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With the development of X-ray free-electron lasers (XFELs), producing pulses

of femtosecond durations comparable with the coherence times of X-ray

fluorescence, it has become possible to observe intensity–intensity correlations

due to the interference of emission from independent atoms. This has been used

to compare durations of X-ray pulses and to measure the size of a focused

X-ray beam, for example. Here it is shown that it is also possible to observe the

interference of fluorescence photons through the measurement of the speckle

contrast of angle-resolved fluorescence patterns. Speckle contrast is often used

as a measure of the degree of coherence of the incident beam or the fluctuations

of the illuminated sample as determined from X-ray diffraction patterns formed

by elastic scattering, rather than from fluorescence patterns as addressed here.

Commonly used approaches to estimate speckle contrast were found to suffer

when applied to XFEL-generated fluorescence patterns due to low photon

counts and a significant variation of the excitation pulse energy from shot to

shot. A new method to reliably estimate speckle contrast under such conditions,

using a weighting scheme, is introduced. The method is demonstrated by

comparing the speckle contrast of fluorescence observed with pulses of 3 fs to

15 fs duration.

1. Introduction

It was recently suggested (Classen et al., 2017) and demon-

strated (Inoue et al., 2019) that correlations of detected

X-ray fluorescence photons can be used to infer the spatial

arrangements of the emitting atoms, following the principles

of intensity interferometry known in astronomy (Hanbury

Brown, 1968). In the classical wave picture, the correlations

reveal interferences between waves emanating from the

independent fluorescing sources, which can only be observed

in exposures that are not considerably longer than the

coherence time of those waves, equal to the fluorescence

lifetime. Iron K� emission, for example, with a photon energy

of 6.4 keV (wavelength of 1.9 Å), has a lifetime of about 0.4 fs.

In the absence of detectors that can be gated with femto-

second resolution, the detection of the interference of fluor-

escence is made possible by using short-duration pulses from

an X-ray free-electron laser to excite atoms which emit waves

that arrive at the detector nearly simultaneously. However,

each realization of such interference will be different, due to
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random fluctuations of the relative phases of the emitted

waves. By averaging correlations of intensities, rather than

the intensities themselves, information about the unchanging

structural arrangement of the fluorescing atoms can never-

theless be extracted, in a method dubbed incoherent diffrac-

tive imaging (IDI) (Classen et al., 2017).

The instantaneous intensity distribution of the fluorescence

is a speckle pattern formed by the sum of waves with a

particular set of random phases. Even without extracting

structural information, it is possible to characterize the inter-

ference of fluorescence from a measure of the speckle

contrast. From this alone, one can confirm experimental

conditions for IDI, compare the fluorescence lifetimes of

atoms and atomic states (such as in different chemical envir-

onments or physical environments), or compare pulse dura-

tions of different operating modes of an X-ray free-eletron

laser (FEL) (Inoue et al., 2019). Knowledge of the speckle

contrast can be used to tune the X-ray source to maximize

peak brightness of pulses, or to find the location of highest

intensity of a focused beam (Nakamura et al., 2020).

The estimation of speckle contrast is most commonly made

for diffraction patterns formed by elastic scattering rather

than fluorescence. In elastic scattering the phases of atomic

scattering factors are fixed (unlike for fluorescence), but the

phase of the incident beam may fluctuate or the positions of

the scatterers may change rapidly over the course of the

exposure. In the former case, the speckle contrast provides a

measure of the degree of coherence of the incident beam

(Hruszkewycz et al., 2012; Gutt et al., 2012), and in the latter it

reveals the dynamics of disordered systems (Inoue et al., 2012;

DeCaro et al., 2013; Li et al., 2014). Examples of this method,

referred to as X-ray speckle visibility spectroscopy (XSVS),

include the study of diffusion or vibrational modes in liquids

and glasses at the atomic scale (Ruta et al., 2012; Leitner et al.,

2009). The timescales of sample motions that are probed is

dictated by the exposure time, with short-duration pulses from

X-ray FELs providing access to femtosecond timescales

(Hruszkewycz et al., 2012). In many situations the detected

signals are weak, especially when aiming for the highest time

resolution and sensitivity to changes on the atomic scale. This

is also certainly the case for measurements of the interference

of fluorescence, which we examine in this paper. In such cases,

the speckle contrast is usually obtained by averaging estimates

from a number of exposures. However, as we show in this

paper, that approach may lead to gross errors, especially when

the incident pulse energy (number of photons) fluctuates

from pulse to pulse — as for X-ray pulses created by the SASE

process. Here, we introduce and examine an improved method

to estimate speckle contrast, using a weighted average. We

compare it with previous approaches and apply it to weak

X-ray fluorescence measurements made at the LCLS from

iron nanoparticles, where we demonstrate the possibility of

detecting fluorescence interference at relatively low intensity.

This paper is structured as follows. The general definition of

speckle contrast in Section 2 is followed by an introduction to

the experiment in Section 3 with a calculation of the expected

speckle contrast in Section 3.1. In Section 4 we discuss the

estimation of speckle contrast and show conditions where

current methods fail. Then we introduce the weighted mean

speckle contrast estimation in Section 5, and apply it to the

experimental fluorescence data in Section 6. We show that,

using our approach, it is possible to discern an increase in

the speckle contrast in data collected with a reduced X-ray

FEL pulse duration, supporting efforts utilizing second-order

correlations for structure determination or pulse character-

ization. We summarize and discuss the results in Section 7.

2. Speckle contrast

The origin of speckles lies in the addition of many optical

waves with random phases (� = [0, 2�)). This occurs when an

optical laser beam is reflected from a rough surface, for

example, or in the X-ray diffraction of an arrangement of

atoms in a single molecule (Chapman et al., 2017). For X-rays,

the detected signal is proportional to the energy or square

modulus of the complex-valued amplitude of the wavefield.

