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A B S T R A C T   

The growing and aging of the world population have driven the shortage of medical resources in recent years, 
especially during the COVID-19 pandemic. Fortunately, the rapid development of robotics and artificial intel
ligence technologies help to adapt to the challenges in the healthcare field. Among them, intelligent speech 
technology (IST) has served doctors and patients to improve the efficiency of medical behavior and alleviate the 
medical burden. However, problems like noise interference in complex medical scenarios and pronunciation 
differences between patients and healthy people hamper the broad application of IST in hospitals. In recent 
years, technologies such as machine learning have developed rapidly in intelligent speech recognition, which is 
expected to solve these problems. This paper first introduces IST’s procedure and system architecture and an
alyzes its application in medical scenarios. Secondly, we review existing IST applications in smart hospitals in 
detail, including electronic medical documentation, disease diagnosis and evaluation, and human-medical 
equipment interaction. In addition, we elaborate on an application case of IST in the early recognition, diag
nosis, rehabilitation training, evaluation, and daily care of stroke patients. Finally, we discuss IST’s limitations, 
challenges, and future directions in the medical field. Furthermore, we propose a novel medical voice analysis 
system architecture that employs active hardware, active software, and human-computer interaction to realize 
intelligent and evolvable speech recognition. This comprehensive review and the proposed architecture offer 
directions for future studies on IST and its applications in smart hospitals.   

1. Introduction 

The average lifespan of humans is increasing with the improvement 
of living standards and medical technology, leading to a rapidly aging 
population. The world’s population aged 60 and over is expected to 
increase to 22% by 2050 [1], which poses numerous challenges to the 
healthcare system [2]. The aggravation of aging has caused an increase 
in healthcare costs and shortages in human and material resources. In 
addition, the unbalanced distribution of medical resources worldwide 
and the lack of advanced medical technology and equipment in under
developed areas, make some sudden diseases not treated timely and 
effectively [3]. Moreover, some early symptoms are often imperceptible, 
resulting in the aggravation of the diseases and the delay in the best 
treatment. 

With the development of robotics and artificial intelligence (AI) 

technologies, machines can achieve more efficient and accurate disease 
diagnosis and assessment in some cases and replace nurses to assist 
patients in their lives, which alleviate the problem of insufficient med
ical resources. For example, intelligent image processing methods based 
on deep learning (DL) have been applied to processing X-ray, CT, ul
trasound, and facial images for diagnosing diseases such as COVID-19 
detection [4–6], paralysis assessment [7,8], and autism screening [9]. 
In addition, intelligent speech technology (IST) plays a critical role in 
smart hospitals because language is the most natural mean of commu
nication between doctors and patients and contains much information, 
such as patients’ identity, age, emotion, and even symptoms of diseases 
[10]. 

IST refers to the use of machine learning (ML) methods to process 
human vocal signals to obtain information and realize human-machine 
communication. In recent years, speech signals research has developed 
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rapidly with ML. IST contains many research areas, such as Automatic 
Speech Recognition (ASR) [11], Voiceprint Recognition, and Speech 
Synthesis. After years of development, IST has made significant progress 
and has gradually been applied in social life. For example, Apple’s Siri, 
Google and Baidu’s speech-based search services, and smart speakers 
[12] have all entered people’s lives and provided convenience for us. 

There are many review articles on speech technologies in medical 
applications, such as medical reporting [13], clinical documentation 
[14], speech impairment assessment [15], and speech therapy [16], 
healthcare [10,17]. However, we still require the review of 
state-of-the-art IST applications in smart hospitals. The smart hospital is 
the key to significantly improving the efficiency of medical behavior, 
alleviating the medical burden, and strengthening the robustness of the 
medical system in response to public health events such as the COVID-19 
pandemic. Therefore, the application of IST in smart hospitals and smart 
healthcare needs to be reviewed for further development. 

As shown in Fig. 1, in addition to applying it in daily life, IST is a 
crucial part of smart hospitals to process vocal signals produced by 
healthy people and patients. It is gradually applied in medical and 
rehabilitation scenarios [17,18]. For example, IST can be used as a 
transcription tool to help doctors to record patient information such as 
personal information and chief complaints. It can also interactively 
guide patients to seek medical services. Moreover, IST can be an auxil
iary tool for doctors to diagnose diseases preliminarily. At the same time, 
speech can identify patients’ emotional states to help doctors commu
nicate better with them. Furthermore, IST combined with robotics, 
Internet of Things (IoT) technology, and 5G communication technology 
can support identifying and monitoring early symptoms of diseases, 
healthcare for the elderly, telemedicine, etc. 

This paper mainly introduces the latest research progress and ap
plications of IST in the healthcare field, summarizes and analyzes the 
existing research from the perspective of technical realization, and 
proposes the current challenges and future development directions. The 
rest of the paper is organized as follows. Section 2 gives the search 
methodology. Section 3 introduces the typical flow of intelligent speech 
signal processing, the system architecture of ASR, and an overview of 

the IST in applications of medical scenarios. The applications of IST in 
electronic medical documentation, disease diagnosis and evaluation, 
and human-medical equipment interaction are reviewed in Sections 4, 5, 
and 6, respectively. Section 7 presents a case study of IST in stroke pa
tients’ early recognition, diagnosis, rehabilitation training, evaluation, 
and daily care. The limitations of current speech technologies in the 
applications of smart hospitals and future directions are proposed in 
Section 8. Finally, we conclude this work in Section 9. 

2. Search methodology 

We performed the literature search on Web of Science and ProQuest. 
The literature search included all available English-language journal 
articles published in peer-reviewed journals up to July 2022 to ensure 
the quality of this review. Moreover, in order to target only papers 
related to IST and healthcare, the following keyword combinations are 
searched limiting in the title and abstract: (hospital OR medical) AND 
(intelligent OR smart OR technology) AND (speech). Only Review arti
cles and Research articles are included. 

Fig. 2 illustrates the article selection process. The initial search 
returned 3389 articles. 227 articles were retained after removing du
plicates, non-English language, and irrelevant to healthcare by 
screening the titles and abstracts. Then, 187 articles were retained after 
screening the full text and excluded the studies irrelevant to IST, tran
scription, disease diagnosis, and human-medical equipment interaction. 
Finally, we included 173 articles after removing the less relevant articles 
and dataset papers. The 173 articles are classified by the year of publi
cation, as shown in Fig. 3. We also included 28 articles about the 
methods and algorithms of IST. Furthermore, 15 web pages of medical 
equipment using IST were also included. 

3. Overview of intelligent speech technologies 

Speech technology generally includes collecting, coding, trans
mitting, and processing speech signals. However, the speech signals of 
the doctors and patients collected in the hospital’s public areas contain 

Fig. 1. Examples of the applications of intelligent speech technology (IST) in smart hospitals.  
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background noise. Moreover, some patients cannot speak and pro
nounce clearly due to illness or dialect. These issues bring challenges to 
the acquisition and processing of speech signals. We can upgrade the 
acquisition equipment for noise interference, such as using a micro
phone array, to suppress noise and acquire speech signals directionally 
[19,20]. In addition to noise suppression and collecting high-quality 

speech signals, the current research mainly focuses on their processing 
by state-of-the-art AI algorithms. 

As shown in Fig. 4, speech signal processing mainly includes pre- 
processing, feature extraction, and recognition [21]. Among them, 
feature extraction and recognition are the critical steps of IST. Currently, 
the latest AI technologies are mainly used to improve the performance of 
feature extraction and recognition. Therefore, without loss of generality, 
this section first introduces the general flow of intelligent speech pro
cessing, presents the architecture of an ASR system, and then summa
rizes the application of IST in the medical field. 

3.1. Procedure of intelligent speech processing 

3.1.1. Pre-processing 
The pre-processing of speech signals is the first step in IST. The 

speech signals are generally real-time audio streams and time sequences. 
There may be many invalid and silent segments in the speech signals 
that need to be segmented and filtered through the voice activity 
detection algorithm. Only the valid speech segments are retained for 
subsequent processing [22]. Hence, the speech signals are usually pro
cessed by pre-emphasis, framing, and windowing. 

