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Exploring the octanol–water partition coefficient
dataset using deep learning techniques and data
augmentation
Nadin Ulrich 1✉, Kai-Uwe Goss1,2 & Andrea Ebert 1

Today more and more data are freely available. Based on these big datasets deep neural

networks (DNNs) rapidly gain relevance in computational chemistry. Here, we explore the

potential of DNNs to predict chemical properties from chemical structures. We have selected

the octanol-water partition coefficient (log P) as an example, which plays an essential role in

environmental chemistry and toxicology but also in chemical analysis. The predictive per-

formance of the developed DNN is good with an rmse of 0.47 log units in the test dataset and

an rmse of 0.33 for an external dataset from the SAMPL6 challenge. To this end, we trained

the DNN using data augmentation considering all potential tautomeric forms of the chemi-

cals. We further demonstrate how DNN models can help in the curation of the log P dataset

by identifying potential errors, and address limitations of the dataset itself.
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Nowadays, scientific questions in environmental sciences
and toxicology are not only located in one scientific dis-
cipline like chemistry but are much more complex1–3.

They require the combination of detailed and well-founded
knowledge from a wide range of disciplines and a large number of
parameters, often already in the preparation of the
experiments4,5. These parameters, e.g., physicochemical proper-
ties of chemicals, in themselves, often require years of experience
and expertise in the determination6. With the vast amount of
chemicals in use today, it is not possible to determine experi-
mental values for all of them. It is thus essential to have precise
and profound prediction methods and models to determine these
parameters reliably. Existing models for the prediction of physi-
cochemical parameters like classical QSARs (Quantitative
structure–activity relationship) are often too simplistic and lim-
ited in their application domain7. Chemicals that are of interest
today such as ionizable chemicals, and chemicals with many
functional groups were often not included in the development of
the models or sometimes cannot be represented by the used
substance descriptors or indices7,8.

With the era of networking and free availability of data, the
existence of increasingly large databases, and novel techniques
such as deep learning, new opportunities arise to develop
improved models that can overcome existing problems and cover
a wide range of chemical applications9–11. However, with these
big datasets, new problems emerge. In such big data collections,
the individual datapoints cannot be checked for plausibility
manually, i.e., neither the correct mapping of the chemical
structure using so-called identifiers nor the specific values of a
parameter can be confirmed. It requires automated curation
procedures for the preparation of datasets for model
development12. Automation in curation of identifiers of chemical
structures was enhanced strongly within the last years13, but the
automated curation of the respective parameters or values is still
pending. Manual inspections are needed, but their number can be
reduced to a manageable level using error analysis, usually
applying so-called ensemble models14. If an error is found, the
value is corrected (if possible), or discarded. Simply excluding
outliers without proper cause is strictly discouraged, since this
would lead to overfitting and decrease the reliability of the
prediction15. In general, the curation of experimental values is not
trivial. To determine whether the value assigned to a particular
chemical makes sense, or whether it is an artifact or an outlier,
often requires years of experience. This includes background
knowledge on the experimental methods, as well as an approx-
imate assessment of the typical value range of different chemical
structures.

Modelers and programmers, who mainly deal with the analysis of
big datasets and develop deep learning models, often only have a
theoretical background and lack the knowledge about the experi-
ments behind the data and the problems regarding the experimental
setups. Furthermore, scientists with in-depth backgrounds in
chemistry and especially structure representation are rarely spe-
cialists in deep learning. Novel deep learning libraries like
DeepChem16,17 help to overcome these problems. They enable a
development of deep neural network (DNN) models without years
of previous experience in generation of deep learning algorithms.
We will demonstrate this using the octanol–water partition coeffi-
cient Kow (in unit Lwater Loctanol−1), for which large datasets are
freely available13. The Kow is mostly used in its logarithmic form
(log Kow) and often referred to as log P.

Log P is one of the most relevant physicochemical properties in
pharmacology18,19, toxicology20,21, environmental sciences3, as
well as in analytical chemistry22. It is often connected to hydro-
phobicity of chemicals or their lipophilicity3 and therefore used to
quantify uptake and bioaccumulation of chemicals or drugs in

organisms and specific tissues23 or to describe the distribution of
chemicals in the environment and their sorption to sediments24.
Log P is even applied to characterize chromatographic separa-
tions in reversed-phase chromatography and passive sampling
devices. Although most of the processes mentioned here are more
complex and can be described precisely by mechanistically based
approaches, the log P is still the most widely applied tool.
Compared to the other approaches, log P based descriptions are
simple, and the values are readily available. Large databases such
as EPI-Suite25, CompTox26, and PubChem27 include thousands
of chemicals with experimentally determined values and offer
prediction tools for chemicals without experimental data.