This measurable quantity, which we refer to as the intensity, I,

is static as long as the structure or illumination does not

change. When the wavefield is spatially coherent (such as

when the scattered waves are generated by a beam originating

from a single point source) and strictly monochromatic, the

sum of a large number of random phases most likely leads to

areas of complete destructive interference where the intensity

is zero. Then, the distribution of measured intensities follows a

negative exponential distribution,

PExpðIj�Þ ¼ exp �
I

�

� �
; ð1Þ

where � is the expectation value of I (Goodman, 2020). Since

the minimum intensity value is zero, the speckle contrast (or

visibility), �, defined as the ratio of the difference between

the maximum and minimum intensities to their sum, is unity

[� = (Imax � Imin)/(Imax + Imin) = 1]. A speckle pattern can also

be produced by independent emitters, emitting waves of the

same wavelength but each with a random phase. In this case,

the pattern will only stay constant as long as the relationships

of the phases do not change, a duration referred to as the

temporal coherence of the wavefield. The speckle nature

of the resulting interference is, again, a consequence of the

phases being random (as opposed to a phased array of emit-

ters, for example) and follows the same distribution given in

equation (1). Whether created by elastic scattering from a

random substrate or from emitters with random phases, a

reduction of the contrast of a speckle pattern indicates a

loss of coherence of the wavefield. For example, a change in

the arrangement of scatterers will change the instantaneous

speckle pattern, causing intensity zeros to occur in different

locations. A detector that was to integrate an exposure over

the course of this change would measure the sum of these

patterns. Intensity zeros in the sum would not likely occur

(since this would require zeros common to both patterns) and

the visibility of the measured pattern would be reduced.

Likewise, a change in the relative phases of independent

emitters over the course of an exposure will reduce the
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measured speckle contrast. The contrast of a speckle pattern

formed by elastic scattering is also reduced with an incoherent

source of finite extent. The effect of this reduction of spatial

coherence is to convolve the speckle intensity pattern with the

angular distribution function of the source (Goodman, 2020).

(Finite-area pixels in a detector have the same effect.) The

measurement of speckle contrast therefore provides insight

into the coherence of the wavefield and from that an under-

standing of the nature of the emitters, the dynamics of the

scatterers, or the measurement process itself. The speckle

contrast can vary between � = 1, corresponding to the case of

full coherence mentioned above for equation (1), and � = 0

corresponding to complete incoherence where the intensity

would be uniform. However, since the light energy upon

detection is quantized into countable (x) photons, the negative

exponential distribution (� = 1) becomes a Bose–Einstein

distribution (Goodman, 2020),

PBEðxj�Þ ¼
1

1þ �

�

1þ �

� �x

; ð2Þ

and the uniform intensity (� = 0) becomes Poisson distributed.

With partial coherence, 0 < � < 1, the measured intensities

follow a negative binomial distribution (Goodman, 2020),

PNBðxj�; �Þ ¼
ð��Þx ð1þ ��Þ�ð1þ�xÞ=� �ðxþ 1=�Þ

x! �ð1=�Þ
; ð3Þ

for which the variance obeys

VarNB ¼ �þ ��
2: ð4Þ

3. Experiment and expected speckle contrast

Measurements of iron K� X-ray fluorescence emitted from

single iron nanoparticles were carried out at the MFX

beamline of LCLS, using the scheme depicted in Fig. 1(a). The

nanoparticles, referred to as iron nano-stars (Feld et al., 2019),

had an irregular but roughly spherical shape with a mean

diameter of about 50–100 nm, see Fig. 1(b). These samples

were suspended in toluene at a concentration of 0.13 mol l�1

(7.9 � 1019 ml�1) and injected across the focused X-ray beam

as a liquid jet. The jet, formed by a double-flow-focusing

nozzle (Oberthuer et al., 2017; Knoška et al., 2020), had a

diameter of about 2.2 mm and a velocity of about 60 m s�1,

ensuring that a fresh sample was present for each exposure,

made at a repetition rate of 120 Hz. The LCLS was operated

in two different modes for the measurements, to produce

pulses of �15 fs, as estimated using the X-band Transverse

Deflecting Cavity (XT-CAV) (Krejcik et al., 2013), and �3 fs,

as estimated by settings of the electron pulse compression in

the accelerator. The incident X-ray beam was linearly polar-

ized in the horizontal direction with a photon energy of

7.15 keV and focused to a size of about 4 mm. From estimates

of the beamline transmission, the mean pulse energy at the

experiment was about 0.1 mJ for the short and 1.5 mJ for the

long pulse mode. Thus the peak X-ray intensity on the

sample approached 8 � 1017 W cm�2 for the long pulses and

2.7 � 1017 W cm�2 for the short ones. The fluorescence was

measured using a Jungfrau detector oriented at a scattering

angle of 90� in the horizontal plane, where coherent scattering

is minimized. The detector, with 1000 � 1000 square pixels,
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Figure 1
(a) Sketch of the experimental setup at the MFX beamline at LCLS. (b) Transmission electron microscope image of the iron nanoparticles. (c) Mean
photon count per pixel at Jungfrau for 3 fs XFEL pulse patterns and (d) for 15 fs XFEL pulse patterns.



each 75 mm wide, was placed 120 mm from the interaction

region. A 32.4 mm-thick manganese filter was placed in front

of the detector to attenuate the iron K� fluorescence and any

coherently scattered photons.

The concentration of the nanoparticles in the solution was

adjusted so that on average 11% of the pulses intersected a

particle. This ‘hit fraction’ was measured simply from the sum

of fluorescence counts on the Jungfrau detector, monitored

on-line using the program OnDA (Mariani et al., 2016). After

the experiment, the frames containing fluorescence counts

were processed by first masking bad pixels and shadows of

shielding around the edges, leaving 895000 pixels per frame.

The treatment of each detector frame to yield photon counts

is described in Appendix F. The number of events (frames

with detected fluorescence) was 98000 and 61000 for the

‘long’ 15 fs and ‘short’ 3 fs exposure times, respectively.

Histograms of the mean number of photons per pixel, hIi, in

each event for the long and short pulses are given in Figs. 1(c)

and 1(d), respectively. It is seen that in both cases the mean

counts are less than one photon per 100 pixels, but this varies

considerably over both datasets. The large variation of mean

counts was in part due to the sample delivery — the nano-

particles arrive randomly in the beam focus — and in part due

to the fluctuation of the pulse energy of the XFEL beam.

