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Although the literature about the functions of hyaluronan and the CD44 receptor in the brain and brain tumours is extensive, the
role of the receptor for hyaluronan-mediated motility (RHAMM) in neural stem cells and gliomas remain poorly explored. RHAMM is
considered a multifunctional receptor which performs various biological functions in several normal tissues and plays a significant
role in cancer development and progression. RHAMM was first identified for its ability to bind to hyaluronate, the extracellular
matrix component associated with cell motility control. Nevertheless, additional functions of this protein imply the interaction with
different partners or cell structures to regulate other biological processes, such as mitotic-spindle assembly, gene expression
regulation, cell-cycle control and proliferation. In this review, we summarise the role of RHAMM in normal brain development and
the adult brain, focusing on the neural stem and progenitor cells, and discuss the current knowledge on RHAMM involvement in
glioblastoma progression, the most aggressive glioma of the central nervous system. Understanding the implications of RHAMM in
the brain could be useful to design new therapeutic approaches to improve the prognosis and quality of life of glioblastoma
patients.
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INTRODUCTION
The receptor for hyaluronan-mediated cell motility (RHAMM), also
called hyaluronan-mediated motility receptor (HMMR), HIABP or
CD168, is codified in the long arm of human chromosome 5 in a
small cluster which also includes NUDCD2 (NudC domain-containing
protein 2), CCNG1 (cyclin G1), and MAT2B (methionine adenosyl-
transferase 2B) genes [1]. The RHAMM gene contains 18 exons and
mainly generates four different isoforms by alternative splicing.
These isoforms were named A-D (or 1–4), being A the full-length
RHAMM and D the shortest isoform lacking exons 1 to 4 [2, 3].
Briefly, RHAMM was originally identified as a 56–58 kDa

hyaluronan-binding protein in murine fibroblast supernatants
[4]. Then, a first cDNA which contained an open reading frame
encoding a 52 kDa polypeptide was isolated using a polyclonal
antibody generated against the first isolated RHAMM protein.
Subsequently, 70 kDa and 72 kDa proteins were cloned. The
overexpression of the largest protein, designated RHAMM1v4
because it contained exon 4 (actually exon 8), leads to malignant
transformation and metastases on murine fibroblasts. Later, using
three new antibodies recognising different RHAMM epitopes, only
one protein was detected at 85 kDa for human cells and at 95 kDa

for murine line cells and primary tissues suggesting that previous
reports had mistaken full-length RHAMM for a truncated non-
native version of the protein. All in all, and despite the doubts
about its structure, its history reveals the complexity of RHAMM
and that the isoform RHAMM1v4 (isoform D) encodes an
N-terminally truncated protein [5]. The RHAMM structure consists
mainly of an N-terminal microtubule-binding domain and a coiled-
coil axis responsible for its interaction with actin microfilaments.
Moreover, it contains a projection domain that binds to
calmodulin in a Ca2+-dependent way and a basic leucine-zipper
motif in its carboxy-terminal domain, which is responsible for
RHAMM targeting to the centrosome and binding to hyaluronan
(HA) [6, 7]. RHAMM isoform D, which lacks the N-terminal domain,
becomes diffuse in the cytoplasm and upregulated in the cell
nucleus and is associated with neoplastic initiation and/or
metastasis [2, 6, 8, 9]. On the whole, these data reinforce the
complexity of this protein and the heterogeneity of its functions.

The role of RHAMM as a putative cell surface receptor
RHAMM was firstly described as interacting with HA and heparin
associated with wound repair [1, 10]. These interactions occur
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through ionic bonds along two regions of basic amino acids
separated by a leucine zipper localised in the C-terminus of
RHAMM [11]. Interestingly, the leucine zipper between two basic
alpha helices suggests the possibility of dimerisation which could
affect RHAMM binding to HA [2]. Considering that HA is an
extracellular matrix component, RHAMM/HA contact requires that
both molecules colocalize at the cell surface. The expression of
RHAMM in the cell membrane has been reported [4, 12, 13],
although its nature is still controversial. Interestingly, RHAMM
lacks the typical hydrophobic sequence found in transmembrane
proteins for canonical extracellular export. It is thought that a GPI
binding domain or an adaptor protein would be responsible for its
attachment to the plasma membrane. In this way, it has been
reported that RHAMM can interact with transmembrane receptors
such as CD44, EGFR, PDGFR, TGFβR-1, bFGFR and RON [14–18].
Through these interactions, RHAMM can modulate pathways
associated with these receptors, affecting the expression of genes
involved in the cell cycle, and impacting on cell proliferation, cell
survival and cell migration, among others [19–21].
Strikingly, although RHAMM was described as an HA receptor,