Experimentally determined log P data in research databases are
already highly curated. Most of the databases refer to the data
collection of Hansch et al.28 who documented log P values from
different literature sources for many chemicals and selected the
most trustworthy values based on many years of experience.
Methods of choice for the experimental determination of the
log P are direct methods like the shake flask method29, slow-
stirring method30,31, and the generator column method32. For log
P values > 5, the experimental setup is more complex. Here, the
limit of detection of the respective chemical in the analysis of the
two-phase system at equilibrium often becomes the limiting
factor30. The slow-stirring method, as well as the determination
by the generator column, could be used in such cases. A common
indirect method for the determination of log P is the deduction
from capacity factors of reversed-phase liquid chromatography
measurements (often on a C8 or C18 column)33,34.

There is a large number of prediction models for log P values35.
These are often performed using substructure-based methods36,
fragmental or atom-based approaches, property-based methods37,
or by the use of topological38 or E-state descriptors39. Another
approach is the quantum-chemistry based calculation of log
P values (e.g., the conductor-like screening model for real solvents
COSMO-RS)40. Recently, also deep learning models to predict the
log P have been developed. To represent the molecular input,
Prasad and Brooks41 and Wu et al.42 used fingerprints and
molecular descriptors to encode the molecular structure, while
Wang et al. coupled canonical molecular signatures and Tree-
LSTM networks to avoid countless topological features and
descriptors and automate feature selection43.

Our goal is to establish a DNN model which allows highly
accurate predictions of log P within a broad application domain.
The model should be fast and easy to use like classical QSAR
models, and perform as good as or better than any other existing
prediction tool. We develop our DNN using the Python library
DeepChem17. As molecular input we use convoluted graphs,
since their use has proven very effective to predict molecular
properties and activities44. We focus first on the preparation of
the chemical dataset. We intensively work on the identification of
outliers in the experimental values and demonstrate the limita-
tions of the dataset. We test different structure representations,
and demonstrate their impact on the predictive performance of
the model. Further, we applied data augmentation by inclusion of
all potential tautomers of a chemical to improve the predictions.
The idea of data augmentation to obtain better performances
when training machine learning algorithms is not new. For
example, the generation of multiple conformations or the use of
multiple SMILES strings for one molecule increases dataset size
and can give more robust models with an improved
performance45–47. Yet, graph convolution (as is used here)
applied on multiple SMILES strings of the same molecule is likely
to end up with the same graph representation. We will apply data
augmentation using different tautomeric representations to
overcome the problem that static graphs cannot well represent
tautomers. Finally, we compare the model’s performance with
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seven existing prediction tools including COSMO-RS as a
quantum-chemistry-based prediction tool as well as different
QSAR models.

Results
Developed DNN models for the prediction of log P. We
developed two different DNN models based on the dataset from
Mansouri et al.13 which contains 14,050 chemicals. The dataset
itself is heterogeneous and includes numerous classes of chemical
compounds (Fig. 1, see Supplementary Note 1 for details). After
exclusion of some identified erroneous datapoints (see Identifi-
cation of errors in the dataset), we ended up with 13,889 che-
micals. First, 10% of the dataset was randomly split as
independent test data, while the remaining 90% of the data were
used for model development. These remaining data (12,500
chemicals) were randomly divided into 80% training set, and 20%
validation set. Different SMILES representations for each che-
mical (original SMILES, canonical SMILES, and SMILES with
explicit Hs) as well as potential tautomers represented as SMILES
codes, which were generated with JChem, were used for handling
the data. Yet, ultimately the graph representation was used by the
models for property prediction. For generation of the graphs as
input in the first model, we only used the original form of
SMILES representation, we refer to the developed model as
DNNmono. The graphs as input for the second model were gen-
erated applying data augmentation based on all forms of SMILES
and all potential tautomers, we refer to the developed model as
DNNtaut.