3.1. Expected speckle contrast

Under the assumption of a Gaussian-shaped excitation

pulse, where the pulse duration (FWHM) T is significantly

greater than the coherence time �c , the expected speckle

contrast is well approximated by

� �
1

3

�c

T
: ð5Þ

A derivation of equation (5) can be found in Appendix A. The

coherence time can be estimated from the spectral line-width.

For iron K�, with a line-width (FWHM) of � = 1.61 eV

(Krause & Oliver, 1979), �c = 2h- /� = 0.8 fs (Grynberg et al.,

2010; Goodman, 1985; White, 1934). In these measurements,

K�, 1 and K�, 2 fluorescence cannot be discriminated, and

these will contribute as mutually incoherent modes, with the

ratio given by the fluorescence branching ratio RK�;1
= 0.581

and RK�;2
= 0.297 (Brunetti et al., 2004), and thus

RK�;1
=ðRK�;1

þ RK�;2
Þ ’ 2/3 and RK�;2

=ðRK�;1
þ RK�;2

Þ ’ 1/3. The

probability that two detected photons can interfere is there-

fore reduced by a factor (2/3)2 + (1/3)2 = 5/9 (Lohse et al.,

2021). Based on these considerations, the maximum speckle

contrast that can be expected is

�max;expectedðTÞ ’
5

27

0:8 fs

T
;

�max;expectedð3 fsÞ ’ 0:049;

�max;expectedð15 fsÞ ’ 0:01:

ð6Þ

There are, however, a number of factors which act to reduce

the achievable speckle contrast below the estimates of equa-

tion (6), discussed qualitatively here:

Insufficient speckle sampling. The speckle size of the pattern

measured at the detector is inversely proportional to the

illuminated sample size. If this is smaller than the detector

pixel size, contrast is reduced (Goodman, 1975). Given the

75 mm pixel size located 120 mm from the sample, the

maximum sample diameter for sufficient speckle sampling

is 300 nm. For particle diameters of 300 nm the contrast is

reduced by a factor of 0.74. The iron nanoparticles used in this

experiment had a diameter of 50–100 nm, for an expected

reduction in � by a factor of 0.95 to 0.93.

Background. Despite the use of the Mn filter and the choice

of a 90� scattering angle, we estimate a background of less than

5% of the total signal that is not attributable to fluorescence

of the sample. Some of this may be caused by Mn fluorescence

in the filter. Such a background reduces the contrast by a

factor of >0.95.

Finite speed of light. The arrival times of fluorescence at the

detector varies even for an instantaneous X-ray pulse, due to

the spatial extent of the sample. This effect is most severe for

our 90� scattering geometry and is reduced for detection in the

forward direction (Lohse et al., 2021; Shevchuk et al., 2021).

Simultaneously generated fluorescence will only interfere if

the path difference to the detector is less than the product of

the speed of light with the coherence time, equal to 120 nm —

very close to the size of the particles used.

Ionization and plasma effects. The intense X-rays pulses are

expected to lead to high ionization and formation of plasma

in the sample, which could affect the fluorescence. For the

conditions in the experiment, we simulated the ionization

dynamics in the sample using a non-thermal plasma approach

(Jönsson et al., 2017) and found that the short pulse (3 fs,

0.1 mJ) leads to sample temperatures of 1.5 eV and an average

ionization for iron of 0.1, while the long pulse (15 fs, 1.5 mJ)

gives a temperature of 3.5 eV and an average ionization for

iron of 2. The simulated spectra do not show broadening for

these conditions; however, the plasma effects could become

significant at higher intensities.

4. Estimation of speckle contrast

The low mean photon counts of our measurements is a

situation not uncommon in the analysis of X-ray speckle

patterns, most of which are made under the conditions of very

limited signal levels. This is certainly the case in the field of

X-ray photon correlation spectroscopy (Lehmkühler et al.,

2021) since the study of dynamics of samples requires short

exposures, and the brightness of any X-ray source is ultimately

limited. Under these conditions of low signal levels where only

single photons are detected instead of visible speckles, the

definition of speckle contrast given in Section 2 is not prac-

tical. Given that the measured counts follow the negative

binomial distribution of equation (3), the most straightforward

method to determine the speckle contrast of a low-signal

pattern is to estimate � from hIi and the variance Var(I) from

the square of the standard deviation of the intensity values, I.

Then, simply solving equation (4) for the visibility factor yields
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�V ¼
VarðIÞ � hIi

hIi2
: ð7Þ

We call the speckle contrast estimated

this way �V.

Another approach is to count the

detector pixels that measured one or

two photons (Hruszkewycz et al.,

2012; Möller et al., 2019; Sun et al.,

2020). Given the measured observed

frequency of one-photon values, P1 =

PNB(1|hIi, �), and two-photon values,

P2, we find from equation (3)

�1;2 ¼
2P2 � P1hIi

ðP1 � 2P2Þ hIi
; ð8Þ

where the subscripts 1 and 2 stand for

the use of only 1 and 2 photon counts.

Note that for � = 1, �1, 2 is not defined,

since P1 = 2P2 | 8 �. This estimate does

not appear to have any advantage over

�V but has some significant disadvan-

tages when the mean photon count

approaches or exceeds 1, as we will

show below. Since approximated forms

of �1, 2 are often mentioned in the

literature (Hruszkewycz et al., 2012;

Sun et al., 2020; Möller et al., 2019)

(see Appendix B), we include it in our

further analysis. Furthermore, speckle

contrast estimation requires a minimum

number of simultaneously measured values (e.g. pixels). Even

though this was not a concern in our experiments, the effects

of an insufficient pixel count are discussed in Appendix C.

