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A set of myelodysplasia-related (MDS-R) gene mutations are incorporated into the 2022 European LeukemiaNet risk classification as
adverse genetic factors for acute myeloid leukemia (AML) based on their poor prognostic impact on older patients. The impact of
these mutations on younger patients (age < 60 years) remains elusive. In the study of 1213 patients with de novo non-M3 AML, we
identified MDS-R mutations in 32.7% of the total cohort, 44.9% of older patients and 23.4% of younger patients. The patients with
MDS-R mutations had a significantly lower complete remission rate in both younger and older age groups. With a median follow-up
of 9.2 years, the MDS-R group experienced shorter overall survival (P = 0.034 for older and 0.035 for younger patients) and event-
free survival (P = 0.004 for older and 0.042 for younger patients). Furthermore, patients with MDS-R mutations more frequently
harbored measurable residual disease that was detectable using next generation sequencing at morphological CR than those
without MDS-R mutations. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) might ameliorate the negative impact of
MDS-R mutations. In summary, AML patients with MDS-R mutations have significantly poorer outcomes regardless of age. More
intensive treatment, such as allo-HSCT and/or novel therapies, is warranted for AML patients with MDS-R mutations.

Blood Cancer Journal (2023)13:4; https://doi.org/10.1038/s41408-022-00774-7

INTRODUCTION

Acute myeloid leukemia (AML) is a biologically and clinically
heterogeneous hematologic malignancy that is characterized by
abnormal proliferation and differentiation of clonal hematopoietic
stem/progenitor cells [1]. Because of the remarkably complex diversity
of this disease, proper risk stratification is the cornerstone to maximize
treatment efficacy and minimize treatment-related toxicities.

In addition to patient-related risk factors [2, 3], there have been
numerous efforts to explore disease-associated prognostic factors for
AML patients, including the most widely utilized 2017 European
LeukemiaNet (ELN) recommendation [4], incorporating a variety of
cytogenetic and gene mutation profiles in the risk stratification.
Researchers have also sought to refine the 2017 ELN recommenda-
tion by incorporating additional prognostic markers consisting of
aberrations in coding [5] and noncoding [6] genes. Recently,
mutations in a set of eight genes, including ASXL1, BCOR, EZH2,
SF3B1, SRSF2, STAG2, U2AF1, and ZRSR2 mutations, were categorized
as secondary AML (sAML)-type mutations owing to their strong
association with secondary AML that transformed from myelodys-
plastic syndrome (MDS) or chronic myelomonocytic leukemia
(CMMol) [7]. Despite the possibility of the presence of an

unrecognized antecedent myelodysplasia before AML diagnosis in
patients with sSAML-type mutations, such mutations can be detected
in more than 30% of patients with rigorously clinically defined de
novo AML, and have been shown to confer a negative prognostic
impact on elderly patients [7, 8]. Recently, AML harboring a panel of
nine mutations encompassing the eight sAML-type mutations and
RUNX1 mutation have been categorized as AML with myelodysplasia-
related (MDS-R) gene mutations in the 2022 International Consensus
Classification (ICC) [9], and the adverse-risk group in the 2022 ELN risk
classification [10]. However, the impact of MDS-R mutations on the
survival of younger patients with clinically confirmed de novo AML
remains to be investigated. Furthermore, little is known about the
differences in the distribution of MDS-R mutations and their
prognostic impact between different age groups; either is the
association between MDS-R mutations and other genotypes. In this
study, we aimed to explore the association of MDS-R mutations with
clinic-biological features, molecular genetic alterations, and prog-
nostic relevance in both older and younger age groups in a large
cohort of de novo AML patients. The findings of this study may not
only validate the current risk stratification system but also provide
insight for further refinement.
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MATERIALS AND METHODS

Patients and samples

From April 1994 to January 2021, 1464 consecutive adult patients were
newly diagnosed as having de novo AML and treated at the National
Taiwan University Hospital (NTUH). Patients with antecedent hematological
diseases, a cytopenia history, family history of myeloid neoplasms, or
exposure to leukemogenic therapy were not included. Patients with FAB
M3 AML (n = 135) and those without adequate cryopreserved diagnostic
bone marrow (BM) specimens for molecular analyses or who did not
provide informed consent (n = 116) were excluded (Supplementary Fig. 1).
Finally, a total of 1,213 patients with complete clinical, molecular, and
laboratory data were enrolled in this study. AML was diagnosed according
to the 2016 World Health Organization (WHO) classification [11] and the
2022 ICC [9].