several invertebrates that do not synthesise HA, express RHAMM
orthologues that exhibit C-terminus conservation but not in the
N-terminus regions. These predictions suggest that the ancient
RHAMM presents signalling functions and heparin-binding, while
the interaction with microtubules appeared later, with the
emergence of vertebrates [2]. Conversely, N-terminal homology
was found between RHAMM and Miranda, a determinant of
asymmetric cell division in Drosophila [1]. Overall, these findings
suggest that the original role of RHAMM was not to function as a
hyaluronan receptor, highlighting the importance of RHAMM
intracellular functions.

The role of RHAMM at the centrosome and mitotic-spindle
pole
In the cytosol, RHAMM participates in mitotic-spindle assembly.
Indeed, RHAMM and XRHAMM, its orthologue in Xenopus, were
considered a spindle assembly factor (SAF) dependent on Ran
[22, 23]. In this way, the ubiquitin ligase anaphase-promoting
complex (APC/C) degrades RHAMM together with other substrates
such as Bard1, HURP and NuSAP, after being released from their
inhibitor importin-beta by Ran (GTP). This process is tightly
regulated to guarantee the correct formation of the mitotic
spindle [23]. Moreover, it was shown that RHAMM forms a
complex and acts as an adaptor for CHICA/FAM83D to micro-
tubules [24]. The RHAMM-CHICA complex interacts with dynein
light chain 1 (DYNLL1) and CK1alpha, which constitute a
regulatory system for the correct mitotic-spindle orientation
[24, 25]. In the mechanisms that act for the correction of spindle
misorientation, RHAMM acts through its centrosome binding
domain, in a PDL1-dependent pathway that involves the active
Ran, the direct interaction with ERK and the cortical location of the
NUMA-Dynein complex [26–29]. Recently, it has been demon-
strated that RHAMM, together with ASPM, and NUMA1 are directly
translated at the spindle poles during mitosis, and its localisation
at the centrosome is temporally regulated [30, 31].
At the molecular level, it was demonstrated that the N-terminal

domain of RHAMM interacts with microtubules, while the
C-terminal leucine zipper is required for centrosome targeting.
Interestingly, the RHAMM C-terminal exhibits high homology with
the dynein interaction domain of Xklp2 and the kinesin Kif15
[32, 33]. In this way, it was shown that this domain of RHAMM is
necessary to generate interkinetochore tension and to promote
anaphase entry and centrosome separation [32, 34]. These
processes involve the balance of kinesin Eg5-mediated forces
through localising the targeting protein for Xklp2 (TPX2) and
promoting the formation of inhibitory TPX2-Eg5 complexes
[32, 34]. In addition, it was described that the tumour-
suppressor complex BRCA1/BARD downregulates RHAMM

functions during mitosis, facilitating the binding of TPX2 to
spindle poles, which contributes to proper spindle assembly
[22, 35]. Furthermore, it was shown that BRCA1 facilitates
microtubule reorganisation whereas Aurora kinase A (AURKA)
impairs it. The latter is regulated through RHAMM and TPX2 [36],
which also produce the activation of microtubule nucleation by
RanGTP [37].
Interestingly, a study on the interactome has shown high co-

expression of RHAMM with BRCA1, indicating that RHAMM is a
high risk factor to breast cancer [38]. This finding was supported
by another study showing that the perturbation of apicobasal
polarity, which is regulated by BRCA1 and RHAMM, increases the
risk of breast cancer [36]. Similarly, it was suggested that the loss
of RHAMM and the consequent spindle misorientation and
aberrant division of male germ cells could promote hypofertility
and testicular germ cell tumours [39].
Interestingly, the loss of RHAMM expression is also associated to

peripheral nerve sheath tumours by a mechanism involving TPX2
release and activation of AURKA [40]. This absence of RHAMM
could explain that these tumours exhibit slow growth and are
rarely malignant. Therefore, the correct generation of mitotic-
spindle bipolarity requires optimal levels of RHAMM, which if
deregulated, would lead to genomic instability, favouring cancer
initiation. Due to the increasing evidence about the main role of
RHAMM in mitotic-spindle assembly and genomic stability, some
authors are currently debating whether it should be considered
more as a microtubule-associated SAF than a putative hyaluronan
receptor [1]. Nevertheless, both roles of RHAMM become relevant
in the tumour context.

