
characterization of the noise channel of a single CNOT/CZ gate
remains infeasible. This is unlikely to be caused by limitations of
existing benchmarking algorithms. Instead, it is believed to be related
to the fundamental question of what information about a quantum
system can be learned, in a setting where initial states, gates, and
measurements are all subject to unknown quantum noise. It is well-
known that some information about quantum noise can be learned
(such as the gate fidelity learned by randomized benchmarking®”’ or
cycle benchmarking®), but not everything can be learned (due to the
gauge freedom in gate set tomography”°). The boundary of learn-
ability of quantum noise - a precise understanding of what informa-
tion is learnable and what is not, still remains an open question.
Recently, there has been an interest in formulating noise char-
acterization as learning unknown gate-dependent Pauli noise
channels®". This is motivated by randomized compiling, a technique
that has been proposed to suppress coherent errors via inserting
random Pauli gates?®?. As an added benefit, randomized compiling
twirls the gate-dependent CPTP noise channel into Pauli noise, thus
reducing the number of parameters to be learned. Note that the

twirled Pauli noise channel corresponds to the diagonal of the process
matrix of the CPTP map, so Pauli noise learning is a necessary step for
characterizing the CPTP map, regardless of whether randomized
compiling is performed.

However, even under this simplified setting of Pauli noise learn-
ing, all prior experimental attempts can only partially characterize the
noise channel of a single CNOT/CZ gate” >, which only has 15 degrees
of freedom. A natural question is whether this limitation is caused by
the fundamental unlearnability of the noise channel, and if so, which
part of the noise channel and how many degrees of freedom among
the 15 are unlearnable?

In this paper, we give a precise characterization of what infor-
mation in the Pauli noise channel attached to Clifford gates is learn-
able, in a way that is robust against state preparation and measurement
(SPAM) noise. We develop a systematic method for characterizing
learnable degrees of freedom of a Clifford gate set using notions from
algebraic graph theory and show that learnable information exactly
corresponds to the cycle space of the Pauli pattern transfer graph,
while unlearnable information exactly corresponds to the cut space.
This characterization can be used to write down a list of linear func-
tions of the noise model that corresponds to all independent learnable
degrees of freedom. As an example, we show that the Pauli noise
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Merged to one layer

(b) CB with interleaved gates

Fig. 1| Cycle benchmarking for learning the Pauli noise channel of a CNOT gate.
a Standard CB circuits, where CNOT gates are interleaved by random Pauli gates
(green boxes), with initial stabilizer states and Pauli basis measurements (red

boxes). b CB circuits with additional interleaved single qubit Clifford gates
(blue boxes).

channel of an arbitrary 2-qubit Clifford gate has at most 2 unlearnable
degrees of freedom. We perform an experimental characterization of a
CNOT gate on IBM Quantum hardware? up to 2 unlearnable degrees of
freedom. Although the unlearnable information cannot be estimated
with high precision, we can determine a feasible region of those free-
doms using the constraint that the noise model must be physical (i.e.,
all Pauli error rates are nonnegative).

A corollary of our result is that cycle benchmarking is optimal in
the setting we consider, in the sense that it can learn all the information
that is learnable. This reveals a fundamental fact about noise bench-
marking, namely that cycle benchmarking - the idea of repeatedly
applying the same gate sequence interleaved by single qubit gates, is
the “right” algorithm for benchmarking Clifford gates, because of the
fact that learnable information forms a cycle space. As an interesting
side remark, the term “cycle” in cycle benchmarking originally refers to
parallel gates applied in a clock cycle. Here we show that the term can
also be understood in a graph-theoretical context.