To improve the high-frequency resolution of the speech signals, they 
are usually pre-emphasized by using the first-order Finite Impulse 
Response high-pass digital filter [23]. The speech signals are 
time-varying signals. However, speech signals have short-term charac
teristics and can be treated as steady-state signals because the movement 
of the human muscles during speaking is slow. Therefore, the speech 

Fig. 2. Systematic Reviews selection process.  

Fig. 3. The number of studies included in this review by the year of publication 
and its trend. 

Fig. 4. Typical processing flow of a speech system.  
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signals are needed to be divided into frames before processing and 
regarded as many short-term speech frames of equal length. Overlaps 
between adjacent speech frames are set during framing to ensure the 
short-term reliability of speech signal features and avoid feature muta
tion between adjacent speech signals. 

Windowing is usually performed on each frame of the speech signals 
to reduce the error between the related speech segments and the original 
signals caused by the truncation of the voice signals. The commonly used 
window functions include the Rectangular window, Hanning window, 
and Hamming window [24]. We can obtain the speech signal required 
for feature extraction by processing each frame of the speech signals 
using these window functions with low-pass characteristics. 

3.1.2. Feature extraction 
The second step of IST is feature extraction, which is also crucial in 

determining the performance of the intelligent voice processing system. 
The feature extraction of speech signals aims to convert them into time- 
varying feature vector sequences through feature value extraction al
gorithms. The features of speech signals include time domain features, 
frequency domain features, and other transform domain features [26].  

a) Time domain features 

The common time domain features of speech signals include short- 
term amplitude, short-term energy, pitch period, pitch frequency, 
pitch, and zero-crossing rate. The short-term amplitude M(i) is: 

M(i)=
∑L− 1

n=0
|yi(n)|, 1≤ i ≤ N (1) 

The short-term energy E(i) is: 

E(i)=
∑L− 1

n=0
y2

i (n), 1 ≤ i ≤ N (2)  

where yi(n) refers to the amplitude of the n-th sample in the i-th frame of 
the speech signals, N is the total number of frames after framing, and L is 
the frame length. M(i) and E(i) are mainly used to distinguish the un
voiced and voiced segments in speech pronunciation. The difference 
between M(i) and E(i) is that the former has fewer fluctuations than the 
latter. 

The pitch period is the vibration period of the vocal tract when a 
person makes a sound and is the reciprocal of the fundamental frequency 
F0 [48], which can be estimated from the speech signal using pitch 
detection algorithms. Pitch represents the level of the sound frequency, 
which can be expressed by F0 as 

Pitch= 69+ 12 × log2(F0 / 440) (3) 

The zero-crossing rate Z(i) refers to the number of changes of the sign 
of the sampled value in each frame of the speech signal: 

Z(i)=
1
2
∑L− 1

n=0
|sgn[yi(n)] − sgn[yi(n − 1)]| (4)  

where the symbolic function sgn[x] is: 

sgn[x] =
{

1, x ≥ 0
− 1, x < 0 (5) 

Z(i) is also used to distinguish between unvoiced and voiced and is 
often combined with E(i) for endpoint detection of speech segments, that 
is, the non-speech and speech segments. Z(i) is more effective than E(i) 
when there is considerable background noise.  

b) Frequency domain features 

The spectrum of the speech signal can be obtained by converting 

each frame of a time-domain speech signal to the frequency domain 
using the Fast Fourier Transform (FFT). The spectrum contains the fre
quency and amplitude information of the speech signal. The spectrum 
can only show the feature of one frame of the speech signal. Therefore, 
we can combine the spectrum of all speech frames to form a spectrogram 
to observe the frequency domain features of the whole speech signal. 
The spectrogram contains three kinds of information: frequency, time, 
and energy.  

c) Other transform domain features 

In addition to the characteristic parameters of speech signals 
commonly used in the time and frequency domains, researchers also use 
other characteristic parameters in the transform domain to improve the 
performance of the recognition. For example, the parameters in the 
transform domain can reflect the characteristics of people’s vocal organs 
and auditory organs as speech features. Therefore, these feature pa
rameters have a significant effect on speech signal recognition. Other 
domain features commonly used for speech signals include Mel Fre
quency Cepstral Coefficients (MFCC) [49,50], Discrete Wavelet Trans
form (DWT), Linear Prediction Coefficients (LPC), Linear Prediction 
Cepstral Coefficients, Perceptual Linear Prediction [51], and Line 
Spectral Frequency [26]. 

The above are common feature extraction methods in IST. However, 
in specific scenarios, we need to adjust the feature extraction method 
according to the type and characteristics of the collected signals and the 
performance of the speech recognition system. The extracted speech 
features are the input of speech recognition. 

3.1.3. Recognition 
Recognition based on the digital features of the speech signals is the 

final step in intelligent speech processing. There are many recognition 
algorithms. For example, Dynamic Time Warping (DTW) is a method for 
calculating the similarity of two temporal sequences. The similarity 
between the speech signal sample and the standard speech signal is 
obtained by comparing their feature sequences [52]. As shown in Fig. 5, 
DTW borrows the idea of dynamic programming, the minimum distance 
D(i, j) between any time i and j of two sequences is 

D(i, j)=Dist(i, j) + min[D(i − 1, j),D(i, j − 1),D(i − 1, j − 1)] (6)  

where Dist(i, j) is the relative distance between two speech signals at 

Fig. 5. Schematic diagram of the shortest path of dynamic time warping 
(DTW) algorithm. 
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times i and j, respectively. The distance generally is Euclidean distance. 
DTW requires less data and does not need pre-training, which is easy to 
implement and apply, and plays a vital role in small sample scenarios. 

ML is the mainstream algorithm used in the current intelligent 
speech recognition. It utilizes the knowledge of probability and statistics 
and a dataset to train a model containing the mapping relationship be
tween input and output to realize the feature recognition of speech 
signals. Table 1 shows the commonly used ML algorithms in medical 
speech signal processing. The traditional ML algorithms include 
Gaussian Mixture Model (GMM), Hidden Markov Model (HMM), Sup
port Vector Machine (SVM), etc. The DL algorithms include Deep Neural 
Network (DNN), Convolutional Neural Network (CNN), and the Long 
Short-Term Memory (LSTM) algorithm in the Recurrent Neural Network 
(RNN), etc. Some of the algorithms are briefly introduced as follows. 

Gaussian model is a one-dimensional variable Gaussian distribution 

x ∼ N
(
μ, δ2). (7) 

As shown in Fig. 6, GMM refers to the superposition of multiple 
Gaussian models, and its variables are multi-dimensional vectors [53]. 
Then, the mixed Gaussian distribution p(x) is generally represented by 
the mean and covariance matrix of the variables 

p(x) =
1

(2π)D/2
|
∑

|
1/2e− 1

2(x− μ)T Σ− 1(x− μ)≐N
(

x, μ,
∑)

(8)  

where the multidimensional variables x=(x1, x2, x3, …, xD), the 
covariance matrix is Σ = E[(x− μ)(x− μ)T], μ = E(x). This model is usually 
trained using an Expectation-Maximization algorithm to obtain the 
maximum expectation on the training set. 

Markov chains represent the transition relationship of states. As 
shown in Fig. 7, HMM adds the mapping from observations and states 
based on Markov chains [54]. aij is the probability of transitioning from 
the current state to the next state 

aij =P(qt = j|qt− 1 = i) i, j= 1, 2, 3, ...,N (9)  

bt is the probability that the current state maps to the observed value 

bt =P(ot|qt) t= 1, 2, 3, ...,N (10) 

We can use this model to establish the mapping relationship between 
the observation value and the actual state sequences. Then, the internal 
state with the highest probability can be found as the model’s output, 
with input speech features as the observation value. 

As illustrated in Fig. 8, the basic idea of SVM is to find an optimal 

hyperplane in a high-dimensional space for the segmentation of the bi
nary classification problem. The hyperplane should ensure the minimum 
error rate of the classification [55]. The hyperplane in the 
high-dimensional space can be expressed as 

WT X + b = 0 (11) 

The training process of SVM is to find more suitable parameters W 
and b so that the hyperplane can better divide different categories. 