Best prediction performance was achieved by DNNtaut with a
root mean square error rmse of 0.47 using the original SMILES
representation for the test dataset (Table 1, Supplementary
Table 1). The rmse is extremely low, compared to the
experimental error that is already in the range of 0.2–0.4 log
units. The DNNmono, which was trained on the graphs generated
from the original SMILES alone had an rmse of 0.50 for the test
dataset represented by original SMILES. But, if the chemicals of
the test dataset are represented by graphs created from one of the
different SMILES variants including tautomers (the respective
form was selected randomly), the rmse for the predictions of log P
in the test set based on the DNNmono drastically deteriorates to
0.80. In contrast, the DNNtaut shows an unchanged rmse of 0.47.
This means, DNNtaut delivers stable predictions with a high
accuracy for any variant of the graph representing the chemical
and each tautomeric form of the chemical.

Comparison to other prediction tools. We selected different
available log P prediction tools for comparison: associated neural
networks (OCHEM, ALOGPS), fragmental or atom-based
methods (KOWWIN, ACD/GALAS, JChem, DataWarrior), and
a quantum-chemistry-based calculation (COSMO-RS). Compar-
ing the results of the DNNs with those of the other prediction
tools for the test dataset (using original SMILES representations),
it is noticeable that OCHEM has a significantly lower rmse of
0.34, while ALOGPS (rmse= 0.50) and ACD/GALAS (rmse=
0.50) show a comparable rmse to our DNN. The tools KOWWIN
(rmse= 0.65), JChem (rmse= 0.72), DataWarrior (rmse= 0.80),
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predicted log P
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Fig. 1 DNN development for prediction of log P. a The log P dataset was randomly split in training set, validation set and test set for DNN model
development. The DNN is depicted schematically. b The dataset itself includes heterogeneous chemical structures, which can be characterized by the
number of non-hydrogen atoms NHA, the number of functional groups, substance classes like aliphatic and aromatic chemicals as well as heteroatoms
(O—oxygen, N—nitrogen, S—sulfur, P—phosphorous, hal.—halogens fluorine, chlorine, bromine, and iodine) included in the chemical’s structure. Further
we distinguish between potential ions or neutral chemicals. c DNN prediction for the randomly selected test set (DNNtaut applied). In gray neutral
chemicals are depicted, in red potential ions (anions, cations, and zwitterions) are marked.

COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-021-00528-9 ARTICLE

COMMUNICATIONS CHEMISTRY |            (2021) 4:90 | https://doi.org/10.1038/s42004-021-00528-9 |www.nature.com/commschem 3

www.nature.com/commschem
www.nature.com/commschem


and COSMO-RS (rmse= 0.97) are significantly worse in their
performance (see Supplementary Fig. 1). Including tautomer
representations into the test set, the rmse increases drastically for
all tools except the DNNtaut (Fig. 2, COSMO-RS calculations
based on the tautomer structures were not performed due to
extremely time-consuming calculations). In contrast, different
SMILES representations (e.g., canonical SMILES) had almost no
effects. Most of the prediction tools do not explicitly consider all
tautomer forms, and the dominant tautomer should be deter-
mined first to ensure precise predictions. OCHEM, the best
performing model based on original SMILES as test input, shows
a decrease in its predictive performance with an rmse of 0.65
(randomly selected SMILES variant). In case of our DNNtaut,
there is no need to determine the dominant tautomer form, which
is the major advantage of our model.

Performance of the DNN and the other tools on external
datasets. We further evaluated the performance of our developed
DNNtaut based on an external dataset, the SAMPL6 challenge48.
Our test set is part of a freely available dataset and may have been
part of the training sets of the different QSAR models. In such a
case the prediction results for the test set would be misleadingly
improved for these models. In contrast, the SAMPL6 dataset
includes recently measured log P values of 11 chemicals and
enables an independent comparison of all predictive tools. As can
be seen from Table 1 (and Supplementary Table 3), the rmse of
our DNNtaut is 0.33 which is close to the error in the experimental
determination of log P. The performance of the DNNmono is
similar with an rmse of 0.31, because the molecules provided in
the challenge had no different tautomer forms. The quantum-
chemistry-based model COSMO-RS is slightly worse compared to
the DNNtaut with an rmse of 0.37. Within the same range is the
QSAR of JChem (rmse= 0.39), and also the other tools are in a
range of 0.45 (ALOGPS) to 0.63 (DataWarrior), which is fairly
good. Also the DNN of Prasad and Brooks41 performed similarly
well on the SAMPL6 dataset, with an rmse of 0.62. Again, the
DNNtaut is extremely stable in the performance and is as good as
the quantum-chemistry based model in the prediction of log P
but less time consuming. The SAMPL6 dataset is small; thus we
added prediction results for the dataset of Martel et al.49 which
includes log P values of 707 chemicals originating from the ZINC
dataset (Table 1, Supplementary Note 2, Supplementary Table 4,