To evaluate the association between measurable residual disease (MRD)
clearance and MDS-R mutations, a subgroup of 291 patients who had
paired BM samples obtained serially at diagnosis, complete remission (CR),
and after the first consolidation chemotherapy and had detectable gene
mutations other than DNMT3A, TET2, and ASXL1 at diagnosis, as described
previously [12], were enrolled for MRD monitoring using next generation
sequencing (NGS). This retrospective study was approved by the NTUH
Research Ethics Committee, and written informed consent was obtained
from all participants in accordance with the Declaration of Helsinki
(Approval number: 201709072RINC).

Treatment

Patients eligible for standard intensive chemotherapy received standard
3+7 induction chemotherapy (idarubicin 12 mg/m?/day on days 1-3 and
cytarabine 100 mg/m?/day on days 1-7; 2+5 was permitted for older
patients) and 2-4 courses of postremission chemotherapy with high-dose
cytarabine (2000 mg/m? twice per day on days 1-4), with or without
anthracycline [12]. Patients receiving standard intensive chemotherapy
were included in the survival analysis. Treatment response was evaluated
according to the ELN recommendation [10]. The choice of allogeneic HSCT
was based on molecular risk stratification, age, comorbidities, availability of
donors, and response to induction treatment, as evaluated by morpho-
logical observation and multicolor flow cytometry examination, which is a
routine test at our institute [12]. The median follow-up time of this cohort
was 9.2 years.

Molecular mutation analyses using next generation
sequencing (NGS)

NGS was performed using the TruSight myeloid sequencing panel and
HiSeq platform (lllumina, San Diego, CA) to evaluate mutations in 54
myeloid malignancy-related genes (Supplementary Table 1). Library
preparation and sequencing were performed according to the manufac-
turer’s instructions. The median reading depth was 11,000x. We used
COSMIC database version 86 [13], dbSNP version 151 [14], ClinVar [15],
1000 Genomes [16], PolyPhen-2 [17], and SIFT [18] to evaluate the
consequence of every variant. The detailed variant analysis algorithm for
diagnostic samples was described previously [19], with a minimum variant
allele frequency of 5%. Because of an issue with sequencing sensitivity,
CEBPA mutations and FLT3-ITD were evaluated using Sanger sequencing
and fragment analysis, respectively [20, 21]. Cytogenetic analysis was
performed as previously described [2]; the classification was performed
according to refined Medical Research Council (MRC) criteria [22]. MRD
monitoring using NGS was performed as previously described [12].

Statistical analysis

Continuous variables and medians of distributions were compared using
the Mann-Whitney U or Kruskal-Wallis test. The difference between
discrete variables was compared using the chi-square test or Fisher's exact
test. Overall survival (OS) was defined from the date of initial diagnosis to
the date of last follow-up or death from any cause, and event-free survival
(EFS) was defined from the date of initial diagnosis to the date of
treatment failure, hematologic relapse, or death from any cause, whichever
occurred first [10]. Kaplan-Meier analysis was employed to calculate
survival probabilities and the log-rank test was used to evaluate the
statistical significance. The Cox proportional hazards model was applied for
the multivariate regression analysis and to generate hazard ratios (HRs)
and 95% confidence intervals (Cls). To accurately evaluate the effect of
allo-HSCT at first CR, we used the median time from remission to allo-HSCT
(0.31 years) for the landmark analysis. In multivariate analysis, allo-HSCT at
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first CR was considered a time-dependent variable. All statistical analyses
were performed with R version 4.1.1 (https://cran.r-project.org/). A two-
sided P value less than 0.05 was considered statistically significant.

RESULTS

Distinct clinical and laboratory features of patients with MDS-
R mutations in different age groups

Among the 1213 patients recruited, 528 (43.5%) were aged more
than 60 years (older group), with a median age of 71 years (range
61-98). MDS-R mutations were detected in 32.7% of total cohort,
44.9% of older patients and 23.4% of younger patients (<60 years).
In both younger and older groups, patients with MDS-R mutations
were significantly older (P=0.018 and P = 0.003, respectively). In
the younger group, MDS-R mutations were associated with a
lower white blood cell (WBC) count (P <0.001), lower peripheral
blood blast count (P<0.001), and lower lactate dehydrogenase
(LDH) level (P < 0.001) at diagnosis, but there was no difference in
the older group (Table 1).