In recent years, DL has considerably improved the performance of 
intelligent speech processing. As shown in Fig. 9(a), the basic unit of a 
neural network is a neuron. In addition to an input layer and an output 
layer, a DNN has multiple hidden layers. Each layer contains numerous 
neurons, fully connected between adjacent layers to form a network 
[56]. The output vector vl of layer l is 

vl = f
(
zl)= f

(
Wlvl− 1 + bl), 0 < l<L (12)  

which is also the input vector of the next layer, where Wl and bl are the 
weight matrix and the bias coefficient matrix of layer l, respectively. vl ∈

RNl×1, Wl ∈ RNl×Nl− 1, bl ∈ RNl×1, Nl is the number of the neurons in layer 
l. Therefore, by adjusting the model’s Wl and bl through the training 
data, we can establish connections among neurons in the current and 
previous layers and finally obtain the mapping relationship between the 
input and output. 

As shown in Fig. 9(b), CNN mainly consists of two components. One 
is a convolutional layer composed of filters to calculate the local feature 
maps. (hk)ij refers to the k-th output feature obtained by the input 
feature unit at position (i, j) 

(hk)ij =(Wk ⊗ q) + bk (13)  

where q represents the input feature unit, Wk and bk represent the k-th 
filter and bias, respectively, obtained from the training data. Another 
component of the CNN is the pooling layer, which can reduce the 
dimensionality of each feature and retain only the more critical features. 
Finally, the last layer of the CNN is usually a fully connected layer, 
which is utilized to implement regression or classification tasks [57]. 

As illustrated in Fig. 9(c), the characteristic of the RNN is that it will 
be affected by the previous input while processing the current input, 
which can better process the time sequences [58]. The state transition 
and output of the hidden layer are: 
{

st = f (U ∗ xt + W ∗ st− 1)

ot = g(V ∗ st)
(14)  

where st and st‒1 are the states of the hidden layer at time t and time t‒1, 
respectively, ot is the output of the network, W is the weight matrix 
converting state t‒1 to the input of state t, U and V are the weight 
matrices of input and output, respectively. 

Typical RNN has the problem of vanishing gradient. Hence, re
searchers propose LSTM networks to solve this problem [59]. In addition 
to these recognition algorithms, many researchers have proposed other 
algorithms, such as Generative Adversarial Networks and Variational 
Auto Encoders, etc., which are less related to this paper and will not be 
repeated here. 

The performance of speech recognition algorithms based on DL is far 
better than those based on traditional ML algorithms. Especially the 
performance of speech recognition has been dramatically improved by 
the end-to-end algorithm based on Attention and Transformer in recent 
years. However, due to insufficient pathological speech data, traditional 
ML algorithms are still primarily used in pathological speech 
recognition. 

3.2. Automatic speech recognition system architecture 

As one of the representative ISTs, speech recognition plays a vital 
role in healthcare. As shown in Fig. 10, speech recognition has 

Table 1 
Common machine learning algorithms for medical speech signal processing.  

Algorithm Characteristics Ref. 

GMM The probability density function of observed data samples 
using a multivariate Gaussian mixture density. 

[27–29] 

HMM The Markov process is a double stochastic process in which 
there is an unobservable Markov chain defined by a state 
transition matrix. Each state of the chain is associated with 
a discrete or a continuous output probability distribution. 

[30–33] 

SVM Support vector machine (SVM) is a binary classifier with 
advantages in few-shot classification, such as pathological 
voice detection. 

[34–37] 

DNN Consists of fully connected layers and is popular in learning 
a hierarchy of invariant and discriminative features. 
Features learned by DNNs are more generalized than the 
traditional hand-crafted features. 

[38–40] 

CNN A convolutional layer is the main building block of CNNs. 
Designed for image recognition but also extended for 
speech technology. Using the spectrogram of speech signals 
to classify them. 

[41–44] 

LSTM A type of recurrent neural network (RNN) architecture and 
well-suited to learn from experience to classify, process, 
and predict time series when there are very long-time lags 
of unknown size between important events. 

[45–47]  
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developed over a long time, from the initial DTW algorithm to the later 
GMM-HMM algorithm and then to the algorithm combining DNN with 
GMM in recent years. They all have a process model. Pathological 
speech recognition is mainly based on traditional front-end and back- 
end architectures. The conventional architecture of a speech recogni
tion system is briefly introduced as follows. 

As shown in Fig. 11, a speech recognition system is generally divided 
into the front end and back end. The front end mainly completes speech 
signals’ acquisition, pre-processing, and feature extraction. The back 
end realizes the recognition of the obtained speech feature sequences 
and gets the final recognition result. Unlike traditional architectures, the 
latest end-to-end speech recognition algorithms can directly convert 
speech signals into text or classification results, significantly improving 

speech recognition performance. The applications of these novel algo
rithms in medical speech recognition are attracting much attention. The 
state-of-the-art methods will be introduced in the following sections. 

3.3. Intelligent speech technology in medical scenarios 

Healthcare services and treatment are indispensable in human soci
ety. The health system’s capacity is essential to people’s life and health. 
However, a hospital can only treat a limited number of patients daily 
due to its capacity, which is more severe in densely populated and un
developed areas. We can utilize medical resources more efficiently if the 
non-medical workload of doctors is reduced and their work efficiency is 
improved [60]. As the aging population increases, patients’ timely 
treatment, rehabilitation, and daily care are essential for their health. 
Many studies are trying to apply IST in different medical scenarios, such 
as speech-based assistants, telemedicine, and health monitoring [61], to 
change the working ways of medical staff and improve the efficiency of 
the medical system. 

This paper reviews the applications of IST in smart hospitals, mainly 
from three aspects. (1) Use IST to recognize the doctors’ voices and 
reduce their time spent in non-medical related work, which was studied 
by researchers from an early stage [62,63]. (2) IST is also utilized to 
process the patients’ speech signals to assist doctors in diagnosing and 
evaluating diseases [16]. This application has made significant break
throughs in recent years with the development of ML and is also a 
hotspot of current research [64]. (3) IST is applied to medical equipment 
control to help doctors work efficiently [65,66]. These three aspects of 
applications are reviewed and summarized in the following three 
sections. 

4. Speech recognition for electronic medical documentation 

This section introduces the application of IST in electronic medical 
documentation, mainly including electronic medical record (EMR) 
transcription and electronic report generation. Then, we discuss some 

Fig. 6. Schematic diagram of Gaussian Mixture Model (GMM).  

Fig. 7. Schematic diagram of Hidden Markov Model (HMM).  

Fig. 8. Diagram of the hyperplane-based classification of Support Vector Ma
chine (SVM). 
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common issues of the existing medical transcription systems and typical 
solutions recently proposed. Finally, we present the critical indicators 
for evaluating the application effect of the transcription systems and 
their future directions. 

Transcription refers to converting a speech signal into text using IST. 
The application of transcription in medical scenarios mainly refers to the 
generation of EMR and reports; that is, doctors’ speech during diagnosis 
and pathological examination, the dialogue between doctors and pa
tients, are all converted into text records. Transcription can reduce 
doctors’ burden of manual document editing, allowing them to focus on 

medical work and thereby improving their work efficiency [67]. 
In addition, transcription significantly affects many aspects, such as 

doctors’ enthusiasm for diagnosis, hospital treatment costs, and the 
treatment process [68]. Transcription also has some commercial value. 
Many companies have already developed some products. For example, 
Nuance designed an integrated healthcare system that could generate 
clinical records based on doctor-patient conversations [69]. A user 
survey has found that the system allowed physicians to devote more 
time to patients and their lives. Media Interface developed the Digital 
Patientendokumente product, which stored patient-related medical 
documents, nursing documents, and wills. This product allowed medical 
staff to review and sign patient documents quickly [70]. Unisound [71] 
and iFLYTEK [72] launched medical document entry systems, which 
effectively improved the work efficiency of medical staff. For instance, 
the entry system of iFLYTEK played an essential role in the fight against 
COVID-19. 

4.1. Related studies and challenges 

Using EMR transcription technology in medical scenarios has 
demonstrated apparent benefits. Table 2 shows that many researchers 
have used transcription technology to generate medical documents and 
investigated its application effects. They analyzed the accuracy, medical 
efficiency, and hospital cost of documentation by IST and proposed some 
problems and improvement methods. 