Role of RHAMM in cancer
Considering that RHAMM is a cell-cycle-regulated gene product
[30, 31], it is not surprising that it is poorly expressed in most
homoeostatic adult tissues [41, 42], but it is overexpressed in
several tumours, such as breast, endometrial, ovarian, bladder,
pancreas, colorectal, head, neck and stomach cancers, choriocar-
cinoma, hepatocellular carcinoma, myeloma and leukaemia and
prostate, among others [19, 43–49]. In all cases, the deregulation
of this protein has been associated with poor prognosis and
tumour progression.
The role of RHAMM in cancer has been studied at the molecular

level through the modulation of several signalling pathways and
biological processes, mainly associated with its role as HA
receptor. In this way, we demonstrated that HA-RHAMM binding
activates PI3K/Akt signalling, which favours proliferation and
chemoresistance of human leukaemic cell lines [50]. Likewise, we
demonstrated that HA-RHAMM interaction increases human
choriocarcinoma cell migration through PI3K/Akt and MEK/ERK
activation [46]. In concordance, several authors reported that HA
enhances cell proliferation and migration in different cancer
models through its interaction with RHAMM and the activation of
other receptors such as CD44, PDGFR, EGFR which modulate PI3K/
AKT and ERK [43, 51–54]. Moreover, it has been recently suggested
that the HA-RHAMM interaction would regulate RHAMM expres-
sion in a cell-specific feedback loop in the signalling cascade [55].
As we described above, RHAMM not only acts as a receptor with

the ability to transduce signals but also plays an important role in
the regulation of homoeostasis, mitosis and meiosis [20]. Indeed,
RHAMM expression is cell-cycle-regulated, and both its over-
expression and its deficiency lead to genomic instability, which
also contributes to tumour progression [1, 20, 56]. In this point, it is
important to highlight that the tumour suppressor P53, as well as
BRCA1, downregulate the expression of RHAMM, which is
expected due to their anti-oncogenic roles [35, 36, 38, 39, 56].
The fact that RHAMM is overexpressed in pathological

conditions and plays an important role in tumour progression,
makes this protein an interesting molecular target for cancer
therapies. Along this line, many efforts have been done to develop
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several molecules, such as HA or RHAMM mimetics aiming to
block RHAMM/HA interaction or recombinant RHAMM peptides to
inhibit both its effects on tumour cell motility and its role as a
mitotic regulator [57–59]. Moreover, RHAMM is considered a
tumour-associated antigen [60, 61] and its overexpression can
trigger both humoral and cellular immune responses. Indeed, its
immunogenicity was considered for the development of cancer
vaccines in gliomas and haematological malignancies [47, 62–64].
Although some of these studies showed promising results in
phase I/II clinical trials, further analyses are necessary for their
application as a therapeutic option in cancer [65, 66].

RHAMM in the central nervous system and its key role in
neural stem cells
In the central nervous system (CNS) RHAMM is expressed by
neurons, astrocytes, oligodendrocytes and microglial cells and was
found to be associated with several processes such as injury-
induced cell locomotion, axonal extension, mitochondria traffick-
ing and brain morphogenesis during development [67–71] (Fig. 1).
This expression of RHAMM in several cell types of the developing
and adult brain, and the fact that HA is the main extracellular
matrix (ECM) component, suggest a relevant role of RHAMM in
this tissue.
It was demonstrated that the levels of HA are increased after

brain ischaemic insult, accompanied by migrating astrocytes
overexpressing RHAMM in these peri-infarct areas [72]. Therefore,
it is tempting to speculate that the migration of these cells, at least
partially, could be dependent on RHAMM-HA interaction. Likewise,
inhibitory peptides used to block the HA-binding domains of
RHAMM, reduced astrocytes and microglia motility in vitro [70].
Similarly, both neurite extension and neuroblast migration were
inhibited [73]. Interestingly, it was suggested that HA-RHAMM
interaction could occur in the cytoplasm of neurons, for regulating
mitochondrial trafficking and localisation through calmodulin
signalling [69].