In addition, we also explore ways to overcome the unlearnability
barrier. It has been recognized that the unlearnability does not apply
if the initial state |0)®" can be prepared perfectly®?, and it has been
suggested that state preparation noise could be much smaller than
gate and/or measurement noise in practice”*, which would make
gate noise fully learnable up to small error. We develop an algorithm
based on cycle benchmarking that fully learns gate-dependent Pauli
noise channel assuming perfect initial state preparation, and
experimentally demonstrate the method on IBM’s CNOT gate. Based
on the experiment data, we conclude that this assumption is unlikely
to be correct in our experiment as it gives unphysical estimates that
are outside the feasible region we determined. Furthermore, we use
the data to obtain a lower bound on the state preparation
noise and conclude that it has the same order of magnitude as gate
noise on the device we used. Therefore, the issue of unlearnability is
a practically relevant concern, for which the noise on initial states is
an important factor that cannot be neglected on current quantum
hardware.

Results

Theory of learnability

We start by considering the learnability of the Pauli noise channel of a
single n-qubit Clifford gate. A Pauli channel can be written as

A= D PaPa()Pq, M

aeP"

where {p} is a probability distribution on P*={/, X, Y, Z}". The goal is to
learn this distribution, which has 4"-1 degrees of freedom. Con-
sidering A as a linear map, its eigenvectors exactly correspond to all
n-qubit Pauli operators, as

AP)=AP, YaecP" 2)
where A, =", pnpp(—1)*? is the Pauli fidelity associated with the
Pauli operator P,. Therefore A is a linear map with known eigenvectors
and unknown eigenvalues, so a natural way to learn A is to first learn all
the Pauli fidelities A, and then reconstruct the Pauli errors
via pg = &3 pepiAp(—D) 0.

The convenience of working with Pauli fidelities is further
demonstrated by the fact that some Pauli fidelities can be directly
learned by cycle benchmarking, even with noisy state preparation
and measurement. For example, consider the CNOT gate which
maps the Pauli operator IX to itself. Figure 1(a) shows the cycle
benchmarking circuit. Imagine that we put the Pauli operator /X
after the left red box and evolve it with the circuit, then the evolved
operator (before the right red box) equals A}y - IX, up to azsign
(which comes from the random Pauli gates and can always be
accounted for during post-processing). Here we use the convention
that the noise channel happens before each CNOT gate. In experi-
ments, we prepare a+1 eigenstate of /X (such as |+)|+)), measure
the expectation value of /X at the end, and average over random
Pauli twirling sequences. These SPAM operations are noisy and are
represented as the red boxes. It is shown’ that the measured
expectation value equals

E(IX)=Ay - A% )

where the expectation is over random Pauli twirling gates and ran-
domness of quantum measurement, and A,y depends on SPAM noise
but is independent of circuit depth d. From this A;x can be learned by
estimating the observable /X at several different depths and perform a
curve fitting.

The Pauli operator IX is special as it is invariant under CNOT.
Consider another example: CNOT maps XZ to YY and vice versa. Con-
sider Fig. 1(b) where we insert additional layers of single-qubit Clifford
gates v/Z ® +/X that also maps XZ to YY and vice versa (up to a minus
sign that can always be accounted for during post-processing). After
XZ picks up a coefficient Ay, in front of the CNOT gate, it gets mapped
to Axz- YY by CNOT but then rotated back to Ay-XZ by vZ @ vX.
Following the same argument we conclude that both Ay, and Ayy are
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learnable. For simplicity here we make an assumption that single qubit
gates are noiseless, motivated by the fact that single qubit gates are 1-2
magnitudes less noisy than 2-qubit gates on today’s quantum
hardware®. In practice, it is a standard assumption to model noise on
single-qubit gates as gate-independent (e.g.”%), and our noise char-
acterization result can be interpreted as the noise channel induced by a
dressed cycle which consists of a CNOT gate and two single-qubit
gates®.

The main challenge comes with the next example: CNOT maps IZ
to ZZ and vice versa. By directly applying cycle benchmarking as in
Fig. 1(a) (with even depth d) we obtain

E{Z)=Ajz - NzAzzh2027 -+ =A)z (A/z/lzz)d/zr )
and curve fitting gives \/A,;1,, (similar results have been obtained
in®?"2%). To learn Az, we may consider applying the same technique in
Fig. 1(b). However, the problem is that once /Z gets mapped to ZZ, it
cannot be rotated back to /Z because / is invariant under single qubit
unitary gates. The main difference between this example and previous
examples is that here the Pauli weight pattern (an n-bit binary string
with 0 indicating identity and 1 indicating non-identity) changes from
01 to 11, thus making the single qubit rotation tool inapplicable.