and Supplementary Figs. 3, 4, 5). Note that all values were
determined by reversed-phase liquid chromatography measure-
ments on a C18 column. Predictions with DNNtaut result in an
rmse of 1.23. The best performing model is COSMO-RS with an
rmse of 0.93. We found two other methods in literature for the
prediction of log P, which also included the Martel dataset. The
generalized Born method in combination with solvent accessible
surface area (GB/SA) method by Daina et al.50 reached an rmse of
1.56. Lui et al.51 used a stochastic gradient descent-optimized
multilinear regression based on 1438 descriptors and reached an
rmse of 1.03 on the Martel dataset and an rmse of 0.49 for
SAMPL6 challenge.

Outlier analysis based on the test set. Taking a closer look at the
predictions of the various tools on the test set, including our
developed DNNs, one can see a clear trend in the rmse, which is
larger for chemicals with more non-hydrogen atoms (NHA).
COSMO-RS, in particular, has significant problems with pre-
dictions for chemicals with greater NHA (Fig. 3, Supplementary
Figs. 5, 6). Within the group of outliers (rmse > 1) chemicals
with higher NHA are proportionally overrepresented. Such
overrepresentation is also seen for ions (for categorization of
ionic chemical see Potential Limitations of the dataset: log
P versus log D), especially if they are predicted by OCHEM,
COSMO-RS, and ACD/GALAS. For these models, the rmse
significantly decreased when only chemicals classified as neutral
were considered in the calculation (see Table 1). An advantage
of OCHEM is a clear statement for each prediction, whether the
queried chemical is within the application domain or not. Many
of the ionic outliers were outside the application domain. Most
of the prediction tools can in principle calculate the log D for
the ionic form, but pH values for which the predictions are
made would have to be taken into account explicitly. However,
the dataset does not contain this information (see Potential
limitations of the dataset: log P versus log D). We noted 63
compounds in the test set where at least four prediction tools
showed differences greater than 1 from the experimental log
P value, many of which were classified as ions/zwitterions or
had unknown primary sources of the experimental data. We
believe that all tested tools will profit from an improved clas-
sification of neutral and ionic chemicals.

Table 1 Comparison of the performance of our developed DNNs and other prediction tools.

Test set (graphs generated from) SAMPL6 dataset Martel dataset

Original SMILES Randomly selectedc Original SMILES
without ions

Model rmsed sdev rmsed sdev rmsed sdev rmsed sdev rmsed sdev

DNNtaut
a 0.47 ±0.02 0.47 ±0.02 0.45 ±0.02 0.33 ±0.05 1.23 0.03

DNNmono
a 0.50 ±0.02 0.80 ±0.03 0.49 ±0.02 0.31 ±0.06 1.35 0.02

ACD/GALASb 0.50 ±0.03 0.65 ±0.03 0.36 ±0.02 0.51 ±0.09 1.44 0.04
ALOGPSb 0.50 ±0.02 0.66 ±0.03 0.45 ±0.02 0.45 ±0.06 1.25 0.03
COSMO-RSb 0.97 ±0.03 – – 0.77 ±0.03 0.37 ±0.09 0.93 0.03
DataWarriorb 0.80 ±0.02 0.92 ±0.02 0.75 ±0.02 0.60 ±0.16 1.61 0.04
JChemb 0.72 ±0.02 0.74 ±0.03 0.69 ±0.02 0.39 ±0.08 1.23 0.03
KOWWINb 0.65 ±0.04 0.92 ±0.04 0.51 ±0.02 0.53 ±0.09 1.38 0.04
OCHEMb 0.34 ±0.02 0.65 ±0.03 0.27 ±0.02 0.49 ±0.12 1.32 0.03