Previous work has shown the effects and problems of transcription 
technology in medical document generation. For example, Ajami et al. 
investigated the previous medical transcription studies according to the 
usage scenario. Their results showed that the document generation 
performance was poor when the same vocabulary was used for different 

Fig. 9. Schematic diagram of several classic neural network models. (a) Deep Neural Network (DNN). (b) Convolutional Neural Network (CNN). (c) Recurrent Neural 
Network (RNN). 

Fig. 10. Development process of the main technologies of speech recognition.  

Fig. 11. Schematic diagram of the typical framework of speech recognition 
system with the front end and back end. 
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purposes. In addition, they found that although the use of speech 
recognition in the radiology report generation saved much time, the 
strict error checking in the later stage caused an increase in the overall 
turnaround time due to the high accuracy requirements of the report 
[73]. Peivandi et al. [74] and Poder et al. [13] also made a similar point 
that speech recognition accuracy was not as good as the accuracy of 
manual transcription. Although speech recognition has dramatically 
shortened the turnaround time of reports, doctors need to spend more 
time on dictation and correction due to the higher error rate of tran
scription [13]. 

Moreover, the advantages of electronic report generation are offset 
by the doctor’s burden of verification and the risk of extra errors in the 
report. At the same time, previous studies have found considerable 
differences in the efficiency improvement of using transcription tech
nology in different departments. By studying the previous work, 
Blackley et al. obtained some valuable and novel insights. For example, 
they found significant differences in the types and frequencies of words 
used when dictating and typing documents [75]. These differences may 
affect the quality of the documentation. They also found a lack of a 
unified and effective method for evaluating the impact of IST in medical 
scenarios [17]. 

The effects of transcription technology in medical scenarios include 
positive and negative aspects. The main advantages include reducing the 
turnaround time of most texts and quickly uploading the texts to the 
patient’s electronic health record. Transcription also ensures the cor
rectness of electronic documents in some scenarios that require multiple 
transcriptions and copies. In addition, transcription frees the doctors’ 
eyes and hands, improves work efficiency in some scenarios, and brings 
them positive emotions [76]. Furthermore, in emergency medical mis
sions, transcription technology can better meet the requirements for 
accurate time recordings of resuscitation than traditional methods [77]. 
Moreover, medical documents produced by transcription systems are 
more concise, standardized, and maintainable. 

Negatively, there are potential recognition errors in the documents, 
resulting in the turnaround time not being shortened as expected in the 
scenarios with high accuracy requirements [78]. In addition, the delays 
in speech signal processing make doctors and patients lose patience with 
IST. Moreover, the background noise in public areas of hospitals, 
non-standard pronunciation, interruptions during speaking, and 

wearing surgical masks [79] will lead to decreased recognition accuracy 
and affect the mood of doctors and patients and their acceptance of IST 
[73]. 

4.2. Solutions for performance improvements 

The critical question of medical transcription technology is contin
uous speech recognition. The current continuous speech recognition 
technology has high accuracy in most scenarios. However, improve
ments can be made in different processing stages of speech recognition 
to ensure accuracy and overcome the problems of IST in medical sce
narios. Some improvement schemes have been proposed in several 
studies. 

There are some methods to improve the adaptability of transcription 
systems. For the background noise problem, the microphone array 
combined with noise reduction algorithms can reduce the impact of the 
noise [19]. As shown in Fig. 12(a), Gnanamanickam et al. proposed a 
cascaded speech enhancement algorithm using HMM to optimize the 
algorithm of nonlinear spectral subtraction, which improved the effect 
of medical speech recognition [80]. For different department scenarios, 
Duan et al. added the noise of the corresponding department when 
training the acoustic model [81]. They combined the knowledge transfer 
technique to improve the adaptability of the acoustic model and its 
recognition performance in specific application scenarios. 

Regarding acoustic models, Muhammad et al. proposed a feature 
extraction technique less affected by noise, the interlaced derivative 
pattern, which achieved higher accuracy and shorter recognition time in 
a cloud computing-based speech medical framework [18]. In terms of 
language models, according to the different types of generated medical 
documents and the various probabilities of lexical occurrences, training 
the corresponding language models in a targeted manner is a method to 
improve recognition accuracy. As shown in Fig. 12(b), to make the 
model more adaptable in different departments, Wu et al. introduced a 
simplified Maximum Likelihood Linear Regression (MLLR) into the in
cremental Maximum A Posteriori (MAP) process to enable the parame
ters to be continuously adjusted according to the speech and text [49]. 
Speech transcription technology has also been applied to some products. 
For example, Unisound developed a pathology entry system for the 
radiology department [71]. The system can free the doctors’ hands and 

Table 2 
Examples of speech recognition technology in the application of electronic medical documentation.  

Institute Application scenario Technical description Application effect Ref. 

Zhejiang Provincial 
People’s Hospital 

Generate and extract pathological examination 
reports: 52h labeled pathological report 
recordings. 

ASR system with Adaptive 
technology 

Recognition rate = 77.87%; reduces labor costs; 
improves work efficiency and service quality 

[81] 

Western Paraná State 
University 

Audios collected from 30 volunteers Google API and Microsoft API 
integrated with the web 

Reduces the time to elaborate reports in the 
radiology 

[89] 

University Hospital 
Mannheim 

Lab test: 22 volunteers; Filed test: 2 male 
emergency physicians 

IBM’s Via-Voice Millennium Edition 
version 7.0 

The overall recognition rate is about 85%. About 
75% in emergency medical missions 

[77] 

Kerman University of 
Medical Sciences 

Notes of hospitalized Patients from 2 groups of 
35 nurses 

Offline SR (Nevisa) Online SR 
(Speechtexter) 

Users’ technological literacy; Possibility of error 
report: handwritten < offline SR < online SR 

[74] 

University of North 
Carolina School of 
Medicine 

6 radiologists dictated using speech-recognition 
software 

PowerScribe 360 v4.0-SP2 reporting 
software 

Near-significant increase in the rate of dictation 
errors; most errors are minor single incorrect 
words. 

[79] 

King Saud University CENSREC-1 database: 422 utterances spoken by 
110 speakers 

Interlaced derivative pattern 99.78% and 97.30% accuracies using speeches 
recorded by microphone and smartphone 

[18] 

KPR Institute of 
Engineering and 
Technology 

6660 medical speech transcription audio files 
and 1440 audio files from the RAVDESS dataset 

Hybrid Speech Enhancement 
Algorithm 

Minimum word error rates of 9.5% for medical 
speech and 7.6% for RAVDESS speech 

[80] 

Simon Fraser 
University 

Co-occurrence statistics for 2700 anonymized 
magnetic resonance imaging reports 

Dragon Naturally Speaking speech- 
recognition system; Bayes’ theorem 

Error detection rate as high as 96% in some cases [83] 

Graz University of 
Technology 

239 clinical reports Semantic and phonetic automatic 
reconstruction 

Relative word error rate reduction of 7.74% [25] 

Zhejiang University Radiology Information System Records Synthetic method About 3% superior to the traditional MAP +
MLLR 

[49] 

Brigham and Women’s 
Hospital 

Records of 10 physicians who had used SR for at 
least 6 months 

Morae usability software Dictated notes have higher mean quality 
considering uncorrected errors and document 
time. 

[75]  
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allow them to enter the examination report while observing the image of 
the lesion. iFLYTEK also designed a medical document generation sys
tem for the dental department [82]. By wearing a small microphone, 
dentists can record information about the patient’s condition during oral 
diagnosis. 

Researchers also proposed methods to improve the quality of reports 
generated by transcription systems. For example, correction reports in 
electronic documents usually cause the problem of massive waste of 
resources [62]. Voll et al. proposed a text error correction scheme in 
post-processing for different medical documents to address this problem 
[83]. After the radiology report was generated, the frequency of 
different words appearing in the context was used to correct the report 
and mark the keywords, which was convenient for manual proofreading 

to shorten the document generation time [83]. In addition, Klann et al. 
proposed that using the Key-Val method to structure the report could 
reduce errors and improve its quality [84]. 