In both younger and older groups, patients with MDS-R
mutations had a lower chance of being categorized into the
group of AML with inv(16) (P=0.002 and P =0.010, respectively,
Table 1), AML with NPM1 mutation (both P<0.001), AML with
myelodysplasia-related cytogenetic abnormalities (P =0.003 and
P <0.001, respectively), or AML not otherwise specified (both
P <0.001). In addition, younger patients with MDS-R mutations
more frequently had AML with inv(3) or t(3;3) and less frequently
had AML with other rare recurrent translocation or in-frame bZIP
CEBPA mutations. Older patients with MDS-R mutations less
commonly had AML with £(8;21) or AML with mutated TP53.

Patterns of cytogenetic abnormalities and gene mutations
among patients with MDS-R mutations in different age groups
We next investigated cytogenetic changes and gene mutations
among patients with and without MDS-R mutations in different
age groups. Regarding cytogenetic changes based on the
refined Medical Research Council criteria [22], two-thirds of
patients (69.3% of younger patients and 71.5% of older patients)
showed intermediate-risk cytogenetic changes. Older patients
carrying MDS-R mutations had a significantly lower frequency of
unfavorable-risk cytogenetic changes (Table 1). Regarding gene
mutation profiles, the most common gene mutation was FLT3
mutations (26.7%), including FLT3-ITD (19.2%), FLT3-TKD (6.3%),
and concomitant FLT3-ITD and FLT3-TKD (1.2%), followed by
NPM1 (21.2%) and DNMT3A mutations (17.8%). The mutation
spectra of the patients with MDS-R mutations among the
younger and older groups are shown in Fig. 1 and the
comparison of the mutation pattern between the patients with
and without MDS-R mutations in the two age groups is shown in
Table 2. In the younger group, patients with MDS-R mutations
had lower rates of CEBPA double mutations and CEBPA bZIP in-
frame mutations but a higher rate of IDH2 and ETV6 mutations
than those without MDS-R mutations. In the older group,
patients with MDS-R mutations harbored fewer KIT, TP53, and
DNMT3A mutations but more TET2 mutations than those without
these mutations. Furthermore, both younger and older patients
with MDS-R mutations had fewer NPMT mutations but more
PHF6 mutations. Among the total cohort, 20.4% of patients had
one MDS-R mutation and 12.4% had two or more MDS-R
mutations. Older patients had significantly higher rates of one
MDR-R mutation (older vs. younger: 23.3% vs. 18.1%, P = 0.026)
as well as two or more MDR-R mutations (21.6% vs. 5.3%,
P <0.001) than younger ones. As expected, patients with MDS-R
mutations were more frequently stratified into the unfavorable-
risk group based on the 2017 ELN risk classification, regardless
of a younger or older age status, since ASXLT and RUNXT
mutations are assigned to the unfavorable-risk category by this
classification.
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Fig. 1

Younger
Elder
Mutated
Wild type
No mitosis

. Favorable-risk
Intermediate-risk

[l unfavorable-risk

Comutation plot showing the complex interactions between MDS-R mutations and other mutations. Each column represents a

patient. The left side of the plot represents the younger patient group and the right side represents the elder patient group (the last row).

Negative prognostic impact of MDS-R mutations in both age
groups

In total, 642 (93.7%) younger patients and 249 (47.2%) older
patients received standard intensive chemotherapy. Among these
patients, those with MDS-R mutations had significantly lower CR
rates (83.8% vs 72.1%, P=0.001 for the younger patients and
68.2% vs 52.0%, P = 0.010 for the older patients), but relapse rates
were comparable (Table 1).