In fact we can go on to prove that A, (as well as Az») is unlearnable.
Here unlearnable means that there exists two noise models such that
the parameter A7 is different, but the two noise models are indis-
tinguishable by any quantum experiment, meaning that any quantum
experiment generates exactly the same output statistics with the two
noise models. The result also generalizes to arbitrary n-qubit
Clifford gates.

Theorem 1. Given an n-qubit Clifford gate G and an n-qubit Pauli
operator P,, the Pauli fidelity A, of the noise channel attached to G is
learnable if and only if pt(G(P,))=pt(P,). Here pt denotes the Pauli
weight pattern.

The “if” part follows directly from cycle benchmarking as dis-
cussed above. For the “only if” part, when pt(G(P,))#pt(P,), we con-
struct a gauge transformation to prove the unlearnability of A,
following ideas from gate set tomography” . A gauge transformation
is an invertible linear map M that converts a noise model (initial states
pi» POVM operators E;, noisy gates G) to a new noise model as

P> M), Ej>(M™N(E), Gu>MoGoM™, 5)
with the constraint that the new noise model is physical. Note that the
old and new noise models are indistinguishable by definition. To
construct such a gauge transformation, as pt(G(P,))#pt(P,), there
exists a bit on which the two Pauli weight patterns differ. We then
define M as a single-qubit depolarizing noise channel on the
corresponding qubit. In this way we can show that the old and new
noise models assign different values to A, which means A, is
unlearnable. This proof naturally implies that using other noisy gates
from the gate set (that are subject to different unknown noise
channels) does not change the learnability of Pauli fidelities. More
details of the proof are given in Supplementary Section Il B. As a side
remark, it is known that under the stronger assumption of gate-
independent noise (where different multi-qubit gates are assumed to
have the same noise channel), the noise channel is fully learnable?®~°,

Theorem 1 provides a simple condition for determining the
learnability of individual Pauli fidelities, but it is not sufficient for
characterizing the learnability of joint functions of different Pauli
fidelities. In the CNOT example, we know that both 1,7 and A, are
unlearnable, but we also know that their product A1~ is learnable.
This means that there is only one unlearnable degree of freedom in the
two parameters {17, A.7}. In the following we show how to determine

learnable and unlearnable degrees of freedom of Pauli noise, and also
generalize the discussion from a single gate to a gate set.

We start by defining learnable information. Consider a Clifford
gate set with m gates, where we model each gate as an n-qubit gate
associated with an n-qubit Pauli noise channel. This model is applicable
to both individual gates (e.g. a 2-qubit system where each 2-qubit gate
is implemented by a different physical process and subject to a dif-
ferent noise channel) as well as parallel applications of gates (e.g. an n-
qubit system where each “gate” in the gate set is implemented by a
layer of 2-qubit gates; the n-qubit noise channel models the crosstalk
among the 2-qubit gates). The goal is to characterize the learnable
degrees of freedom among the m - 4" parameters.

Recall that the output of cycle benchmarking is a product of
Pauli fidelities (including SPAM noise). We further show that with-
out loss of generality this is the only type of information that we
need to obtain from quantum experiments for the purpose of noise
learning. This is because in general the output probability of any
quantum experiment can be expressed as a sum of products of Pauli
fidelities, and each individual product can be learned by cycle
benchmarking (Supplementary Section IV). We therefore consider
learning functions of the noise model that can be expressed as a
product of Pauli fidelities (also see below Eq. (7) for a related dis-
cussion). This can be reduced to considering functions of the form
F=2qgv% - I2, where [ := log A{ is the log Pauli fidelity, v € R, and
the superscript G denotes the corresponding Clifford gate. In the
CNOT example [,y + [, is a learnable function. The idea of learning
log Pauli fidelities in benchmarking has also been considered in**.,
The advantage of considering log Pauli fidelities here is that the set
of all learnable functions f forms a vector space. Therefore to
characterize all independent learnable degrees of freedom, we only
need to determine a basis of the vector space.