Sharing and security of electronic medical documents are also 
important issues. As shown in Fig. 13(a), Muhammad et al. proposed an 
Internet-based cloud service architecture, which can realize unified 
management of electronic medical documents and facilitate communi
cation between doctors and patients whenever and wherever possible. 
However, some scenarios have time delays and data security problems 
[18]. As shown in Fig. 13(b), Qin et al. proposed a hospital intelligence 
framework based on cloud computing and fog computing to alleviate the 
delay problem. The service nodes are deployed in the hospital, which 
can improve the quality of the voice transcription service [85] and 

Fig. 12. Diagram of typical improvement scheme of transcription systems. (a) A hybrid enhancement algorithm for speech signal [80]. (b) An adaptation strategy for 
acoustic model [49]. 
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ensure the security of the data. Singh et al. also presented an architec
ture similar to the one shown in Fig. 13(b). In addition, they proposed 
adding an IoT layer as a data source [86] so that guardians could obtain 
a real-time alert on students’ overall emotions in response to their 
stressful situations. 

4.3. Summary and discussion 

Accuracy is a significant indicator for electronic document and 
report generation systems used in medical scenarios [87]. We also 
should pay more attention to the efficiency improvement of hospitals 
after using these systems [88]. Therefore, four key evaluation indicators 
shown in Table 3 can be referred to when we evaluate these systems. The 
four indicators reflect the primary concerns of doctors and patients in 
actual medical scenarios.  

a) Report average turnaround time can measure the improvement of 
medical efficiency. Reducing this time is the primary purpose of 
applying transcription technology in medical scenarios.  

b) The average number of critical errors in the generated medical 
documents can measure the reliability of the transcription system. 
Healthcare is related to the patient’s health, so an error-prone tran
scription system is unacceptable. 

c) The average word error rate of the generated documents will in
crease the time for medical staff to correct errors and affect the 

patient experience. We can quantitatively evaluate the above three 
indicators through the generated medical documents.  

d) Questionnaires and other methods need to be adopted to assess the 
user experience of the medical staff and patients in different de
partments and scenarios to serve as a benchmark for improving the 
transcription system. 

The interaction between the system and doctors should be consid
ered a priority in the future development of medical transcription sys
tems. Firstly, a more reasonable transcription process can be designed 
according to different departments so medical staff can use transcription 
tools efficiently after training. Secondly, we need to apply new speech 
recognition solutions in other fields to medical scenarios to enhance the 
reliability of the electronic medical documentation system. Thirdly, it 
can also start from the post-processing stage to improve the system’s 
error correction capability and adaptability in generating different types 
of documents to provide doctors convenience [25]. 

5. Pathological voice recognition for diagnosis and evaluation 

This section introduces the application of IST in disease diagnosis 
(disease unknown) and evaluation (disease known) using pathological 
voice. Then, we discuss data types, features, and recognition algorithms 
of pathological voices from a technical perspective. Finally, we present 
IST’s future directions and trends in medical diagnosis. Since diseases 
can affect the patient’s normal speech, cause them to cough and sneeze, 
and even make their breathing voice abnormal, we have investigated 
speech signals and other voice types in this section for disease diagnosis 
and evaluation. 

5.1. Related studies and voice signal types 

People express their feelings and thoughts by speaking. Speaking is 
accomplished through coordinated movements of the head, neck, and 
abdomen muscles. Individuals who cannot correctly coordinate these 
muscles will produce pathological speech [156]. Pathological 
speech-based disease diagnosis uses speech signal processing technolo
gies to judge whether the patient suffers from certain diseases or to 
evaluate the patient’s condition. 

As shown in Table 4, many studies use speech technology to diagnose 
diseases that cause voice problems [157]. The diseases include Voice 
disorder [99], Acute decompensated heart failure [100], Alzheimer’s 
Disease (AD) [104], Dysphonia [118], Parkinson’s Disease (PD) [122, 
125–128], Stroke [125,224], COVID-19 [130,132,135], Chronic 

Fig. 13. Typical cloud computing-based voice medical frameworks. (a) A cloud-based framework for speech-enabled healthcare [18]. (b) A medical big data fog 
computing system [85]. 

Table 3 
Key evaluation metrics for transcription systems.  

Indicators Definition Meaning Ref. 

Report average 
turnaround 
time 

Average time from the 
start of report 
generation to patient 
accessibility 

Turnaround time reduction 
reflects medical efficiency 
improvement brought by 
the transcription system. 

[13] 

Average number 
of critical 
errors 

Number of medically 
misleading errors in 
generated documents 

Reflects the reliability of 
the transcription system. 

[87] 

Average word 
error rate 

Number of typos in 
generated documents 

Reflects the effect of the 
document and influences 
the satisfaction of doctors. 

[13] 
[87] 

User experience 
of doctors and 
patients 

Satisfaction of doctors 
and patients with all 
aspects of the generated 
documents 

Improving work efficiency 
and user experience and 
reducing medical burden 
are goals of transcription 
systems. 

[90] 
[91]  
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Table 4 
Application of speech technology in pathological voice recognition and evaluation (otorhinolaryngology department).  

Disease Data sources Voice 
type 

Voice feature Classifier Effect Ref. 

Vocal Fold 
disorders 

41 HP, 111 Ps SV/a/ Jitter, RAP, Shimmer, APQ, 
MFCC Harmonic to Noise Ratio 
(HNR), SPI 

ANN, GMM, HMM, 
SVM 

Average classification 
rate in GMM reaches 
95.2% 

[92] 

KAY database: 53 HP, 94 Ps SV/a/ Wavelet-packet coefficients, 
energy, and entropy, selected by 
algorithms 

SVM, KNN Best accuracy = 91% [93] 

MEEI: 53 HP, 657 Ps SV/a/ Features based on the 
phenomena of critical 
bandwidths 

GMM Best accuracy = 99.72% [94] 

Benign Vocal Fold 
Lesions 

MEEI: 53 HP, 63 Ps; SVD: 869 HP, 108 Ps; 
Hospital Universitario Príncipe de 
Asturias (HUPA): 239 HP, 85 Ps; UEX- 
Voice: 30 HP, 84 Ps 

SV/a/ 
and SS 

MFCC, HNR, Energy, Normalized 
Noise Energy 

Random-Forest (RF) 
and Multi-condition 
Training 

Accuracies: about 95% 
in MEEI, 78% in HUPA, 
and 74% in SVD 

[95] 

Voice disorder MEEI: 53 HP, 372 Ps 
SVD: 685 HP, 685 Ps 
VOICED: 58 HP, 150 Ps 

SV/a/ Fundamental Frequency (F0), 
jitter, shimmer, HNR 

Boosted Trees (BT), 
KNN, SVM, Decision 
Tree (DT), Naive Bayes 
(NB) 

Best performance 
achieved by BT (AUC =
0.91) 

[96] 

KAY: 213 Ps SV/a/ Features are extracted through an 
adaptive wavelet filterbank 

SVM Sort six types of 
disorders successfully 

[97] 

KAY: 57 HP, 653 Ps samples from Persian 
native speakers: 10 HP, 19 Ps 

SV/a/ Same as above SVM Accuracy = 100% on 
both databases 

[98] 

30 HP, 30 Ps SV/a/ Daubechies’ DWT, LPC Least squares SVM Accuracy >90% [97] 
MEEI: 53 HP, 173 Ps SV/a/ 

and SS 
Linear Prediction Coefficients GMM Accuracy = 99.94% 

(voice disorder), 
Accuracy = 99.75% 
(running speech) 

[101] 

Dysphonia Corpus Gesproken Nederlands corpus; 
EST speech database: 16 Ps; CHASING01 
speech database: 5 Ps; Flemish COPAS 
pathological speech corpus: 122 HP, 197 
Ps 

SV/a/ 
and SS. 