In the total cohort, the older and the younger group, patients
with MDS-R mutations had significantly poorer OS (P < 0.001,
P =0.034, and P = 0.035, respectively; Figs. 2a, 3a, and 4a) and EFS
(P<0.001, P=0.004, P=0.042, respectively; Figs. 2b, 3b, and 4b)
but similar RFS (Supplementary Figs. 2-4). In the total cohort,
patients with two or more MDS-R mutations experienced
significantly poorer OS and EFS than those with only one MDS-R
mutation or without MDS-R mutation (Fig. 2¢, d); however in
subgroup analyses, the same result was only observed for EFS in
the younger group (Figs. 3¢, d and 4c, d). In both age groups,
patients with one MDS-R mutation shared similar dismal OS to
those with two or more MDS-R mutations, compared with patients
without MDS-R mutations (Figs. 3¢ and 4c).

While focusing on patients with intermediate-risk genotypes
based on the 2017 ELN risk classification, MDS-R mutations were
able to dichotomize the patients into two groups with distinct OS
in the total cohort (Supplementary Fig. 5). Although patients with
intermediate-risk genotypes/without MDS-R mutations had better
OS than those with intermediate-risk genotypes/with MDS-R
mutations (P < 0.001), their outcomes were still significantly poorer
than those with favorable-risk genotypes (P =0.006). Similarly,
patients with intermediate-risk genotypes/with MDS-R mutations
had significantly better outcomes than those with unfavorable-risk

Blood Cancer Journal (2023)13:4

genotypes (P=0.021). In the older patient group, the status of
MDS-R mutations also effectively divided intermediate-risk
patients into two groups with distinct outcomes (Supplementary
Fig. 6). Conversely, in the younger patient group, intermediate-risk
patients with MDS-R mutations shared similar OS to those without
MDS-R mutations (Supplementary Fig. 7).

We included age, WBC count at diagnosis, disease risk based on
the 2017 ELN classification, allo-HSCT at first CR, and MDS-R
mutation status as covariables in multivariate Cox proportional
hazards regression analysis model (Table 3). In addition to an older
age, higher WBC count at diagnosis, and ELN intermediate- or
adverse-risk, the presence of MDS-R mutations was also an
independent unfavorable prognostic factor for both EFS
(P=0.040) and OS (P=0.045), while receiving allo-HSCT at first
CR was an independent favorable risk factor.

MDS-R mutations shape the response to chemotherapy

We hypothesized that patients with MDS-R mutations not only
had a lower CR rate after induction chemotherapy but might
also be prone to having residual leukemia cells even obtaining
CR, which would lead to dismal outcomes. In the cohort of 291
patients who obtained CR and underwent serial MRD monitor-
ing using NGS, 72 (24.7%) had MDS-R mutations at diagnosis;
patients with MDS-R mutations more frequently required two
cycles of induction chemotherapy to achieve CR than those
without MDS-R mutations (37.5% vs. 17.4%, P=0.001). Patients
with MDS-R mutations had significantly higher odds of harbor-
ing NGS MRD at morphological CR after induction chemother-
apy (63.9% vs. 40.6%, P =0.001) and after the 1st consolidation
chemotherapy (45.8% vs. 23.3%, P < 0.001) than patients without
MDS-R mutations. Surprisingly, among patients with MDS-R
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Fig. 2 The Kaplan-Meier survival curves for the total cohort. OS (a) and EFS (b) stratified by the status of MDS-R mutations, the MDS-R
mutation burdens (c and d, respectively), and treatment with or without allogeneic transplantation at first remission (e and f, respectively).
Allogeneic transplantation may overcome the negative prognostic impact of MDS-R mutations. MDS-R1, with one MDS-R mutation; MDS-R2,

with 2 or more MDS-R mutations.

mutations at diagnosis, all patients with MRD after induction
therapy and 88% of those with MRD after the 1st consolidation
had at least one MDS-R mutation at morphological CR,
indicating the leukemia clones with MDS-R mutations might
be relatively chemoresistant. Among the patients with MDS-R at
diagnosis, the presence of NGS MRD predicted a higher early
relapse rate (1-year cumulative incidence of relapse, 51.5% vs.
23.6%, P<0.001), consistent with the concept that persistent
MRD is predictive of early relapse.