Recall that the reason that [+ [, is learnable in the CNOT
example is because the path of Pauli operator in the cycle bench-
marking circuit forms a cycle IZ>ZZ~1Z~ -.- , and the product of
Pauli fidelities along the cycle (1,2127) can be learned via curve fitting. In
general, as we can also insert single qubit Clifford gates in between, we
do not need to differentiate between X, Y, Z. We therefore consider the
pattern transfer graph associated with a Clifford gate set where ver-
tices corresponds to binary Pauli weight patterns and each edge is
labeled by the Pauli fidelity of the incoming Pauli operator. The graph
has 2" vertices and m - 4" directed edges. They can also be merged to
form the pattern transfer graph of the gate set {CNOT, SWAP}. Figure 2
shows the pattern transfer graph of CNOT, SWAP, and the gate set of
{CNOT, SWAP}. Consider an arbitrary cycle in the pattern transfer
graph C=(ey, ..., &) where each edge ¢; is associated with some Pauli
fidelity A;. Following Fig. 1(b), a cycle benchmarking circuit can be
constructed which learns the product of the Pauli fidelites along the
cycle, or equivalently the function f :=3", .- logA; can be learned.
This implies that the set of functions deﬁned[by linear combination of
cycles {3 ceeyaes®cf ¢ : & € R} arelearnable. In the following we show
that this in fact corresponds to all learnable information about
Pauli noise.

We label the edges of the pattern transfer graph as ey, ..., ey; Where
M=m-4" and each edge ¢; is a variable that represents some log Pauli
fidelity. The goal is to characterize the learnability of linear functions of
the edge variables f = Z;‘Zl vie;, v; € R. The set of linear functions can
be equivalently understood as a vector space of dimension M, called
the edge space of the graph, where f corresponds to a vector (vy, ..., Upy)
and we think of e;, ..., ey, as the standard basis. Following the above
discussion, the cycle space of the graph is defined as span{}.cce:C
is a cycle}, which is a subspace of edge space. We also define
another subspace, the cut space, as span{}_, -(—1)¢™m 1o ze .
Cis a cut between a partition of vertices V;, V,}. It is known that the
edge space is the orthogonal direct sum of cycle space and cut space
for any graph®. Interestingly, we show that the complementarity
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Fig. 2 | Pattern transfer graph of CNOT, SWAP, and a gate set consisting of
CNOT and SWAP. Here, multiple edges are represented by a single edge with

Axxo Axys Axz,
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Py s v —
o CGUERRe

{CNOT, SWAP}

omit the superscripts of CNOT or SWAP. The labels on the last graph are a com-
bination of the first two graphs and are omitted for clarity.

multiple labels. The labels on the first two graphs are gate dependent, though we

Table 1| A complete basis for the learnable linear functions of log Pauli fidelities and Pauli error rates for a single CNOT/

SWAP gate

Gate CNOT

SWAP

b Lz U Lzxe Uz Lyws Uxvs byz,
liz+lzz by + zy, liz + Lzy,
Lxi+ Lo Ly + Ly b+ Lyx

(a) Cycle basis

Ui boxs b Uz by by vz Lz Lzv,
lzz, Lx+ ba, Ly + by, Lz + Lz,
ba+ly, ba+ iz

(b) Learnable Pauli fidelities
)\IZ N AZZ: AI‘/ : )\ZYI AIZ ° )\ZV:
)\XI N )\XXf )\YI N AY)(r A)(l N AY)(

AII: AZ!: }\IXz )‘ZX/ )‘XZ: )\YY: A)(Yz AYZ,

AIIr AXX: AXY/ )‘XZf )‘YXf )‘YYI AYZ: AZ)(r AZY:
AZZ: AIX : )\X/: AIV . )\YI: A/Z : AZI:
)\Xl : )\IVr )\Xl . )\IZ

(c) Learnable Pauli errors
Piz*Pzz, Py * Pzv, Piz* Pzy,
Pxi* Pxx, Pyi+ Pyx, Pxi+ Pyx