Gammatone filterbank features 
and bottleneck feature 

Time-frequency CNN Accuracy ≈89% [144] 

TORGO Dataset: 8 HP, 7 Ps SS Mel-spectrogram Transfer learning 
based CNN model 

Accuracy = 97.73%, [145] 

UA-Speech: 13 HP, 15 Ps SS Time- and frequency-domain 
glottal features and PCA-based 
glottal features 

Multiclass-SVM Best accuracy ≈ 69% [146] 

Pathological Voice SVD: approximately 400 native Germans SV/a/ Co-Occurrence Matrix GMM Accuracy reaches 99% 
only by voice 

[102] 

MEEI: 53 HP 
SVD: 1500 Ps 

SV/a/ Local binary pattern, MFCC GMM, extreme 
learning machine 

Best accuracy = 98.1% [103] 

SVD SV/a/ 
,/i/,/u/ 

Multi-center and multi-threshold 
based ternary patterns and 
Features selected by 
Neighborhood Component 
Analysis 

NB, KNN, DT, SVM, 
bagged tree, linear 
discriminant 

Accuracy = 100% [108] 

SVD: samples of speakers aged 15–60 
years 

SV/a/ Feature extracted from 
spectrograms by CNN 

CNN, LSTM Accuracy reaches 
95.65% 

[109] 

Cyst Polyp 
Paralysis 

SVD: 262 HP, 244 Ps 
MEEI: 53 HP, 95 Ps 

SV/a/ spectrogram CNN (VGG16 Net and 
Caffe-Net), SVM 

Accuracy = 98.77% on 
SVD 

[105] 

SVD: 686 HP, 1342 Ps SV/a/ 
,/i/,/u/ 
and SS 

Spectro-temporal representation 
of the signal 

Parallel CNN Accuracy = 95.5% [106] 

Acute 
decompensated 
heart failure 

1484 recordings from 40 patients SS time, frequency resolution, and 
linear versus perceptual (ear) 
mode 

Similarity calculation 
and Cluster algorithm 

94% of cases are tagged 
as different from the 
baseline 

[100] 

Common vocal 
diseases 

FEMH data: 588 HP 
Phonotrauma data: 366 HP 

SV/a/; MFCC and medical record 
features 

GMM and DNN, two 
stages DNN 

Best accuracy = 87.26% [107]  

Application of speech technology in pathological voice recognition and evaluation (neurology department) 

Disease Data sources Voice 
type 

Voice feature Classifier Effect Ref. 

Parkinson’s Disease 
(PD) 

UCI Machine Learning repository: 8 
HP, 23 Ps 

SV Features selected by the Relief 
algorithm 

SVM and bacterial foraging 
algorithm 

Best accuracy = 97.42% [119] 

98 S SV/a/, 
SS 

OpenSMILE features, MPEG-7 
features, etc. 

RF Best accuracy ≈80% [120] 

UCI Machine Learning repository; 
Training: 20 HP, 20 Ps; Testing: 28 S 

SV and 
SS 

Wavelet Packet Transforms, 
MFCC, and the fusion 

HMM, SVM Best accuracy = 95.16%, [121] 

Group 1: 28 PD Ps 
Group 2: 40 PD Ps 

SS Diadochokinetic sequences 
with repeated [pa], [ta], and 
[ka] syllables 

Ordinal regression models The [ka] model achieves 
agreements with human 
raters’ perception 

[122] 

Istanbul acoustic dataset (IAD) 
[123]: 74 PH, 188 Ps 

SV/a/ MFCC, Wavelet and Tunable Q- 
Factor wavelet transform, 
Jitter, Shimmer, etc. 

Three DTs. Best accuracy = 94.12% 
on IAD and = 95% on 
SAD 

[125] 

(continued on next page) 
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Table 4 (continued ) 

Application of speech technology in pathological voice recognition and evaluation (neurology department) 

Disease Data sources Voice 
type 

Voice feature Classifier Effect Ref. 

Spanish acoustic dataset (SAD) 
[124]: 80 PH, 40 Ps 
Training: 392 HP, 106 Ps 
Testing: 80 HP, 40 Ps 

SS MFCC, Bark-band Energies 
(BBE) and F0, etc. 

RF, SVM, LR, Multiple 
Instance Learning 

The best model yielded 
0.69/0.68/0.63/0.8 
AUC for four languages 

[126] 

Istanbul acoustic dataset: 74 HP, 188 
Ps 

SV/a/ MFCC, Deep Auto Encoder 
(DAE), SVM 

LR, SVM, KNN, RF, GB, 
Stochastic Gradient Descent 

Accuracy = 95.49% [127] 

PC-GITA: 50 HP, 50 Ps 
SVD: 687 HP, 1355 Ps 
Vowels dataset: 1676 S 

SV Spectrogram CNN Best accuracy = 99% [128] 

Alzheimer’s disease 
(AD) 

50 HP, 20 Ps SS Fractal dimension and some 
features selected by algorithms 

MLP, KNN Best accuracy = 92.43% 
on AD 

[104] 

PD, Huntington’s 
disease (HD), or 
dementia 

8 HP, 7 Ps SS Pitch, Gammatone cepstral 
coefficients, MFCC, wavelet 
scattering transform 

Bi-LSTM Accuracy = 94.29% [110] 

Dementia Two corpora recorded at the 
Hospital’s memory clinic in 
Sheffield, UK; corpora 1: 30 Ps 
corpora 2: 12 Ps, 24 S 

SS 44 features (20 conversation 
analysis based, 12 acoustic, 
and 12 lexical) 

SVM Accuracy = 90.9% [111] 

DementiaBank Pitt Corpus [112]: 98 
HP, 169 Ps PROMPT Database [113]: 
72 HP, 91 Ps 

SS Combined Low-Level 
Descriptors (LLD) features 
extracted by openSMILE [114] 

Gated CNN Accuracy = 73.1% on 
Pitt Corpus and = 74.1 
on PROMPT 

[115] 

Dysarthria UA-Speech: 12 HP, 15 CP Ps 
MoSpeeDi: 20 HP, 20 Ps 
PC-GITA database [116]: 45 HP, 45 
PD Ps 

SS Spectro-temporal subspace, 
MFCC, the frequency- 
dependent shape parameter 

Grassmann Discriminant 
Analysis 

Best accuracy = 96.3% 
on UA-Speech 

[117] 

65 HP, 65 MS-positive Ps SS Seven features including 
Speech duration, vowel-to- 
recording ratio, etc. 

SVM, RF, KNN, MLP, etc. Accuracy = 82% [118] 

Distinguishing two 
kinds of dysarthria 

174 HP, 76 Ps SV and 
SS 

Cepstral peak prominence classification and regression 
tree; RF; Gradient Boosting 
Machine (GBM); XGBoost 

Accuracy = 83% [155]  

Application of speech technology in pathological voice recognition and evaluation (respiratory department) 

Disease Data sources Voice type Voice feature Classifier Effect Ref. 

COVID-19 130 HP, 69 Ps SV/a/and 
cough 

feature sets extracted with the 
openSMILE, open-source 
software, and Deep CNN, 
respectively 

SVM and RF Accuracy ≈80% [129] 

Sonda Health COVID-19 2020 (SHC) 
dataset [130]: 44 HP, 22 Ps 

SV and SS Features (glottal, spectral, 
prosodic) extracted by 
COVAREP speech toolkit 

DT Feature-task 
combinations accuracy 
>80% 

[131] 

Coswara: 490 HP, 54 Ps SV/a/,/i/,/o/; Fundamental, MFCC Frequency 
(F0), jitter, shimmer, HNR 

SVM Accuracy ≈ 97% [132] 

DiCOVA Challenge dataset and 
COUGHVID: Training: 772 HP, 50 Ps 
Validation: 193 HP, 25 Ps Testing: 
233 S 

Cough MFCC, Teager Energy 
Cepstral Coefficients TECC 

Light GBM The best result is 76.31% [133] 

MSC-COVID-19 database: 260 S SS Mel spectrogram SVM & Resnet Assess patient status by 
sound is effective 

[134] 

Integrated Portable Medical 
Assistant collected: 36 S 

Cough and 
speech 

Mel spectrogram, Local Ternary 
Pattern 

SVM Accuracy = 100% [135] 

COUGHVID: more than 20,000 S 
Cambridge Dataset [136]: 660 HP, 
204 Ps; Coswara: 1785 HP, 346 Ps 

Cough MFCC, spectral features, 
chroma features 

Resnet and DNN Sensitivity = 93%, 
specificity = 94% 

[137] 

COUGHVID: 1010 Ps; Coswara: 400 
Ps; Covid19-Cough: 682 Ps 

Cough, 
breathing 
cycles, and SS 

Mel-spectrograms and cochlea- 
grams, etc. 

DCNN, Light GBM AUC reaches 0.8 [138] 

Cambridge dataset: 330 HP, 195 Ps; 
Coswara: 1134 HP, 185 Ps; Virufy: 
73 HP, 48 Ps; NoCoCODa: 73 Ps 

Cough audio features, including 
MFCC, Mel-Scaled 
Spectrogram, etc. 