It was demonstrated that RHAMM participates in the PLK1-
dependent regulatory pathway, which orients progenitor cell
division, regulates polarisation and supports brain morphogenesis
during development [27, 74]. In accordance, the presence of the
RHAMM gene in a small cluster together NUNDC2, with similar
functions as adaptors for dynein motor proteins, has critical roles
in the process of neural development [1]. In this way, the NUDC
proteins form a complex with the cytoplasmic dynein partner
protein, LIS1 (Lissencephaly 1), the loss of which can produce
cortical malformation disorders [75]. Therefore, the presence of
RHAMM and NUNDC2 in the same gene cluster could represent an
evolutionary advantage.
Although RHAMM is found both in the adult and developing

brain, its expression is remarkably heterogeneous among different
cell populations [69]. In the adult tissue, RHAMM is strongly
expressed in highly proliferative brain regions, such as the
ventricular and subventricular zone (SVZ) of the brain and in
migratory neuroblasts of the rostral migratory stream, which give
rise to neurons for the olfactory bulb [26, 72, 76]. Although HA-
RHAMM interaction is reported, it is tempting to think that
RHAMM has a key role at the centrosome and mitotic-spindle pole
during cell proliferation in the neural tissue.
Furthermore, in murine models, RHAMM controls spindle

position and orientation, which determines neuroepithelial
differentiation and directly impacts CNS development, brain
morphogenesis as well as on neural stem and progenitor cells
(NSC/NPC) maintenance [26, 27].
NSC/NPC are undifferentiated and multipotent cells of the CNS

which can self-renew and also give rise to daughter cells
committed to lineage-specific differentiation that ultimately
generate neurons, astrocytes and oligodendrocytes [77–80]. Even
though NSC/NPC are located lining ependymal cells of the
ventricle walls of the brain, numerous progenitors, neuroblasts
and other glial precursors coexist in this cellular structure of the
brain that serves as a source for morphogenesis during
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development or regeneration in the adult tissue. NSC/NPC are
highly proliferative during morphogenesis, but they remain in a
quiescent state in the adult brain, and can activate their
proliferation or differentiation pathways depending on tissue
requirements, which is relevant for regenerative mechanisms
[79, 81].
Similarly to what was observed in other tissues, RHAMM seems

to have different functions in neural tissue depending on its
cellular localisation, as it can act as a cell surface receptor but it
can also be localised in the cytoplasm or in the nucleus, to exert
both hyaluronan-dependent and independent functions [1, 69].
It is noteworthy that HA plays essential roles in the control of

NSC/NPC behaviour, stemness maintenance, long-term self-
renewal and progenitor’s migration, as well as neurons and glial
cell regeneration from neurogenic niches [67, 82–84]. These
neurogenic niches not only contain high levels of HA, but are
enriched in RHAMM, persisting in the adult brain [26, 72, 76, 85].
Moreover, it has been suggested that HA-RHAMM interactions
would be required for the proper migration of immature neurons
in the rostral migratory stream [72]. Furthermore, the interaction
of HA with RHAMM plays a key role in the regulation of the early
folding of the human neocortex during embryogenesis, through
the activation of ERK signalling [67]. Similarly, RHAMM is involved
in the growth and regeneration of noradrenergic fibres from locus
coeruleus by stimulating neuronal projections throughout the
neuroaxis [86].
On the other hand, intracellular RHAMM is required for the

stability and correct orientation of the mitotic spindle during NSC/
NPC division and is thought to regulate the orientation of the cell
division plane with respect to the lateral ventricle wall [26, 27]. If
the mitotic spindle lies perpendicular to the niche surface, in an
apicobasal orientation, the cell division plane aligns parallel to the
niche edge, thus by asymmetrical division one daughter cell
maintains its contact with the ventricle wall and persists in an
undifferentiated state as an NSC, while the other daughter cell
undergoes the differentiation programme as a progenitor that

moves away from the SVZ to generate differentiated progeny.
Moreover, if the mitotic spindle is oriented parallel to the niche
surface, in a planar fashion, the cell division plane is set
perpendicular to the niche edge and by symmetrical division
both daughter cells maintain their contact with the niche,
generating two NSCs that retain multipotency and self-renewal
ability. Thus, intracellular RHAMM regulation on the orientation of
NSC/NPC division and cell polarity ultimately might define the cell
choice between self-renewal or differentiation pathways
[26, 40, 87].
Overall, these studies support the key role of RHAMM in both

the adult and developing brain, highlighting its functions on NSC/
NPC features and maintenance (Fig. 2).