Pit Pz Pix: Pzx: Pxz: Pyy: Pxy: Pyz

P Pxx: Pxy: Pxz: Pyx: Pyy, Pyz: Pzx:» Pzy.
Pzz, Pix* Pxi. Piy + Pyi, Piz+ Pz
Pxi* Prv. Pxi+ Piz

(d) Unlearnable degrees of freedom Axi, Az

)\XI

between cycle and cut space happens to be the dividing line that
determines the learnability of Pauli noise.

Theorem 2. The vector space of learnable functions of the Pauli noise
channels associated with an n-qubit Clifford gate set is equivalent to
the cycle space of the pattern transfer graph. In other words,

All information = Edge space,
Learnable information = Cycle space, (6)
Unlearnable information = Cut space.

This implies that the number of unlearnable degrees of freedom equals
2" - ¢, where c is the number of connected components of the pattern
transfer graph.

The learnability of cycle space follows from cycle benchmarking
as discussed above. To prove the unlearnability of cut space, we use a
similar argument as in Theorem 1 and show that a gauge transforma-
tion can be constructed for each cut in the pattern transfer graph. By
linearity, this implies that any vector in the cut space corresponds to a
gauge transformation. By definition, a learnable function must be
orthogonal to all such vectors and thus orthogonal to the entire cut
space. More details of the proof are given in Supplementary
Section Il C.

It is a well-known fact in graph theory that the cycle space of a
directed graph G = (V, E) has dimension |E| — |V] + ¢ while the cut space
has dimension |V| — ¢, where ¢ >1 is the number of connected compo-
nents in G* (a (weakly) connected component is a maximal subgraph
in which every vertex is reachable from every other vertex via an
undirected path). Theorem 2 implies that among the m - 4" degrees of
freedom of the Pauli noise associated with a Clifford gate set, there are
2"-c unlearnable degrees of freedom. This shows that while the
number of unlearnable degrees of freedom can be exponentially large,
they only occupy an exponentially small fraction of the entire space. In
addition, a cycle and cut basis can be efficiently determined for a given

graph, though in our case this takes exponential time because the
pattern transfer graph itself is exponentially large. However, comput-
ing the cycle/cut basis is not the bottleneck as the information to be
learned also grows exponentially with the number of qubits. For small
system sizes such as 2-qubit Clifford gates, we can write down a cycle
basis as shown in Table 1(a) for the CNOT and SWAP gates, which
represents all learnable information about these gates. The CNOT gate
has 2 unlearnable degrees of freedom while the SWAP gate has 1
unlearnable degree of freedom. As the pattern transfer graph has at
least 2 connected components, we conclude that the Pauli noise
channel of a 2-qubit Clifford gate has at most 2 unlearnable degrees of
freedom. Note that when treating {CNOT, SWAP} together as a gate set,
there are only 2 unlearnable degrees of freedom according to Theorem
2 instead of 2 +1=3, because there is one additional learnable degree
of freedom (such as [T + [N + V™) that is a joint function of the
two gates.

Finally, the learnability of Pauli errors can be determined by the
learnability of Pauli fidelities according to the Walsh-Hadamard
transform p, = 4%2,,6,,,./1[,(—1)<“'b>. An issue here is that Pauli errors
are linear functions of {A,} instead of {log A, }. Here we make a standard
assumption in the literature®'® that the total Pauli error is sufficiently
small. In this case all individual Pauli errors are close to O while all
individual Pauli fidelities are close to 1. Therefore the Pauli errors can
be estimated via