Extremely 
Randomized Trees, 
SVM, RF, MLP, KNN, 
etc. 

AUC reaches 0.95 [139] 

Coswara: 1079 HP, 92 Ps 
Sarcos: 26 HP, 18 Ps 

Cough MFCC LR, KNN, SVM, MLP, 
CNN, LSTM, 
Restnet50 

AUC reaches 0.98 [140] 

Coswara, ComParE dataset, Sarcos 
dataset 

Cough, 
breathing, 
sneeze, speech 

Bottleneck feature LR, SVM, KNN, MLP AUC reaches 0.98 [141] 

Chronic 
Obstructive 
Pulmonary 
Disease 

25 HP, 30 Ps respiratory 
sound signals 

MFCC, LPC, etc. SVM, KNN, LR, DT, 
etc. 

Accuracies of SVM and 
LR are 100% 

[142] 

429 respiratory sound samples respiratory 
sound signals 

SVM Accuracy = 97.8% by 
HHT-MFCC-Energy 

[143] 

(continued on next page) 
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Obstructive Pulmonary Disease [142,143], Aphasia [169,170,181], 
Tuberculosis (TB) [147–149], and organ lesions such as oral cancer 
[158], head and neck cancer [159], nodules, polyps, and Reinke’s 
edema [95]. These studies are divided into four categories by diseases, 
including the otorhinolaryngology department, respiratory department, 
neurology department, and others, and are shown in the four sub-tables, 
respectively. 

Most of the speech data used in these studies come from existing or 
small private datasets collected from medical institutions. For example, 
the frequently adopted pathological speech datasets include Parkinson’s 
Telemonitoring Dataset [160], Saarbrucken Voice database (SVD) 
[161], Massachusetts Eye & Ear Infirmary (MEEI), TORGO [162], 
VOICED [163], University of California Irvine (UCI) Machine Learning 
repository [164], Universal Access Speech Database (UA-Speech) [165], 
Coswara database [166], the COUGHVID corpus [167], and Computa
tional Paralinguistics ChallengE (ComParE) [190]. The above datasets 
contain pathological voices of many diseases, which provide conve
nience for IST-based diagnosis system research. 

We can see from Table 4 that the accuracies of most studies are over 
90% (sensitivity and specificity are not shown), which proves the 
feasibility of diagnosis through speech signals. Meanwhile, we can find 
that even if the same dataset is used to diagnose the same disease, there 
are significant differences between different studies. The main reasons 
include differences between identification methods and an implicit 
problem that different studies will screen the data in the same dataset. 
Therefore, it is not very meaningful to directly compare the recognition 
effects of different methods. Nevertheless, the trend and proposed 
methods can inspire our further research. 

The studies surveyed have one or more recognition algorithms for 
processing pathological voices. As the statistical analysis results shown 
in Fig. 14, about 81% of the articles try ML methods, achieving satis
factory accuracy in disease diagnosis. In recent years, the proportion of 
DL methods has increased (42%), but ML methods are still the primary 
ones. A crucial reason is that the data is difficult to meet the needs of 
state-of-the-art end-to-end recognition methods. Therefore, some 

studies have tried solutions such as data augmentation [139,140,149, 
171] and transfer learning [141,145,149] to solve this problem. The 
details of the diagnosis systems in these studies, including data sources, 
voice type, voice feature, classifier, and effect, can be found in Table 4. 

For feature extraction, in addition to the common features in the time 
domain and frequency domain, some studies also try rare features [94, 
103,104,117,121,127,133,137,144] or use existing feature sets for 
research, such as OpenSMILE features [114,115,120,129,152], features 
extracted by the Weka program [152], and COVAREP speech toolkit 
[131], MPEG-7 features [120]. Moreover, some studies extract features 
by DL algorithms, dimension reduction algorithms [108,111,119,146], 
or heuristic algorithms [93,97,98]. 

The main types of voice data are sustained vowels (SV), spontaneous 
speech (SS) sentences, coughs, and breathing sounds. SV signals are 
generally processed by collecting the SV articulations of patients [92,96, 
101,106]. The SS processing-based method uses sentence-level features 
to collect patient speech or continuous pronunciation of a given text as 
experimental data [110]. Because the voice types of speech signals 
differ, their research also has apparent differences in feature extraction 
and recognition methods. In addition, some studies directly use general 
speech transcription systems to evaluate the condition of patients. 
Fig. 15 shows the statistical analysis results. 38% of articles adopted SV 
as the speech signal, which also obtained the highest average accuracy. 
18% of articles used both SV and SS as the speech signal. Although more 
data types are utilized, there is no significant performance improve
ment. It shows how we can extract information from different types of 
voices and combine them effectively is also an issue. Other types of voice 
signals account for 28% because coughing, breathing, and sneezing are 
the main diagnostic signals in diagnosing respiratory-related diseases. 

5.2. Conventional methods 

The research using SV data as the object is generally carried out from 
the quality and frequency domain characteristic parameters of patho
logical voice signals. Wang et al. combined MFCC with six speech quality 

Table 4 (continued ) 

Application of speech technology in pathological voice recognition and evaluation (respiratory department) 

Disease Data sources Voice type Voice feature Classifier Effect Ref. 

MFCC; Hilbert-Huang 
Transform (HHT)-MFCC; HHT- 
MFCC-Energy 

Tuberculosis (TB) 21 HP, 17 Ps, cough recordings: 748 Cough MFCC, Log spectral energy LR AUC reaches 0.95 [148] 
35 HP, 16 Ps, cough recordings:1358 Cough MFCC, Log-filterbank energies, 

zero-crossing-rate, Kurtosis 
LR, KNN, SVM, MLP, 
CNN 

LR outperforms the other 
four classifiers, achieving 
an AUC of 0.86 

[147] 

TASK, Sarcos, Brooklyn datasets: 21 
HP, 17 Ps 
Wallacedene dataset: 16 Ps 
Coswara: 1079 HP, 92 Ps; ComParE: 
398 HP, 199 Ps 

Cough MFCC CNN, LSTM, Resnet50 Resnet50 AUC: 91.90% 
CNN AUC: 88.95% 
LSTM AUC: 88.84% 

[149]  

Application of speech technology in pathological voice recognition and evaluation. (Others) 

Disease Data sources Voice type Voice feature Classifier Effect Ref. 

Juvenile Idiopathic 
Arthritis 

5 HP, 3 Ps Knee Acoustical Spectral, MFCC, or band 
power feature 

Gradient Boosted 
Trees, neural network 

Accuracy = 92.3% using 
GBT, Accuracy = 72.9% 
using neural network 

[150] 

Stress 6 categories of emotions, 
namely: Surprise, Fear, 
Neutral, Anger, Sad, and Happy 

SS (facial 
expressions, content 
of speech) 

Mel scaled spectrogram Multinomial Naïve 
Bayes, Bi-LSTM, CNN 

Assess students’ stress by 
facial expressions and 
speech is effective 

[86] 

Depression and 
Other Psychiatric 
Conditions 

Gruop1: depression (DP) 27 S; 
Gruop2: other psychiatric 
conditions (OP) 12 S; Gruop3: 
normal controls (NC) 27 S 

SS Features extracted by 
openSMILE and Weka 
program [151] 

Five multiclass 
classifier schemes of 
scikit-learn 

Accuracy = 83.33%, 
sensitivity = 83.33%, and 
specificity = 91.67% 

[152] 

Depression AVEC 2014 dataset: 84 S; 
TIMIT dataset 

SS TEO-CB-Auto-Env, 
Cepstral, Prosodic, 
Spectral, and Glottal, 
MFCC 

Cosine similarity Accuracy = 90% [154] 

SV=Sustained vowel, SS=Spontaneous speech, Ps = Patients, HP=Healthy People, S=Subjects. 
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features (jitter, shimmer, harmonic-to-noise ratio (HNR), soft phonation 
index (SPI), amplitude perturbation quotient (APQ), and relative 
average perturbation (RAP)) of the SV pronunciation/a/to recognize the 
pathological voice. They used HMM, GMM, SVM, and Artificial Neural 
Networks (ANN) to conduct two-class comparison experiments and 
found that the GMM method has the best classification accuracy, with an 
accuracy rate of 95.2% [92]. Similar research work was done by Verde 
et al. [96]. The difference between them is that Verde et al. extracted 
features that included the fundamental frequency F0 of the speech 
signal. In addition, they used a boosted tree algorithm as a classifier to 
conduct an experimental study on data selected from three different 
databases. Ali et al. also adopted the patient’s SV pronunciation/a/as 
the research object. They proposed features based on the phenomena of 
critical bandwidths and combined them with HMM to detect vocal cord 
disorders, with an accuracy rate of more than 95% [94]. Baird et al. 
extracted features such as pitch, intensity, and HNR from the SV in the 
Dusseldorf Anxiety Corpus to assess the anxiety of patients [172]. Their 
results verified the effectiveness of using speech-based features to pre
dict anxiety and showed better recognition performance of higher-level 
anxiety. 