RHAMM in gliomas
As previously discussed, RHAMM is essential for NPC viability and
the sustainment of cell potency. NSC/NPC in the SVZ niche and
glioblastoma cells, which give rise to the most malignant primary
brain tumour, share many cellular features and show similar gene
expression patterns [88–90]. Growing evidence supports the
hypothesis that NSCs of the SVZ are the most probable cells of
origin of glioblastoma (GBM) [91–94].
Interestingly, RHAMM has been shown to promote self-renewal

and multipotency of glioblastoma stem-like cells by the activation
of stemness markers in NSC/NPC, such as CD133, Sox2, Sox4 and
Olig2 [95]. Furthermore, the silencing of RHAMM diminishes both
self-renewal and the expression of GSC markers, suppresses
tumour growth and increases the survival time of mice with GSC
xenografts [95]. These findings support the role of RHAMM at the
centrosome and mitotic-spindle pole and highlight the similitude
of this protein functions between GSC and NSC/NPC. In addition, it
was demonstrated that RHAMM D was expressed both by
astrocytoma cell lines and tissue samples, but not by their healthy
counterparts. Moreover, RHAMM was associated with microtu-
bules in astrocytoma cells but not in normal astrocytes, suggesting
that RHAMM D could be involved in the interaction with
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microtubules [96]. These observations are expected if considering
that loss of the N-terminal domain in such variant increases the
expression of RHAMM in the cell nucleus and enhances cancer
initiation and/or metastasis [2, 6, 8, 9]. Additionally, it was shown
that the overexpression of such variants in U87 and U374 glioma
cells increases the invasion into an organotypic human brain slice
model [97]. These results show remarkable coincidences with lung
and breast cancer cells [14, 98] and suggest that the expression of
this variant could be upregulated during malignant GBM
transformation. It may be speculated that the function of RHAMM
on microtubules could explain the exacerbated cell proliferation
and migratory features of GBM cells.
As expected, RHAMM also plays a role as a putative cell surface

receptor on GBM cells.
In 2001, Akiyama et al. have shown that several glioma cell lines

expressed RHAMM in at least one of its variants. Moreover, the
authors found that high-grade gliomas exhibited higher expres-
sion of RHAMM protein than low-grade gliomas. In addition, non-
neoplastic surgical specimens with increased astrogliosis showed
higher RHAMM expression in comparison to samples of non-
gliotic human brains. Furthermore, they demonstrated that
RHAMM secreted by GBM cell lines was able to bind HA. The
addition of a RHAMM soluble peptide that contains the HA-
binding domain to GBM cell culture diminished cell proliferation
and migration [51]. Furthermore, the use of a siRNA targeting
RHAMM diminished the migration and invasion of X01 GBM cells
[99]. In agreement with these findings, we recently demonstrated
that HA induces cell migration in the GL26 cell line, which
expressed RHAMM but not CD44, suggesting that HA-induced
migration was mediated by RHAMM [100]. Supporting that
finding, we demonstrate the surface expression of RHAMM and
showed that RHAMM-HA interaction induces migration in both
LN229 and U251 cells through ERK signalling [13]. In other studies,
RHAMM was evaluated as a marker for the stem-like phenotype in
U87 GBM cells. The authors demonstrated that cells growing in an
HA-3D model showed a stem-like phenotype compared to those
cultured in a 3D model without HA. These findings suggest that
RHAMM-HA interaction contributes with the stem phenotype in
GBM cells [101]. These results highlight the importance of
RHAMM-HA interactions in GBM malignancy and show marked
similitudes with the RHAMM functions in NSC/NPC. Conversely,
the silencing of RHAMM in U87 glioma cells neither modified HA-
induced migration nor radiation-induced migration in these cells
[102], suggesting the compensation of this signalling by another
HA receptor in this cell model.
All in all, these reports reveal the key role of RHAMM,

particularly of variant D, in GBM malignant features and identify
this interesting protein as a target for GBM therapy.
In this respect, it was demonstrated that the vaccination of

glioma-bearing mice with dendritic cells transfected with RHAMM
mRNA increased survival time with respect to animals immunised
with non-transfected dendritic cells [62]. Furthermore, while the
mice of the second group died on day 50, 15% of the mice
vaccinated with dendritic cells transfected with RHAMM mRNA
were healthy and neurologically normal after 80 days [62]. In this
way, it was suggested that the antitumour effect of these dendritic
cells transfected with RHAMM mRNA was mediated by CD4+