1 1
Pa= g7 > MWD =5 Y () (1+ loghy), %

beP" beP"

which means that their learnability can be determined by Theorem 2.
In fact it has been suggested®' that any function of Pauli fidelities can be
estimated in this way (as a linear function of log Pauli fidelities) up to a
first-order approximation, which means that the learnability of any
function of Pauli fidelities can be determined by Theorem 2. In Table 1
(c) we show the learnable Pauli errors for CNOT and SWAP, where
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0.993 3 0.993
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0.991 0.991 .
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0.990 ) [} 0.990
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Fig. 3 | Estimates of Pauli fidelities of IBM’s CNOT gate via standard CB (left) and
CB with interleaved gates (right), using circuits shown in Fig. 1. Data are col-
lected from ibmg montreal on2022-03-23. Each Pauli fidelity is fitted using seven

different circuit depths L =[2,22,...,27]. For each depth C = 60 random circuits and
1000 shots of measurements are used. Throughout this paper, the error bar
represents the standard error.

“learnable” is in an approximate sense up to Eq. (7). Interestingly, for
these two gates, the learnable functions of Pauli errors have the same
form as the cycle basis, i.e. the cycle space is invariant under Walsh-
Hadamard transform. We calculate the learnable Pauli errors for up to
4-qubit random Clifford gates and this seems to be true in general. We
leave a rigorous investigation into this phenomenon for future work.

Experiments on IBM Quantum hardware

We demonstrate our theory on IBM quantum hardware* using a
minimal example - characterizing the noise channel of a CNOT gate. In
our experiments both the gate noise and SPAM noise are twirled into
Pauli noise using randomized compiling. In the following we show how
to extract all learnable information of Pauli noise SPAM-robustly, and
also attempt to estimate the unlearnable degrees of freedom by
making additional assumptions.

First, we conduct two types of cycle benchmarking (CB) experi-
ments, the standard CB and CB with interleaving single-qubit gates
(called interleaved CB), as shown in Fig. 1. The results are shown in
Fig. 3. Here a set of two Pauli labels in the x-axis (e.g., {{Z, ZZ}) corre-
sponds to the geometric mean of the Pauli fidelity (e.g., \/A,74,7).
Comparing to Table 1, we see that all learnable information of Pauli
fidelities (including learnable individual and 2-product) are success-
fully extracted. Also note from Fig. 3 that the two types of CB experi-
ments give consistent estimates, in terms of both the process fidelity
and individual Pauli fidelities (e.g., \/Ay,Ayy estimated from standard
CB is consistent with Ay~ and Ayy from interleaved CB).

We have shown that all 13 learnable degrees of freedom (exclud-
ing the trivial A;=1) are extracted in Fig. 3 by comparing with Table 1,
and there remain 2 unlearnable degrees of freedom. We can bound the
feasible region of the 2 unlearnable degrees of freedom using physical
constraints, i.e., the reconstructed Pauli noise channel must be com-
pletely positive. This is equivalent to requiring p, > O for all Pauli error
rates p,. We choose Ayx and 1z as a representation of the unlearnable
degrees of freedom, and plot the calculated feasible region in Fig. 4(a),
which happens to be a rectangular area. We also calculate the feasible
region for each unlearnable Pauli fidelity and Pauli error rate, which are
presented in Fig. 4(b), (c). In particular, we choose two extreme points
(blue and green dots in Fig. 4(a)) in the feasible region and plot the
corresponding noise model in Fig. 4(b), (c). Note that the (approxi-
mately) learnable Pauli error rates (on the left of the red vertical
dashed line) are nearly invariant under change of gauge degrees of
freedom, but they can be estimated to be negative due to statistical
fluctuation. Thus, when we calculate the physical constraints, we only
require those unlearnable Pauli error rates (on the right of the red
vertical dashed line) to be non-negative.