Applying equations (7) or (8) to each of the 61000 short-

pulse patterns and separately to each of the 98000 long-pulse

patterns, then averaging the results, we obtain the following

speckle contrast estimates,

h�Vð3 fsÞi ¼ 0:54� 0:32;

h�Vð15 fsÞi ¼ 0:025� 0:07;

h�1;2ð3 fsÞi ¼ 0:14� 0:11;

h�1;2ð15 fsÞi ¼ �0:05� 0:011:

ð9Þ

These estimates are much higher than the optimistic expec-

tations of equation (6), except for the negative value for �1, 2

at 15 fs. The largest estimate is unphysical since a speckle

contrast of � = 0.5 corresponds to perfectly coherent but

unpolarized light. Also, the differences between h�Vi and

h�1, 2i are quite large. These estimates therefore cannot be

trusted, and the reason for this is the very low mean photon

count for the vast majority of patterns and also especially

the large variation of hIi from pattern to pattern as evident in

Figs. 1(c) and 1(d). Histograms of the individual estimates are

shown in Figs. 2(a) and 2(b) for the short and long pulses,

respectively. The abscissa of both plots is logarithmic, high-

lighting the long-tailed distribution of these single pattern

speckle contrast estimations, and which severely skews the

means given in equation (9).

Hints for how to find better estimates of the contrast can be

found by examining subsets of patterns chosen from various

bins of hIi in the histogram of Fig. 2(c). We find that the

distributions of � estimates — and especially the behavior of

the long tail at high values — depends on the mean counts hIi,

as seen in Fig. 2(d). While a low hIi leads to a large fluctuation

of � estimates, this transmutes to a more compact Gaussian-

like distribution for larger hIi values. This observation led us

to propose a new method to estimate speckle contrast, using a

weighted average as described and evaluated, using simulated

data, in the next section.

5. Weighted mean speckle contrast

To evaluate our new strategy to estimate the speckle contrast

of patterns with low photon counts per pixel, hIi 	 1, and

with a large variation in hIi from pattern to pattern, we first

simulated 105 speckle patterns with a mean count of 10�4,

105 more patterns with a mean count of 3 � 10�4, and

1.5 � 104 speckle patterns with a mean count of 3 � 10�2. This

was done simply by generating random numbers that follow

the Bose–Einstein distribution of equation (2), corresponding

to full contrast (�0 = 1). Each pattern consisted of one million

pixels — that is, one million random numbers — similar to that
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Figure 2
Histograms of single pattern speckle contrast estimates �1, 2 and �V, obtained from measured X-ray
fluorescence photons. (a) Iron nano-stars, measured with 3 fs pulses, with the sample variance
Var(�1, 2) = 708 and Var(�V) = 6253. (b) Iron nano-stars, measured with 15 fs pulses, with Var(�1, 2) =
11 and Var(�V) = 485. Note the long-tailed distribution with many entries at�1 and some quite high
� estimates, along with the high sample variance. (c) Histogram of mean photon counts [equivalent
to Fig. 1(d)], divided into four parts as indicated by four colors. (d) Histograms of speckle contrast
estimates for different regions of mean photon counts. Note the transition from a long-tailed
distribution with large peak at � = �1 at low hIi (blue) to a more Gaussian-like distribution for
higher hIi (red).



of our experiment and sufficiently large to ensure that the

mean estimate converged to the correct value, as demon-

strated in Appendix C.

Histograms of the per-pattern speckle contrast estimates

are plotted in Fig. 3 for the three different mean photon

counts. For the lowest signal level of 10�4 counts per pixel

(corresponding to an average of only 100 photons per pattern)

the probability of observing at least one two-photon hit within

a single pattern is very small. Thus, most simulated patterns do

not have any pixels with a value of 2 or higher. In this case,

Pj 
 2 = 0 and P1 = hIi, and therefore Var(I) = hIi � hIi2, so that

equation (7) evaluates to �V =�1. Likewise, equation (8) with

P2 = 0 immediately returns �1, 2 = �1. These values occur

frequently for hIi = 10�4 and 3 � 10�4 as seen in the histo-

grams of Fig. 3. Conversely, a pattern containing at least one

pixel with a value of 2 or higher will return an overly large �
estimate, using equations (7) or (8).

From Fig. 3 it is apparent that the shape of the distribution

of � estimates changes with hIi. In Fig. 3(a), with hIi = 10�4,

most entries are at � = �1 and a few entries are distributed

over a wide range of large � values. At a slightly higher hIi =

3 � 10�4, shown in Fig. 3(b), this transmutes to a distribution

consisting of peaks (caused by patterns with one two-photon

value, two two-photon values, and so on). Finally the distri-

bution takes on a Gaussian shape, centered at �0 for suffi-

ciently large hIi, as seen in Fig. 3(c). Despite the differences in

the distributions, the averages of the � estimates in each of the

cases presented in Fig. 3 all have the correct value of 1 (equal

to �0). However, this is only true when averaging over patterns

with the same hIi. With significant intensity fluctuations, �
estimates are averaged over values sampled from significantly

different distributions. It is unlikely in that case that the �� 1

estimates that are obtained in patterns with two-photon

counts will be properly balanced by the � = �1 estimates

obtained when there are no two-photon counts. This obser-

vation suggests that it may be unwise to apply equal weight-

ings to estimate � from patterns with different hIi. To obtain

reliable speckle contrast values from data sets with varying

mean intensities, we therefore suggest forming the weighted

mean of the single pattern �-estimates using the inverse of

their expected variances as weights,

��� ¼

PNP

j¼ 1 �j �
�2
�; jPNP

j¼ 1 �
�2
�; j

; ð10Þ

with NP denoting the number of patterns, �j the estimated

speckle contrast of the jth pattern and �2
�;j the expected

variance of �j(hIi, �0). The variance of the weighted mean

speckle contrast is then given by

�2
���
¼

PNP

j¼ 1 �j �
���

� �2
��4
�; jPNP

j¼ 1 �
�2
�; j

� �2 : ð11Þ

However, to apply this weighting, we need to know the

expected variance of each �j , namely �2
�; j. In the following, we

derive and examine schemes for evaluating weighted averages

of �1, 2 and �V.

5.1. Weighted mean of b1,2

As derived in Appendix D, the variance �2
�1;2

of �1, 2 can be

expressed as

�2
�1;2
¼
ð1þ �Þð1þ �hIiÞ

ðhIi � 1Þ2hIi2
ð12Þ

�
�
1þ �

�
hIi þ

�
2þ hIi þ 3�hIi

��
1þ �hIi

�2þ1
�

h i
:

This is plotted as a function of hIi as solid lines in Fig. 4(a)

for several true values of the speckle contrast, �0. To verify

this expression, calculations were also carried out on simu-

lated data. As for the simulations above, sets of 106 random

numbers were generated following a negative binomial

distribution, corresponding to patterns recorded with a

1 megapixel detector. Groups of patterns were simulated for

constant �0 and hIi, for values of hIi spanning 5 � 10�3 to 1.