The root mean square error (rmse) and corresponding variance (sdev) for the log P prediction are given based on different SMILES inputs for the test set, the set of 11 chemicals from the SAMPL6
challenge, and the Martel dataset (707 chemicals). Results for each individual SMILES representation for the test set are given in Supplementary Table 2.
aIntroduced in this work.
bAlready existing prediction tool.
cOnly one SMILES representation is randomly selected for each chemical (from the test set including also tautomers).
dMean value and variance were estimated using bootstrapping. Random sampling with replacement was used to generate N= 1000 datasets per analyzed test set. If the rmse value of the original test set
deviated from the calculated mean of the rmse distribution (N= 1000; one rmse per dataset), the mean value was reported to symmetrize the confidence intervals. The variance was determined as the
standard mean error. A detailed description is given in Vorberg and Tetko74.
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Identification of errors in the dataset. Two potential sources of
error can occur for a data point in the dataset: (A) the chemical
structure is not mapped correctly or (B) the corresponding value
(in our case log P) is wrong. In case (A), false representations of
the real structure are caused either by a nomenclature error in the
primary source or by a wrong assignment of identifiers, such as
CAS number or SMILES. The dataset used here was already
curated by Mansouri et al.13 who checked the congruence of
name, CAS, and SMILES as identifiers and added missing
information like stereochemistry. For case (B), we could identify
several issues in the dataset: we found mismatches in the values
given in the dataset and the ones in the primary source. This is
caused by transcription errors and wrong conversions (e.g., cal-
culation of log P from a chromatographic capacity factor), and by

the wrong assignment of experimental log P values for a chemical,
where different log P values are given (e.g., Uric acid: log P
(dataset)=−2.17 (ion), log P (corrected)= 0.18)28. Furthermore,
predicted log P values were falsely classified as experimentally
determined data. In some cases, the experimental setup was not
suitable to determine the log P values (e.g., for Disperse Red, the
solubility of the chemical limits the experimental determination
of log P in the selected setup)52,53. We also identified duplicates in
the dataset resulting from different structural representations of
the same compound, and it is often not clear which criteria
should be used to select the correct value. Tautomers can generate
this problem (e.g., 4-nitrosophenol log P= 1.29, 4-benzoquinone
mono oxime log P= 1.08), but also salts (e.g., octanoic acid log
P= 3.05, sodium octanoate log P=−1.38, see Corrections.xlsx in
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Fig. 2 Predictions of log P values for the test set by our DNNtaut and six selected tools. The structure representation of the test set chemicals include all
SMILES codes (initial, canonical, with explicit Hs) and the SMILES codes of all tautomers (multiple datapoints per chemical in case of tautomers). Neutral
chemicals are marked in gray, potential ions, are marked in red. The predictions of log P values for the test set chemicals based on original SMILES and
randomly selected SMILES (including tautomers) are shown in Supplementary Figs. 1, 2. The predictions are based on (a) our developed model DNNtaut, or
performed with tools from literature, namely (b) OCHEM, (c) ACD/GALAS, (d) ALOGPS, (e) JChem, (f) KOWWIN, and (g) DataWarrior.
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GIT repository). We found eight cases in the dataset where two
different representations, salt and neutral form of the chemical,
are given. For these chemicals, the experimental log P values for
the respective form are significantly different. However, no dif-
ference should occur if the corresponding pH values were selected
correctly for both variants during the measurement of the log
P value. In this case we kept the neutral form of the chemical in
the dataset and excluded the salt.

To find errors and outliers in the dataset one needs to check
the primary sources of the experimental data. The initial dataset
included 14,050 compounds, and a manual check of all datapoints
is impossible. Automation procedures for curation cannot be
applied since the primary sources are hardcover books28,
publications from the 1970 and 1980s (which are digitized by
scans with low quality)54,55. Furthermore, some of the primary
sources include also private communications, unpublished values,
and primary sources which are not accessible. To identify errors
in our dataset, we had to narrow down the number of values to be
examined manually to a manageable number. Our strategy was
developing DNN models to screen for outliers by comparing the
predicted and experimental log P values. The hyperparameters of
the DNN were optimized, several models were trained, and the
results were analyzed. We defined a potential outlier as a data
point where the difference between experimental log P and
predicted log P in the models was greater than 1. For those
outliers we checked the primary sources. In some cases, primary
sources were not accessible (e.g., private communication); here,
we could not correct the data point and did not exclude it from
the dataset either. Using primary sources which were accessible to
us, we corrected values with transcription errors and errors in the
calculation of log P (e.g., Chlorpromazine log P (database)= 5.41,
log P (corrected)= 4.00)54. We excluded predicted log
P values56,57, and log P values with mismatches in the structure
given in the primary source and database55 (see corrections.xlsx
in GIT repository). We also checked if the chemical was expected
to have been measured in its neutral or ionic form since we
expected significant differences for ionic and zwitterionic
chemicals in the prediction of log P.