Next, we explore an approach to estimate the unlearnable infor-
mation with additional assumptions. Suppose that one can prepare

|0)®" perfectly. Since we assume noiseless single-qubit gates, this
means we can prepare a set of perfect tomographically complete
states {|0/1),|£),|+0)}. In this case, all the unlearnable degrees of
freedom become learnable, as one can first perform a measurement
device tomography, and then directly estimate the process matrix of a
noisy gate with measurement error mitigated®. Following this general
idea, we propose a variant of cycle benchmarking for Pauli noise
characterization, which we call intercept CB as it uses the information
of intercept in a standard cycle benchmarking protocol. Given an n-
qubit Clifford gate G, let mg be the smallest positive integer such that
G™o =T. For any Pauli fidelity A, (regardless of whether learnable or not
according to Theorem 1), consider the following two CB experiments
using the standard circuit as in Fig. 1(a). First, prepare an eigenstate of
P,, run CB with depth Img+1 for some non-negative integer [, and

estimate the expectation value of P, :=G(P,). The result equals
my l
EAPy) my +1=Ap, A Ag (kH Agk(,,a)) , ®)

=1

where Af,ﬁ A;’ is the Pauli fidelity of the state preparation and measure-
ment noise channel, respectively (earlier we have absorbed these two
coefficients into a single coefficient A for simplicity). Second, prepare
an eigenstate of Py, run CB with depth Imo, and estimate the expec-
tation value of Pp. The result equals

©

[
mo

E(Pb)[mo =/lf’h/1%: <H Agk(Pa)> :
k=1

By fitting both E(Pb)lmD+1 and IE‘:(P,J),,"0 as exponential decays in [,
extracting the intercepts (function values at /= 0), and taking the ratio,

~ICB
we obtain an estimator A, that is asymptotically unbiased to
Ay Af,a /Af,b. This estimator is robust against measurement noise. Note

that A,S,a =/l,5,b =1 if we assume perfect initial state preparation, and in
this case the above shows that A, is learnable, and thus the entire Pauli
noise channel is learnable. We note that, instead of fitting an expo-
nential decay in /, one could in principle just take /= O and estimate the
ratio of E(P,), and EE(P,);, which also yields a consistent estimate for
Ay ~/1,5,a /A,S,b. If one has already obtained all the learnable information
from previous experiments, this could be a more efficient approach.
However, if one has not done those experiments, the intercept CB with
multiple depths can estimate the intercept (unlearnable information)
and slope (learnable information) simultaneously, which is more
sample efficient.
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Fig. 4 | Feasible region of the learned Pauli noise model, using data from Fig. 3.
a Feasible region of the unlearnable degrees of freedom in terms of Axx and 1.

b Feasible region of individual Pauli fidelities. c¢ Feasible region of individual Pauli
errors.

We numerically simulate intercept CB for characterizing the
CNOT gate under different state preparation (SP) and measurement
(M) noise. As shown in Fig. 5, this method yields relatively precise
estimate when there is only measurement noise even if the noise is
orders of magnitude stronger than the gate noise, but will have large
deviation from the true noise model even under small state prepara-
tion noise. We refer the reader to Supplementary Section Il for more
details about the numerical simulation.

Finally, we experimentally implement intercept CB to estimate Axy
and A, which are the two unlearnable degrees of freedom of CNOT,
allowing us to determine all the Pauli fidelities and Pauli error rates.
One challenge in interpreting the results is that we do not know in
general whether the low SP noise assumption holds, therefore it is
unclear if the learned results should be trusted. However, for the
estimate to be correct, it should at least lie in the physically feasible
region we obtained earlier in Fig. 4. In Fig. 6, we present our experi-
mental results of intercept CB. It turns out that certain Pauli fidelities
are far away from the physical region by several standard deviations.
This gives strong evidence that the low SP noise assumption was not
true on the platform we used.

The data collected here can further be used to give a lower bound
for the SP noise. Suppose we obtain the physical region of 4, to be
[A4, min»Aq, max]- Combining with the expression of intercept CB, we have

~ICB

~ ~ICB ~
/la //1(1, max S/lf’a //le SAa /Aa,min' (10)

Applying this to the data of /Z and ZZ in Fig. 6(a), we have
X3, /A5, <0.9879(23). If we make a physical assumption that the state

0.16 1 —§— All fidelities (M noise)
-4- Learnable fidelities (M noise)
0.14 1 —§— All fidelities (SP noise)
-4- Learnable fidelities (SP noise)
0.12
g 0.10
9]
c
4 0.08
=
e
= 0.06
w
0.04
0.02
0.00{ ® E= :