The number of simulated patterns per group decreased from

105 for the smallest hIi to 5000 patterns for the largest. For

each pattern, �1, 2 was calculated using equation (8) from

which sample variances were determined and plotted as dots

in Fig. 4(a). As seen in that figure, the theoretical and simu-

lated variances �2
�1;2

are in good agreement. Small deviations

between them can be explained by the fact that the assumed

independence of the observables P1, P2 and hIi is slightly

violated given that there is a finite number of pixels.

We next simulated 5 � 105 patterns of 1 megapixel size and

with �0 = 1, but now with fluctuating mean counts. The mean

counts hIi for each pattern were chosen randomly from a

negative exponential distribution with the expectation-value

EðhIiÞ = 0.01. A histogram of these is given in Fig. 5(a). This

distribution corresponds to a SASE process with a single

mode, for example, yielding measurements with an average of

0.01 counts per pixel per pattern and a maximum value of hIi =
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Figure 3
Histograms of speckle contrast estimates �1, 2 and �V, obtained from
simulated patterns each consisting of one million random numbers
following a Bose–Einstein distribution (�0 = 1) and with means of (a) hIi =
10�4, (b) hIi = 3 � 10�4 and (c) hIi = 3 � 10�2. For (a) and (b) most of the
estimates are at � = �1 and a minority at very high values.



0.1. For each simulated pattern, �1, 2 was calculated using

equation (8). To examine the effectiveness of the inverse

variance weighting, the patterns were divided into two subsets

depending on whether hIi was smaller or larger than a parti-

cular threshold, Isplit.

For both the low-intensity and high-intensity subsets

obtained for various choices of Isplit, we calculated the

weighted mean ���1;2 and its standard deviation � ���1;2
, as well as

the unweighted mean h�1, 2i and its standard deviation. The

standard deviations �h�1;2i
of the unweighted means for the

low-intensity and high-intensity subsets are plotted as a

function of Isplit as the red solid line and red dashed line,

respectively, in Fig. 5(b). The inverse variance-weighted

standard deviations � ���1;2
for the two subsets are plotted in

Fig. 5(c), also as red solid and red dashed lines.

Comparing the red lines in Fig. 5(b) with those in Fig. 5(c)

shows reductions of the standard deviations for both the

low-intensity and high-intensity subsets when applying the

weighting scheme. This improvement is also apparent when

using the entire set of patterns, as when the threshold of the

low-intensity subset is equal to the maximum value of Isplit =

0.1 or (equivalently) for the high-intensity subset at Isplit = 0. In

this case the weighting scheme yields a standard deviation of

4 � 10�8, compared with 10�4 for the unweighted mean. It is

also noted that the unweighted h�1, 2i of the high-intensity bin

(hIi 
 Isplit, red dashed line) becomes worse if intensity data
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Figure 4
(a) Variance of �1, 2 as a function of hIi as computed using equation (12) (solid lines) and simulated values (dots). The variance decreases with increasing
hIi for low signals and then increases again as hIi approaches 1. (b) Variance of �V as a function of hIi as computed using equation (13) (solid lines) and
simulated values (dots). Note that �2

�V
saturates at high hIi.

Figure 5
Effects of 1=�2

�-weighting demonstrated on simulated data in which the mean counts per pattern follows exponential distributions with (a) mean EðhIiÞ =
0.01 and (d) EðhIiÞ = 0.2. The data were divided into two parts: one at high intensity with hIi > Isplit , and its complement with hIi � Isplit . (b, e) Standard
deviation of the retrieved � of the two parts, using equal weighting, as a function of Isplit. The standard deviation decreases when neglecting the patterns
with very low counts as evident in the low-intensity regime of (b). The plot of ��1;2

in (e) exhibits a sharp discontinuity at Isplit = 1, which is absent for ��V
.

(c, f ) Standard deviation of the retrieved � of the two parts, using 1=�2
�1;2

-weighting. In this case the lowest standard deviation is achieved by using all
patterns to estimate �. �V always performs better than �1, 2, especially in the high-intensity regime, see ( f ).



with a mean lower than about 0.01 are included. That is, the

unweighted mean h�1, 2i suffers from a higher uncertainty

when all data are included compared with when the very

low intensity patterns are neglected. With inverse variance-

weighting, on the other hand, including all data, no matter how

low the mean counts, the uncertainty of the mean ���1;2 reduces.

It may seem circular that we need � to calculate �2
�1;2

, which

is then used to determine ���1;2, but it turns out that exact

knowledge of � is not crucial and an initial guess can be used

to recursively determine ���1;2 .

To put things into perspective, in the given example the

standard deviation of the mean unweighted � is about 3500

times higher than that of the weighted mean, considering

the full dataset. This means that, in order to obtain a similar

accuracy, 1.2 � 107 times as many patterns would be required.

However, when discarding the low-photon-count data (in the

present case around 76% of the whole dataset), the standard

deviation can be reduced by a factor 3 � 10�4. Now the

difference to the weighted case is quite small, but the accuracy

stays lower.

5.2. Weighted mean of bV

An evaluation of the inverse variance-weighting of ���V was

performed similarly to the case of ���1;2 presented in Section 5.1.

The variance of ���V, required for the weighting, is given as

�2
�V
¼

2þ 2� 3hIi2 þ � 2hIi 4þ 3hIið Þ þ � 2þ 4hIið Þ

hIi2
: ð13Þ

A detailed derivation of this equation can be found in

Appendix E, and a verification of the expression is presented

in Fig. 4(b) utilizing the same simulated datasets as in

Section 5.1.

Plots of the variances of estimates of �V are given in

Figs. 5(b) and 5(c) for the low-intensity and high-intensity

dataset fractions, as the black solid and black dashed lines. The

variances are quite similar to those observed for �1, 2.