T cells [103]. Moreover, it was observed that the expression of
RHAMM inversely correlates with the survival time of patients with
brain tumours [99]. In addition to the relevance of RHAMM as a
potential target for GBM antitumour treatment, the mechanisms
of regulation of RHAMM expression are also considered interest-
ing therapeutic targets. An example of this is the RHAMM
antisense long noncoding RNA 1 (HMMR-AS1), which stabilises
the mRNA of RHAMM. It was demonstrated that the knockdown of
HMMR-AS1 reduced the expression of RHAMM, leading to the
inhibition of cell migration and invasion, as well as the
suppression of GBM cell growth both in vitro and in vivo.

Furthermore, the silencing of HMMR-AS1 sensitised GBM cells to
radiation by downregulation of DNA repair proteins such as ATM,
RAD and BMI1, postulating HMMR-AS1 as a novel target in GBM
[104]. Likewise, similar evidence were found in other tumour
pathologies, such as lung adenocarcinoma, and ovarian and
breast cancer [105–107].
A few years ago, it was demonstrated that the inhibition of

COX-2 on U251 and U87 glioma cells markedly diminished the
levels of RHAMM protein, decreases proliferation and generates
G1 phase cell-cycle arrest in vitro, while suppressing tumour
growth and angiogenesis in vivo [108]. In addition, we demon-
strated that 4-methylumbelliferone, which inhibits HA synthesis,
decreases cell proliferation and induces senescence while
diminishes membrane RHAMM expression in U251 and LN229
cells [13]. These data reinforce the idea of using the modulation of
RHAMM expression as a therapeutic strategy in GBM.
In a similar way, the protein profile of U87 glioma cells after

treatment with TGF-β, which induces the epithelial-to-
mesenchymal transition (EMT) in several types of carcinomas,
showed that although the expression of CD44 remained
unchanged, the levels of RHAMM were increased, suggesting that
this receptor could be involved in the EMT process [109].
According to the role of RHAMM in migration and invasion, Kim
et al. (2011) showed that the expression of this receptor, as well as
MMP-2 and MMP-9, were higher in the invasive edge of the
tumour rather than in the core. In agreement, we demonstrated
that 4-methylumbelliferone decreased GBM cell migration and
reduced MMP-2 activity, as well as cell surface RHAMM expression
[13]. Furthermore, RHAMM and MMP-2 showed the greatest
expression in the margin of the most aggressive glioma group,
which presented tumour recurrence [110]. Similarly, Virga et al.
(2017) showed that RHAMM, together with MMP-2 and integrin
α1, were useful proteins to distinguish between low and high-
grade gliomas, as their increment was associated with tumour
severity [111]. Two years later, the same group found that RHAMM
protein was increased in patients with poor prognosis with respect
to patients with better prognosis, suggesting the possibility of
using this receptor as a prognostic marker, emphasising its
relevance in GBM malignancy [112].
All in all, these results reveal the implication of RHAMM in

several malignant features of GBM such as proliferation, migration,
invasion and GSC self-renewal both in vitro and in vivo and even
in GBM patient samples, thus highlighting its potential use as a
therapeutic target in GBM (Fig. 3).

CONCLUSION
As we described in this review, RHAMM has multiple functions
depending on its cellular location and isoform variants. Here we
revised the role of RHAMM as a putative cell surface (HA) receptor,
and its involvement in the centrosome and mitotic-spindle pole
formation. Through the analysis of these roles, we attempted to
clarify the function of RHAMM in the CNS with special attention to
its requirement for NSC/NPC proliferation, migration and differ-
entiation programmes both during development as well as for
brain regeneration after injury.
It is noteworthy that many physiological functions of RHAMM in

the neural tissue seem to be conserved in the GBM context (Fig. 4).
However, as RHAMM expression is upregulated in GBM cells, these
normal functions become uncontrolled and lead to undesirable
upregulation of cell invasion, tumour progression, chemoresis-
tance and genomic instability. Interestingly, strong similarities
exist in the RHAMM roles between NSC/NPC and GSC. Finally, we
described the strategies for targeting RHAMM as a potential GBM
therapy that could improve the prognosis and outcome of
patients.
Future investigations would pave the way towards a better

understanding of the functional complexity of RHAMM in health
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and disease in order to develop new therapeutic strategies and
alternative biomarkers for GBM.
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