1074 1073 1072

Bit-flip error rate

Fig. 5 | Simulation of intercept CB on CNOT under different SPAM noise rate.
The simulated noise channel is a 2-qubit amplitude damping channel with effective
noise rate 5%, and SPAM noise are modeled as bit-flip errors. For the blue (green)
lines, we introduce random bit-flip errors to the measurement (state preparation).
The solid lines show the /-distance of the estimated Pauli fidelities from the true
Pauli fidelities. The solid lines show the /i-distance of the (individually) learnable
Pauli fidelities from the ground truth.

preparation noise is a random bit-flip during the qubit initialization,
one can conclude the bit-flip rate on the first qubit is lower bounded
by 0.61(12)%. One can in principle bound the bit-flip rate on the
second qubit by looking at A3, /Ay,. Unfortunately, our estimate of
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For each depth C=150 random circuits and 2000 shots of measurements are used.
Data are collected from ibmg montreal on 2022-03-23.

A)S(X from intercept CB falls in the physical region within one
standard deviation, so there is no nontrivial lower bound. One could
expect obtaining a useful lower bound by looking at a CNOT gate
with reversed control and target. The lower bound of SP noise
obtained here is completely independent of the measurement noise
and does not suffer from the issue of gauge freedom', as long as all
of our noise assumptions are valid, i.e., there is no significant
contribution from time non-stationary, non-Markovian, or single-
qubit gate-dependent noise.

Discussion

We have shown how to characterize the learnability of Pauli noise of
Clifford gates and discussed a method to extract unlearnable infor-
mation by assuming perfect initial state preparation. It is also inter-
esting to consider other physically motivated assumptions on the
noise model to avoid unlearnability. For example, we can write down a
parameterization of the noise model based on the underlying physical
mechanism which may have fewer than 4" parameters. The main issue
here is that these assumptions are highly platform-dependent and
should be decided case-by-case. Moreover, it is unclear to what extent
should the learned results be trusted when additional assumptions are
made, since in general we cannot test whether the assumptions hold
due to unlearnability.

Another direction to overcome the unlearnability is to change the
model of quantum experiments. Here we have been working with the
standard model as in gate set tomography, where a quantum mea-
surement decoheres the system and only outputs classical informa-
tion. However, some platforms might support quantum non-
demolition (QND) measurements, and in this case measurements can
be applied repeatedly, which could potentially allow more information
to be learned™®.

Recently, ref. 30 considered similar issues of noise learnability.
They studied a different Pauli noise model with perfect initial state |0),
perfect computational basis measurement, and noisy single qubit
gates, and showed the existence of unlearnable information. In con-
trast, here we focus on the learnability of Pauli noise of multi-qubit
Clifford gates assuming perfect single-qubit gates (with noisy SPAM),
and in practice we make the standard assumption that noise on single-
qubit gates is gate-independent (e.g.”*), in which case our noise
learning results are interpreted as characterizing a dressed cycle.

This work leaves open the question of noise learnability for non-
Clifford gates. An issue here is that randomized compiling is not known
to work with non-Clifford gates in general, so it is unclear if the general
CPTP noise learnability problem can be reduced to Pauli noise. Recent

work™ shows that random quantum circuits can effectively twirl the
CPTP noise channel into Pauli noise and can be used to learn the total
Pauli error. The question of whether more information can be learned
still remains open.

Another issue to address is the scalability in noise learning. It is
impossible to estimate all learnable degrees of freedom efficiently as
there are exponentially many of them (an exponential lower bound on
the sample complexity is shown in'®). One way to avoid the exponential
scaling issue is to assume the noise model has certain special structure
(such as sparsity or low-weight) such that the noise model only has
polynomially many parameters'®***, It is an interesting open direction
to study the characterization of learnability under these assumptions,
and we give some related discussions in Supplementary Section Il D.

Data availability
The data generated in this study is available at https://github.com/
csenrui/Pauli_Learnability.

Code availability
The code that supports the findings of this study is available at https://
github.com/csenrui/Pauli_Learnability.
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