Differences in the �V and �1, 2 methods only become

apparent for mean counts higher than about 0.1. To investigate

these, we simulated a set of patterns with �0 = 1 and an

exponential distribution of mean photon counts but with a

higher expectation value of EðhIiÞ = 0.2 and a maximum of 2.0

photons per pixel per pattern. A histogram of the mean counts

per pattern is plotted in Fig. 5(d). The variance �h�Vi
of the

equal-weighted h�Vi is plotted in Fig. 5(e) (black solid and

dashed lines) as a function of Isplit for the low-intensity and

high-intensity dataset subdivisions. Calculations were also

made on this dataset using the �1, 2 method. The plots of the

variances of h�1, 2i (red solid and dashed lines) show a critical

behavior around Isplit = 1, which is due to the definition gap of

�1, 2 at hIi = 1.

The accuracy of the equal-weighted h�Vi decreases when we

take the low hIi into account [as apparent from the black

dashed line in Fig. 5(e)], similar to the case of the equal-

weighted h�1, 2i, as discussed before. The standard deviations

of the inverse variance-weighted ���V (black lines) and ���1;2 (red

lines) are plotted in Fig. 5( f), both showing a significant

improvement as compared with the unweighted averages.

While for low photon count data the accuracy of 1=�2
�-

weighted ��� is almost the same for �1, 2 and �V, the latter is

significantly better for high photon counts. We can state, as an

intermediate conclusion, that the 1=�2
�-weighted ���V approach

is preferable when retrieving the speckle contrast from data

consisting of patterns with different mean photon counts.

6. Speckle contrast determination of Ka – X-ray
fluorescence

We can now apply our proposed 1=�2
� weighting of speckle

contrast estimates on the experimental fluorescence data

described in Section 3. Utilizing equation (10) we obtain

���V ð3 fsÞ ¼ �0:048� 0:004;

���V ð15 fsÞ ¼ �0:073� 0:003;

���1;2 ð3 fsÞ ¼ �0:052� 0:006;

���1;2 ð15 fsÞ ¼ �0:074� 0:003:

ð14Þ

In contrast to the unweighted values in equation (9), the

values of ���V and ���1;2 are in much better agreement. The

estimated speckle contrast is negative, which would imply a

sub-Poissonian photon distribution which is not expected. The

result can be explained by systematic errors of the photon-

ization method used to extract photon counts from the

measured detector frames (see Appendix E), and in particular

in the discrimination of one-photon and two-photon hits. In

our case, the photonization algorithm underestimates the two-

photon hits in favor of the one-photon hits, which leads to a

systematic underestimation of the retrieved speckle contrast.

Due to this bias it is therefore not possible to obtain the

speckle contrast absolutely. Sun et al. (2020) recently discussed

such systematic errors in the estimates of speckle contrast

induced by the photonization algorithms. They demonstrated

that the error behaves linearly for measurements with small

mean photon counts hIi 	 1, implying that the difference of

the retrieved speckle contrast for different coherence condi-

tions could be trusted. We therefore report the retrieved

speckle contrast difference � ��� = ��� ð3 fsÞ � ��� ð15 fsÞ instead of

the absolute values, as meaningful results,

� ���V ¼ 0:025� 0:005; � ���1;2 ¼ 0:022� 0:005: ð15Þ

The maximum expected speckle contrast difference due to the

change in incident X-ray pulse duration using equation (6) is

��0 = 0.039. However, as detailed in Section 3.1, there are

many experimental factors that will reduce the contrast, and

so too will reduce the contrast difference. Our estimated � ��� is

therefore consistent with the changes in pulse duration and is

consistent with the interference of fluorescence photons as the

cause of the speckle contrast.

7. Summary

The speckle contrast, or visibility, of an intensity pattern of

electromagnetic radiation quantifies the degree of coherence
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or number of coherent modes present, and can be determined

from intensity measurements using a pixel array detector,

even when the detected photon counts are much less than

one per pixel. We aimed to measure the speckle contrast of

K� iron X-ray fluorescence emitted from single iron nano-

particles by short-duration pulses from an X-ray free-electron

laser (XFEL). When the pulses are not significantly longer

than the coherence time of the fluorescence (as set by the

lifetime of the fluorescence), it is expected that the emission

from different atoms will interfere at the detector,

providing a possible route to image the atomic arrangements.

We examined the speckle contrast of the intensity measure-

ments to investigate the potential of discerning such

interferences and hence for carrying out such imaging of

small samples.

In our experiment, the fluorescence was recorded using

X-ray free-electron laser pulses of 3 fs duration and of 15 fs

duration. 61 000 patterns were recorded for the short-pulse

configuration and 98 000 for the long-pulse configuration.

The patterns, recorded on a pixel-array detector with almost

a million pixels, were very sparse, containing on average

9 � 10�4 photons per pixel per pattern. The speckle

contrast could only be measured by averaging over a large

number of patterns. However, in doing so, we discovered

that existing methods to estimate the speckle contrast fail

for sparse patterns when there are large variations in the

strength of the patterns from pulse to pulse, as was the case

here. The reason for this failure was tracked down to the

fact that the distribution of estimates of the speckle

contrast, for a given mean photon count per pixel hIi,

changes dramatically for different hIi. To overcome this

problem we proposed a new way to estimate speckle

contrast, by calculating the average of estimates weighted

by the inverse of the expected variance of those estimates.

Using simulated data, we showed that this approach

produces the correct results when previous approaches did

not, see equation (15).

Using this approach of inverse variance weighting, we

observed a larger speckle contrast for patterns recorded with

the 3 fs short pulses than for the 15 fs pulses. This result

indicates that the speckle contrast of X-ray fluorescence

emitted from small particles can be measured when illumi-

nated by short pulses, and these measurements could be used

to characterize XFEL pulses shorter than about 10 fs.

However, that would require careful calibration, for example

by measuring a sample with no expected speckle contrast

(� = 0) as a reference, and a well controlled sample size for

constant speckle sampling. Our results support the finding

of Inoue et al. (2019) that X-ray fluorescence can be used

for imaging based on intensity correlations, as proposed by

Classen et al. (2017).

The presented method of weighted speckle contrast esti-

mation might also be useful for XSVS experiments with a low

and non-constant mean photon count per exposure. This

might especially be the case at XFELs due to the fluctuating

intensity between X-ray pulses, or due to a serial deployment

of the specimens.