Potential limitations of the dataset: log P versus log D. If the
log P value is determined for ionizable chemicals, differences in
the values for the neutral and ionic species are expected, and the
log P values depend on the given pH in the experimental system.
For ionizable chemicals (under consideration of the fractions
fspecies,pH of all possible species at a given pH value), the
octanol–water partition coefficient D can be defined as follows:
log D= log ∑Pspecies*fspecies,pH. An ideal model would predict log
D instead of log P for a given pH value under consideration of all
possible speciations of the molecule. The dataset for the devel-
opment of such a model should therefore include log D values
determined at different pH values for ionogenic chemicals (e.g.,
Piroxicam, Fig. 4)58. Hence, the model would also need to include
pKa and pKb predictions for the chemical to determine the
fractions of all ionic species. Unfortunately, the current dataset
does not include information such as the pH of the system, for
which the respective log P value was determined experimentally.
Taking one step back from the ideal model by limiting the
application domain, one could set the objective to precisely pre-
dict log P values only for neutral chemicals. Nevertheless, this is
problematic since the log P dataset does per se not exclusively
contain the log P values for the neutral species of an ionogenic
chemical. It needs to be checked manually which experimental
conditions in the log P determination were selected. Many pri-
mary sources do not provide this information, or while the pH of
the experimental setup is defined, no reliable pKa or pKb values
are available for the chemical.

To perform an automated check for potential ions in the
dataset, we used two models from ACD (ACD/GALAS and ACD/
classic) and JChem for Excel to predict pKa and pKb values of all
chemicals. The uncertainty in the prediction of these values is
quite high. Assuming precise predictions by the used tools, the
same species should be predicted by all tools for a predefined pH
(see Methods Declaration of ionic chemicals in the dataset).
However, we found that this is not the case. While one tool
predicts that a chemical is neutral according to our classification,
another one may state that it should be present as an anion (see
Dataset_and_Predictions.xlsx in GIT repository). The number of
cations predicted with JChem, for example, is 817, whereas 728
are classified as cationic with ACD/GALAS. Using ACD/classic
840 chemicals are classified as cationic, of which 625 molecules
show an overlap in this classification with the ACD/GALAS tool,
and only 559 molecules are classified as cations by all three
prediction models.

In the case of zwitterions, the total net charge is 0. However,
the existing negative and positive charges in the chemical’s
structure are still expected to impact the log P value (e.g.,
Piroxicam, Fig. 4)58. We classified a chemical as zwitterionic if its
pKa value is greater than its pKb value. For an exact classification,
micro-pKas would be needed, which were not available. More-
over, poor performance in predicting of pKa and pKb can cause a
wrong classification as a zwitterion or failure to recognize a
zwitterion.

From these considerations, one question arises: are all ions in a
prediction model outliers? As can be seen from Figs. 1, 2, this is
not the case. This might in part be due to false classifications.
Relatively poor predictions of pKa and pKb values for the
chemicals included in the dataset do not ensure that all ions are
identified as ions at all. Furthermore, our classification of ions was
chosen in such a way that we assumed the measurement of the
neutral species if it was possible to measure it at some specific pH
within the range of pH 3–9. The experimental determination of
the log P value might have been carried out under rather extreme
pH values where the chemical was neutral (o-phthalic acid,
measured at pH 128, predicted pKa values: 2.5 and 5.5).
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Fig. 3 Predictions of log P values for the test set by our DNNtaut and six
selected tools. The test set is represented by randomly selected SMILES
codes including tautomers. The rmse values are shown for the range of non-
hydrogen atoms NHA reflecting the size of the molecules.
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Alternatively, the experiment might have been carried out at a pH
where the chemical was ionic, although another pH would have
allowed the measurement of the neutral species (e.g., uric acid,
which is neutral at pH 4, but was measured at pH 7.4 in its ionic
form (log P=−2.92)28).