Blood Cancer Journal (2023)13:4

The impact of Allo-HSCT for patients with MDS-R mutations in
different age groups

Considering the chemoresistance owing to MDS-R mutant clones,
we speculated that receiving allo-HSCT at first CR might overcome
the negative impact of MDS-R mutations. Overall, the proportions
of patients receiving allo-HSCT at first remission were comparable
between patients with and without MDS-R mutations (P = 0.755
for the younger group and 0.447 for the older group, respectively).
In the total cohort, landmark analysis revealed that patients with

SPRINGER NATURE
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Fig. 3 The Kaplan-Meier survival curves for the elderly patient cohort. OS (a) and EFS (b) stratified by the status of MDS-R mutations, the
MDS-R mutation burdens (c and d, respectively), and treatment with or without allogeneic transplantation at first remission (e and
f, respectively). Patients with MDS-R mutations might benefit from allogeneic transplantation. MDS-R1, with one MDS-R mutation; MDS-R2,

with 2 or more MDS-R mutations.

MDS-R mutations had significantly better OS and EFS if they
underwent allograft at first remission (both P <0.001, Fig. 2e, f).
Subgroup analyses showed similar results for both the older group
(P=0.007 and <0.001, respectively, Fig. 3e, f) and the younger
group (P=0.042 and 0.002, respectively, Fig. 4e, f). Notably, as
only a limited number of patients (n = 10) with MDS-R mutations
in the older group underwent allografting, it is necessary to
validate this finding in a larger patient cohort.

SPRINGER NATURE

DISCUSSION

In recent years, AML classification has changed from morpholo-
gical discrimination alone to incorporation of aberrations detected
using genomic and transcriptomic-based systems. Recently,
Lindsley et al. defined a set of eight gene mutations described
above, as sAML-type mutations owing to their strong association
with secondary AML transformed from MDS and CMMolL in the
analysis of a cohort of 194 patients. The authors found that elderly
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Fig. 4 The Kaplan—-Meier survival curves for the younger patient cohort. OS (a) and EFS (b) of patients stratified by the status of MDS-R
mutations, the MDS-R mutation burdens (c and d, respectively), and treatment with or without allogeneic transplantation at first remission
(e and f, respectively). Patients receiving allogeneic transplantation at first remission experienced longer OS (e) and EFS (f). MDS-R1, with one

MDS-R mutation; MDS-R2, with 2 or more MDS-R mutations.

de novo AML patients carrying sAML-type mutations shared similar
clinicopathological features with clinically confirmed secondary
AML patients and validated the findings in another cohort of 105
elderly patients [7]. In addition, Gardin et al. evaluated sAML-type
mutations in a cohort of 509 patients aged 60 years or older with
de novo, secondary, or therapy-related AML, and found that sSAML-
type mutations might provide additional prognostic information
for elderly patients with intermediate-risk genotypes defined by

Blood Cancer Journal (2023)13:4

the 2017 ELN recommendation [8]. Based on these findings, the
2022 ICC categorized AML with these eight sAML-type mutations
together with RUNXT mutation, which is also closely associated
with sAML [7, 8] and confers poor prognosis [23], as AML with
MDS-R gene mutations [9]. Though the poor impact of MDS-R
mutations on elderly AML patients with de novo AML is clear, the
clinical significance of these mutations in younger patients
remains unclear. To the best of our knowledge, this study is the

SPRINGER NATURE
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Table 3. Multivariate Cox proportional hazards regression analyses.
Variables EFS
HR Lower Upper

Age® 1.011 1.006 1.016
WBC counts® (k/pL) 1.002 1.001 1.003
2017 ELN classification®

Intermediate vs. favorable 2.022 1.643 2.489

Adverse vs. favorable 3.809 3.060 4.740
HSCT at first CR® 0317 0.250 0.402
MDS-R mutations 1.225 1.009 1.488

(0

P value HR Lower Upper P value
<0.001 1.017 1.011 1.023 <0.001
<0.001 1.002 1.001 1.003 <0.001
<0.001 2.257 1.792 2.843 <0.001
<0.001 4.297 3.384 5.455 <0.001
<0.001 0.408 0.317 0.524 <0.001

0.040 1.239 1.005 1.526 0.045

CR complete remission, ELN European LeukemiaNet, MDS-R myelodysplasia-related, WBC white blood cell.

#Continuous variables.
PHSCT at CR1 vs. HSCT at other disease statuses or without HSCT.

“Since AML with myelodysplasia-related gene mutations belongs to the adverse category in the 2022 ELN risk classification, we used the 2017, instead of 2022,

ELN risk classification as a covariate.

first to show the adverse effect of MDS-R mutations on clinical
outcomes of younger patients with de novo AML. In addition, this
study also comprehensively elucidated the correlation of MDS-R
mutations with clinical features and their interaction with other
gene mutations in both younger and older age groups in a large
de novo AML cohort comprising 56% of younger patients.