APPENDIX A
Fluorescence speckle contrast for a Gaussian
excitation pulse

For the following discussion we assume that the radiative

lifetime is not longer than the coherence time of the emission.

We further neglect the unpolarized nature of fluorescence for

now, and assume that there is only one decay path (single

spectral line). This means that in the case of an infinitely short

excitation pulse we expect a speckle contrast of 1. In that case

the wavefunction of the emission of frequency !0, excited at

t = 0, can be expressed as (White, 1934)

 ðtÞ / exp i!0tð Þ exp �t=�cð Þ�ðtÞ; ð16Þ

and the intensity is given by IflðtÞ / expð�2t=�cÞ�ðtÞ
accordingly, where the step function �(t) = 1 for t 
 1 and 0

otherwise. The modulus of the complex degree of coherence

represents the probability of the ability of two waves to

interfere, given by (Goodman, 1985)

	ð�Þ
�� �� ¼

R 1
�1

 ðtÞ 
ðt þ �Þ dt
�� ��R 1

�1
 ðtÞ
�� ��2 dt

¼ exp �
�j j

�c

� �
: ð17Þ

The coherence time is calculated from the complex degree of

coherence by (Goodman, 1985)

Z1

�1

	ð�Þ
�� ��2 d� ¼

Z1

�1

exp �2
�j j

�c

� �
d� ¼ �c; ð18Þ

thus identifying the parameter �c with this quantity. The

excitation probability is proportional to the incident XFEL

pulse intensity Iexcite(t), and we define the normalized pulse

shape PðtÞ = IexciteðtÞ =
R 1
�1

IexciteðtÞ dt. The expected speckle

contrast is obtained as (Inoue et al., 2018; Goodman, 1985)

� ¼

Z1

�1

�ð�Þ 	ð�Þ
�� ��2 d�; ð19Þ

where �ð�Þ =
R 1
�1

PðtÞPðt þ �Þ is the autocorrelation of the

normalized excitation pulse shape. When we assume a Gaus-

sian-shaped excitation pulse,

PTðtÞ ¼
2
�
½logð2Þ�=�

�1=2

T
exp �

4 logð2Þ

T
t 2

	 

; ð20Þ

with a FWHM T, then equation (19) evaluates to

�GaussðTÞ ¼ exp
T 2

�2
c logð4Þ

	 

1� erf

T

�c logð4Þ½ �
1=2

� �� �
; ð21Þ

where erf(x) denotes the error function. The visibility

becomes unity in the limit of the excitation pulse being much

shorter than the coherence time: �Gauss ! 1 as �c /T ! 1.

In the limit of the pulse duration being significantly longer

than the coherence time, which is the case in our experiment,

the speckle contrast becomes

lim
�c=T! 0

�Gauss ¼
logð4Þ

�

	 
1=2
�c

T
’

�c

1:5T
: ð22Þ
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In the case of unpolarized light, as is the case for fluorescence

detected without a polariser, the speckle contrast is halved

(Goodman, 1985), such that

lim
�c=T! 0

�Gauss;unpol ’
�c

3T
: ð23Þ

APPENDIX B
Further approximation of b1,2

The most common approximation of �1, 2 is to neglect values

of three or more photons when estimating the mean photon

count (P
3 = 0 ) hIi = P1 + 2P2) (Hruszkewycz et al., 2012;

Sun et al., 2020; Möller et al., 2019). Furthermore, a Taylor

series expansion around P2 = 0 yields

�1;2 ’
2 ð1� P1ÞP2

P2
1

� 1þOðP2
2Þ: ð24Þ

For example, Hruszkewycz et al. (2012) truncated equation

(24) to define an estimate,

�H ¼ 2 1� P1ð ÞP2


 �
=P2

1 � 1: ð25Þ

It is not apparent what the advantage of this approach is. Plots

of �H calculated from equations (25) and (3), normalized by

the true visibility �0, are shown in Fig. 6. Although this esti-

mate does not diverge at hIi = 1, as does �1, 2, it nevertheless

becomes more inaccurate as hIi increases to 1, for all values of

�0. The plot also reveals an undesired dependence of �H on

the true visibility �0 .

APPENDIX C
Influence of the detector size on speckle contrast
estimation

Here we discuss the influence of the number of detector pixels

on the accuracy of speckle contrast estimation. The estimate

�1, 2 requires that the probabilities for detecting one and two

photons (P1 and P2), as well as the value of hIi, can be esti-

mated sufficiently independently. To illustrate the need for

many pixels, consider the extreme case of a two-pixel detector.

Obviously, it is impossible to obtain �1, 2 > 0 because this

would require either ð2P2 > P1hIiÞ ^ ðP1 > P2Þ or

ðP1hIi > 2P2Þ ^ ð2P2 > P1Þ, which cannot happen.

To further analyze the influence of the pixel count, we

performed numerical simulations by generating sets of

random numbers that follow the Bose–Einstein distribution of

equation (2) (that is, �= 1) with different means � for each set.

Each set consisted of 5 � 108 generated numbers. The values

in each set were then distributed into groups of equal sizes,

corresponding to the number of detector pixels. The speckle

contrast was evaluated for each of these ‘detector frames’

individually and averaged afterwards to obtain an estimate of

�1, 2 or �V for a particular mean intensity hIi (given by the

mean counts in the set). These estimates, plotted in Fig. 7 as a

function of detector size, were therefore all obtained using the

same number of total pixel readings, since a smaller detector

size gives more detector frames to average.

It is seen from Fig. 7(a) that in the limit of detectors with

few pixels the contrast estimate approaches �1, 2 = �1. The

correct value is only obtained for pixel counts above about

104. We note two properties: for lower hIi, more pixels are

required in order to obtain an accurate estimate, and an

insufficient pixel count can lead to an overestimation of the

contrast (�1, 2 > �0).

The same evaluation for �V yields the results illustrated in

Fig. 7(b). Also here, the limit of detectors with few pixels leads

to an underestimation of �V, but in contrast to �1, 2 it
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Figure 6
Plot of the estimated speckle contrast �H as a function of the mean
counts. �0 represents the true visibility. The approximation is worse when
the true speckle contrast �0 is weaker.