Potential limitations of the dataset: structure representations
for the prediction of log P. The structure of a chemical can be
represented in many different ways. The name is one form of
representation, which is often used together with the CAS
registration number as an identifier. Over the years, Hansch’s
original dataset28 has been supplemented by additional identifiers
such as the SMILES code, and the plausibility of all identifiers for
one chemical has been verified by various test strategies13.
However, none of the identifiers can perfectly represent the real
structure of the chemical itself. Some chemicals may, for example,
have different tautomers with different stabilities (from a ther-
modynamic point of view) depending on the environment of the
chemical59. For each environment of a chemical (e.g.,
octanol–water two-phase system) there may be different domi-
nant tautomers. A SMILES representation of a chemical does not
necessarily represent the dominant tautomer of that chemical in
octanol or water. We also expect log P values of different tauto-
mers of one chemical to vary60,61. Moreover, even if one tautomer
is dominant in water or octanol, other tautomers are present in

the system as well. The experimentally determined log P is a so-
called macro log P, which is the sum of all micro log P values (of
different tautomers) multiplied by the fraction f of each tautomer
i present in the system: log Pexp= log ∑ Pi * fi. Even if all tau-
tomers of a chemical can be generated from a starting SMILES
representation, it remains still unclear which tautomer repre-
sentation should be used in the development of the model and for
predictions of log P values, and often an arbitrary decision for one
tautomer has to be made14. Also, if the major tautomer is to
be selected, tautomers are sometimes misrepresented in the
databases14, and in the absence of experimental values, the
dominant tautomer needs to be predicted. Yet, both experimental
data and predictions of the dominant tautomer are often
unsatisfactory62. The main advantage of our DNNtaut model
compared to other prediction tools is that all potential tautomers
(generated by JChem) of a chemical were associated with the
macro log P value of the chemical in model training. By creating a
multitude of possible tautomers for the chemicals, and adding
these to our augmented training data, the resulting predictions
can be based on any of the tautomer representations (test input)
without a decrease in accuracy (Table 1). Nevertheless, micro log
P values for each tautomer cannot be predicted since there is only
the macro log P given in the dataset. But the problem that the
thermodynamically favored tautomer has to be determined first
to represent the structure correctly is avoided by this approach.
Except for JChem, which includes the feature “consider
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tautomerization”, all other prediction tools decrease strongly in
performance if randomly selected tautomers are used as input for
the prediction. The performance of all models increases if the
randomly selected tautomer is first transformed into the major
tautomer using JChem, but does not reach the value with the
original SMILES as test input (Table 1). COSMO-RS is not part of
this comparison, since it was not possible to calculate the log P
values for all different tautomers due to the high computing
effort. Thus, COSMO-RS predictions presented here are less
accurate than they could be if all tautomers were considered.

Future perspectives for the prediction of log P. Analyzing the
dataset and developing the models, it becomes apparent that
the overall performance is extremely dependent on the quality of
the dataset and necessary additional information (e.g., pH con-
ditions of log P measurement). Models based on an extended
dataset with log D values for different ionic species of a chemical
would provide more precise predictions. An included, improved
prediction of the pKa and pKb values for the chemicals would be
necessary. The data augmentation applied here, which uses all
possible tautomers in the training, should further be the best way
to handle tautomers because the necessary log P values for the
respective tautomer forms are not available. To conclude, DNN
model development based on chemical datasets needs a lot of
expertise and intensive analysis of the dataset itself even if the
dataset is highly curated.