We found that MDS-R mutations had significantly negative
prognostic impacts on OS and EFS of the younger patients, similar
to the older patients. Nevertheless, incorporating MDS-R mutations
did not further dichotomize the 2017 ELN-defined intermediate-
risk patients in the younger age group while they could in the
older one. Two explanations for this phenomenon are proposed.
First, most patients carrying MDS-R mutations harbored ASXL1
(40.6%) or RUNXT (41.6%) mutations, and thus they would be
included in the adverse-risk group defined by the 2017 ELN
classification. While focusing on intermediate-risk patients, a group
that excluded patients with ASXL7 or RUNXT mutations, only 14.3%
of younger patients had MDS-R mutations, as compared with
32.2% of older patients. The very limited patient number might
compromise the statistical power. Second, among patients with
intermediate-risk genotypes, FLT3-ITDM" allelic ratio \ya significantly
more prevalent among younger patients without MDS-R mutations
than among those with MDS-R mutations (P = 0.033, Supplemen-
tary Table 2). Although all these patients had concurrent NPM1
mutations, their prognosis might still be worse than that of
patients with wild-type NPM1 and FLT3, as reported previously
[24, 25]. Furthermore, because of the enrollment timeframe, many
patients with FLT3-ITD in our cohort did not receive FLT3 inhibitor
treatment upfront, which also compromised their outcomes.

Though the 2022 ICC defined AML with MDS-R gene mutations
exclude those with TP53 mutations [9, 10], we included all patients
with MDS-R mutations regardless of the presence or absence of TP53
mutations since the aim of this study was to evaluate the clinical
relevance and prognostic impact of MDS-R mutations in AML as that
was done in the study of Lindsley et al. [7]. Indeed, the patient cohort
of MDS-R mutations in this study included a few patients with ICC
and ELN-2022 defined AML with mutated TP53. In the analysis
focusing only on patients without TP53 mutations, we found that the
poor prognostic impact of MDS-R mutations remained: the patients
with MDS-R mutations had poorer OS (P <0.001 for total cohort;
P=0.006 for elderly patients; P=0.038 for younger patients)
compared with those without MDS-R mutations.

In this study, 23.4% of younger patients and 44.9% of elderly
patients harbored MDS-R mutations. The percentage of elderly
patients with MDS-R mutations in our cohort was similar to that of
the rigorously clinically defined de novo AML cohort reported by
Lindsley et al. (33.3%, P=0.147) and Gardin et al. (42.9%,
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P=0.572) [7, 8]. These results indicate that a significant portion
of the patients with de novo AML carry MDS-R mutations, although
they do not have a history of cytopenia or any hematologic
disease. The higher percentages of MDS-R mutations in elderly
patients may partially explain why these groups of patients, even
those receiving standard chemotherapy, have significantly poorer
outcomes than younger patients [2]. It is interesting that although
the presence of MDS-R mutations could discriminated a group of
de novo AML patients whose outcomes resembled those of
patients with secondary AML, MDS-R mutations did not correlate
with the presence of myelodysplasia-related cytogenetic changes
or adverse-risk cytogenetics, consistent with the previous report
[8]. This result emphasizes the necessity of performing compre-
hensive molecular studies for patients with newly diagnosed AML
to concisely identify those at high risk.

According to Gardin et al., allo-HSCT might overcome the
negative impact of MDS-R mutations on elderly patients [8]. In the
present study, allo-HSCT provided survival benefits for both
younger and older patients carrying MDS-R mutations. In recent
years, with advances in transplant strategies and graft-versus-host-
disease prophylaxis and treatment, an increasing number of
patients can receive allo-HSCT from alternative donors. However,
less than 20% of elderly patients receive allografts at first
remission [26, 27]. In general, exploring the optimal treatment
strategy for elderly patients with MDS-R mutations who are not
suitable for transplantation is warranted.

In conclusion, AML patients with MDS-R mutations have distinct
clinical features and poor outcomes regardless of older or younger
age. Allo-HSCT might improve the prognosis of AML patients
carrying MDS-R gene mutations.
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