Figure 7
Influence of the detector size on the estimated speckle contrast using (a) �1, 2 and (b) �V. For each hIi a set of 5 � 108 random numbers was generated
that follow the distribution of equation (2). These were distributed into sets according to the number of pixels in the detector.



converges monotonically to the true value as the pixel count

increases.

APPENDIX D
Derivation of Var(b1,2)

In order to calculate ��1;2
we make use of the linear error

propagation approximation, as given by

Var f ðx1; . . . ; xnÞ

 �

’
Xn

j¼ 1

��� @f
@xj

���2�2
xj
: ð26Þ

To obtain �2
�1;2

we need �2
P1

, �2
P2

and �2
hIi. Therefore, we assume

a sufficiently large detector, where sufficiently large means

that P1 and P2 can be obtained acceptably independent from

each other. A trivial negative example would be a one-pixel

detector, where we have no chance of obtaining a one-photon

and a two-photon hit within a single measurement. That might

sound very obvious but we would like to emphasize that our

treatment requires that all Pj are independently measurable

observables. Thus Pj is found simply by counting j-photon

events and then dividing the count by the number of pixels

Pj = nj /NPix . This is a counting process that satisfies the

Poisson process and therefore we obtain

�2
Pj
¼ Pj ) �2

P1
¼ hIi 1þ �hIið Þ

�
1þ�
� ;

�2
P2
¼

1

2
1þ �ð ÞhIi2 1þ �hIið Þ

� 2� 1
�:

ð27Þ

We have ignored the factor 1/NPix since it is constant and

applies equally to all terms. The last required quantity, the

variance �2
hIi, is given by �2

hIi = hIi þ �hIi2.

Now equation (26) can be applied to equation (8), and

we obtain

�2
�1;2
¼
ð1þ �Þð1þ �hIiÞ

ðhIi � 1Þ2hIi2
ð28Þ

� 1þ �ð ÞhIi þ 2þ hIi þ 3�hIið Þ 1þ �hIið Þ
2þ 1

�

h i
:

APPENDIX E
Derivation of Var(bV)

Here we derive ��V
in an analogous way to ��1;2

. Therefore we

express the mean number of counts as a function of the photon

probability, which reads

hIi ¼
X1
j¼ 0

j Pj ; ð29Þ

and its variance

Var ¼
X1
j¼ 0

j� hIið Þ
2 Pj : ð30Þ

With this we can write �V as a function of {Pj} as

�V ¼

P1

j¼ 0 Pj j�
P1

k¼ 0 kPk

� �
 �2
�
P1

k¼ 0 kPkP1

k¼ 0 kPk

� �2 : ð31Þ

As in Appendix D, we assume that all Pj follow Poisson

statistics, since they originate from countable observables,

and thus the variance of �V, in the linear error propagation

approximation, is given by

�2
�V
¼
X1
j¼ 0

Pj

��� @�V

@Pj

���2: ð32Þ

To evaluate this equation, we need to differentiate equation

(31) with respect to Pj | 8j ,

@�V

@Pj

¼
ð j� 1Þ j� 2j ð1þ �hIiÞ þ hIi2

hIi3
: ð33Þ

Now we can express equation (32) as a function of hIi and �,

�2
�V
¼

2þ 2� 3hIi2 þ � 2hIið4þ 3hIiÞ þ � ð2þ 4hIiÞ

hIi2
: ð34Þ

APPENDIX F
Photonization of detector values

The data, measured with a Jungfrau detector, were calibrated

as follows. We started with the pre-calibrated data provided by

psana (Damiani et al., 2016). Instead of using dark runs, the

noise peak of the histogram of data values was fitted for each

pixel and each run separately and used to generate maps of

the dark noise (so-called dark fields), for each run individually.

This was possible since all recorded images were sparse (with

photon counts	 1 per pixel). This dark calibration procedure

is slightly better than measuring dark runs since the dark

current drifts over time and thus may differ at the times of

the measurements. Since we were only interested in the iron

K�-fluorescence at 6.4 keV photon energy, the detection of

photons of different energies was minimized by using a metal-

foil filter and a scattering angle where elastic scattering is a

minimum. We fitted the 6.4 keV peak for each pixel (using all

available data) and calibrated each pixel (assuming a suffi-

ciently linear behavior of the Jungfrau detector) such that an

ADU value for one 6.4 keV photon was re-scaled to 1.0.

To take care of charge sharing and to assign an integer

photon count for each pixel we made use of a method we call

‘largest adjacent pixel (LAP)’ and which is equivalent to the

Psana Photon Converter described by Sun et al. (2020). This

method is presented as an example in Fig. 8 on some arbitrary

values, where Fig. 8(a) represents the ground truth and

Fig. 8(b) the detector values (ADUs). In the first step, the

value is split into whole (integer) numbers, see Fig. 8(c),

and the remaining fractional values [Fig. 8(d)]. Using the

assumption that charge sharing only occurs between two

adjacent pixels (sharing an edge), we select pixels above a

certain value (here xseed = 0.5) and combine each with their

largest adjacent pixel [Fig. 8(e)]. If the combined value

exceeds a certain threshold (here xtrh = 0.8), the pixel is
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assigned a photon. The advantages of this method are that it

is fast (maximum linear run-time dependence on the photon

count) and requires only two free parameters (xseed and xtrh),

and thus features good robustness. The disadvantage is that

higher photon counts are underestimated in comparison with

lower counts.
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Figure 8
Illustration of the LAP photonization algorithm.
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Möller, J., Reiser, M., Hallmann, J., Boesenberg, U., Zozulya, A.,
Rahmann, H., Becker, A.-L., Westermeier, F., Zinn, T., Zontone, F.,
Gutt, C. & Madsen, A. (2019). J. Synchrotron Rad. 26, 1705–1715.

Nakamura, N., Matsuyama, S., Inoue, T., Inoue, I., Yamada, J., Osaka,
T., Yabashi, M., Ishikawa, T. & Yamauchi, K. (2020). J. Synchrotron
Rad. 27, 1366–1371.
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