Methods
The log P dataset and generation of structure representations. Experimental
log P values with their corresponding SMILES codes were taken from Mansouri
et al.13. The dataset downloaded from GITHUB63 comprised 14,050 chemicals and
resulted from the curation of the EPI-Suite dataset25. After curation of the initial
dataset, 13,889 compounds were included. In the first step, we randomly split a test
set (10%) from the dataset, the remaining dataset was split into 80% training set
and 20% validation set for model development. The validation set was used for the
optimization of the DNN models and to select the best DNN out of all trained
DNN models. The test set was used to evaluate the overall performance of the
selected DNN models (DNNmono and DNNtaut). The dataset contained three dif-
ferent SMILES representations: original SMILES, canonical SMILES and SMILES
with explicit Hs. The original SMILES include salts and information on stereo-
chemistry for some chemicals, the canonical SMILES (created by Indigo node in
KNIME13) provided by Mansouri do not, yet many SMILES are identical for both
sets. Marvin Suite Mol Convert for conversion from sdf file to csv file was used to
extract all structure representations. In some cases problems occurred within the
conversion of the original SMILES to a graph (e.g., hypervalencies in a nitro group)
in DeepChem library v.2.216,17, here we removed the dative bonds using Open-
Babel v. 3.0.064. Tautomers were generated for all SMILES representations using
JChem for Excel v. 20.6.0.61865 (for 6212 chemicals no tautomer was received, 2849
received one tautomer, and 4828 received two or more tautomers). Duplicates in
the representations were removed for DNN model development.

Declaration of ionic chemicals in the dataset. PKa and pKb values were calcu-
lated for all chemicals by two models of ACD Percepta (2015 Release)—ACD/
classic and ACD/GALAS, and JChem for Excel65. In JChem, the acidic(/basic)
pKaLargeModel was used for prediction under consideration of tautomerization. It
was assumed that chemicals with pKa < 3 or pKb > 9 were determined for a charged
species. If the pKa value was greater than the respective pKb value, the chemical was
marked as a zwitterion.

Development of DNN models. DNN models were developed using the DeepChem
library v. 2.216,17 and Tensorflow v.1.14.0 in Python v. 3.5.6. SMILES of the che-
micals were converted into graphs (ConvMolFeaturizer) and used as features. The
feed-forward network consists of two hidden layers with 64, and 128 neurons,
which were connected to a dense layer (with ReLU activation function) followed by
batch normalization (including a dropout of 0.1) and the output layer (with tanh
activation function). Each hidden layer was constructed by a graph convolution, a
batch normalization and a graph pool layer. The DNNmono and DNNtaut were
trained for 70 and 60 epochs respectively, with a batch size of 50 and the learning
rate was set to 0.00005 and 0.0001, respectively. These parameters were optimized
first by evaluation of the outcomes for the validation set. Furthermore, different
models (at least 3 for the complex models and 10 for the simple models) were
trained. Representative training and validation curves are shown in Supplementary
Fig. 7. The validation set was also used to select the final model in each case.

Calculation of log P values with other software tools. Log Ps were predicted by
ALOGPS v. 2.166,67, OCHEM (ochem.eu/model/4, or ALOGPS v. 3.0)68,69,
DataWarrior v.5.2.170,71, KOWWIN in EPI-SUITE25, JChem for Excel65. These
predictions were made by entering respective SMILES in the software or on the
website. Log Ps computed by using the software COSMOtherm were based on the
COSMO-RS (Conductor-like Screening Model for Realistic Solvation) theory and
quantum chemical calculations (Turbomole and COSMOconf v. 4.1)72,73. The
initial SMILES were used to generate COSMOfiles in COSMOconf, COS-
MOtherm was used with the BP_TZVPD_FINE_C30_18.ctd parametrization, at
295 K. In ACD/Percepta (2015 Release), three different prediction models—ACD/
GALAS, ACD/classical, and ACD/consensus were applied for the prediction of
log P. We only used the best performing model ACD/GALAS for comparison to
other tools.

Technical details. DNN models were trained on a Tuxedo book (Intel core i7, 64
GB RAM) using a NVIDIA RTX2080 Max Q (8 GB). The average time for training
of the DNNtaut was ~3.5 h. COSMOtherm calculations were performed on a
computing cluster system. Generation of the COSMOconf files was between 1 and
200 h for each chemical.

Data availability
The corrections made in the dataset (Corrections.xlsx) and the dataset used for the
generation of the DNN models as well as the predicted log P values from all different
tools (Dataset_and_Predictions.xlsx) are available at https://github.com/nadinulrich/
log_P_prediction.

Code availability
We used DeepChem library for model development. The full code for the DNN
development is given at the GIT repository of DeepChem https://github.com/deepchem/
deepchem. The modified code is available at https://github.com/nadinulrich/
log_P_prediction.
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