For research based on sentence-level speech data, in addition to the 
quality and time-frequency domain characteristics, the prosodic char
acteristics of sentence data are also an effective breakthrough. Kim et al. 
adopted the speech signal parameters of phonemes, prosody, and speech 
quality as the features. They predicted the intelligibility of aphasia 
speech in the Korean database Quality-of-Life Technology using Support 
Vector Regression (SVR) [173]. They also proposed a structured sparse 
linear model containing phonological knowledge to predict the speech 

intelligibility of patients with dysarthria [174]. Martínez et al. assessed 
dysarthria intelligibility using i-vectors extracted by factor analysis from 
the supervector of universal GMM [175]. After being evaluated by SVR 
and Linear Prediction, the speeches in Wall Street Journal 1 and 
UA-Speech databases were divided into four levels: very low, low, mid, 
and high. Kadi et al. also used a set of prosodic features selected by linear 
discriminant analysis combined with SVM and GMM, respectively, to 
classify dysarthria speech of the Nemours database into four severity 
levels and got the best classification rate of 93% [176]. Kim et al. clas
sified pathological voice using the features of abnormal changes in 
prosody, phonological quality, and pronunciation at the sentence level. 
The pathological speeches of the NKI CCRT Speech Corpus and the 
TORGO databases were classified into two categories (intelligible and 
incomprehensible), and posterior smoothing was performed after clas
sification [177]. These studies all make use of the characteristics of 
prosody. However, different languages have different pronunciations in 
prosody, which means that compared with the model obtained by SVs, 
the model trained by this method has low generalization ability. 

There are many other studies based on speech recognition technol
ogy [178]. As shown in Fig. 16, Liu et al. used speech recognition to 
extract features and then integrated traditional acoustic feature classi
fication to assess the severity of the voice disorder [168]. Bhat et al. 
utilized a bidirectional LSTM network for binary classification of the 
speech intelligibility of dysarthria in the TORGO dataset [179]. They 
also compared the classification performances when using the features 
of MFCC, log filter banks, and i-vector. In addition, Dimauro et al. 
adopted Google’s speech recognition system to convert patients’ speech 
into text [180]. Their result showed that the PD group’s recognition 

Fig. 14. Statistical analysis of traditional machine learning (ML), deep learning (DL), and ML + DL methods used in disease diagnosis.  
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error rate was almost always higher than that of the normal group. 5.3. State-of-the-art methods 

In addition to the traditional identification methods, some new 
methods have also been designed in recent years. As shown in Fig. 17, 

Fig. 15. Statistical analysis of articles using different voice signals of sustained vowels (SV), spontaneous speech (SS), SV + SS, and others.  

Fig. 16. Three-category voice disorder evaluation system based on Automatic speech recognition (ASR) [168].  
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Barbera et al. obtained the posterior probability of the patient’s speech 
according to the acoustic model trained by a DNN network, compared it 
with the posterior probability of normal speech, and used the DTW al
gorithm to calculate the distance for classification [169,170]. The 
combination of DNN and vector matching method achieved a good 
result on the speech of word naming tests, which inspires us to integrate 
traditional methods with recent ones. For example, Lee et al. analyzed 
the distribution of frame-level posteriors produced by the DNN-HMM 
acoustic models [182]. They proposed an effective method for contin
uous speech utterances to extract dysphonia features from a specific set 
of discriminative phones with an ASR system. 

Many studies also transformed the features of one-dimensional 
speech signals into two-dimensional features and used algorithms in 
the field of image recognition to investigate disease diagnosis. For 
example, Alhussein et al. converted pathological speech signals into 

spectrograms and then adopted CNNs for classification [105,106]. Qin 
et al. conducted a similar study, except that the input was a posterior 
probability map [181]. Muhammad et al. proposed to use the 
co-occurrence matrix feature combined with the GMM algorithm to 
classify pathological voices in the SVD database [102]. As shown in 
Fig. 18, in their recent study, Muhammad et al. utilized the LSTM al
gorithm to complete the recognition task [109]. They achieved an ac
curacy of 95% based on using CNN to fuse the spectrogram features of 
the voice and Electroglottograph (EGG) signals. Turning speech signal 
recognition into image recognition allows us to learn from the solutions 
in the field of image recognition to solve problems better. However, we 
also need to be careful in dealing with the problem of strict data 
alignment and the increase in computation. 

As shown in Fig. 18, information fusion using multimodal data from 
different systems is also one of the main strategies used in speech-based 

Fig. 17. NUVA: An utterance verification system for word naming of aphasic patients based on DNN and DTW [170].  

Fig. 18. A system architecture based on spectrograms [109].  
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disease diagnosis [102,109]. Fig. 19 shows the identification flow chart 
of the COVID-19 detection system [138] designed by Ponomarchuk et al. 
The patients’ voice signals and symptom information are the system’s 
input. First, the speech signal is processed by subsystem 1 based on Deep 
CNN and spectrogram and by subsystem 2 based on LightGBM and 
VGGish features to obtain the ensemble average class probabilities. 
Next, the symptom information is processed by Logistic Regression (LR) 
algorithm in subsystem 3 to obtain the class probabilities. Then, the final 
result of the weighted output probability is obtained based on the fusion 
of the results of the three subsystems. Botha et al. proposed a fused 
system combining the classifier based on objective clinical measure
ments and the classifier based on cough audio using LR, which improved 
sensitivity, specificity, and accuracy [148]. 

Similarly, Lauraitis et al. used information from three modalities of 
sound, finger tapping, and self-administered cognitive testing for 
symptom diagnosis [110]. The authors in Refs. [107,129,152,184] also 
conducted similar studies with multimodal data, and the recognition 
performances of their systems were higher than that with only one type 
of data. The COVID-19 detection system [131] designed by Stasak et al. 
used speech signals as the only input modality in their system. However, 

the classification performance was effectively improved by adding a 
second-stage classifier to fuse the results of multiple first-stage classi
fiers. With the increase in data modalities, the amount of information, 
computation, and cost also increases, and the requirements for pro
cessing methods are also higher. For excellent performance, selecting 
several most effective modalities according to the experience of doctors 
may be a precondition for progress. As shown in Fig. 20, Chowdhury 
et al. also designed a complex ensemble-based system to detect 
COVID-19 [139]. The trained classifier layer is composed of 10 ML 
classifiers, which will be ranked by technique for order preference 
similarity to ideal solution and Entropy in Multi-Criteria Decision-
Making blocks. At last, the features selected by Recursive Feature 
Elimination with Cross-Validation are fed into the best classifier. This 
method improves the diagnostic accuracy and adaptability of the whole 
system. 

In addition to the above methods, some new attempts at pathological 
voice recognition exist. 

Pahar et al. adopted speech, cough, and breath signals and rare 
bottleneck feature for pathological voice recognition [141]. In addition, 
they utilized transfer learning for training the model on the cough 
sounds of patients without COVID-19. Then the recognition system was 
tested with multiple pathological voice datasets and multiple classifiers, 
which verified the feasibility of this scheme [141]. Later, they adopted 
three DL classifiers, Restnet50, CNN, and LSTM, to classify TB, Covid-19, 
and health by cough. Finally, to make DL based-approaches achieve 
excellent performance and robustness, they adopted a synthetic minor
ity over-sampling technique and transfer learning to address the issues 
of the class imbalance and insufficiency of their dataset, respectively 
[149]. 

Moreover, Harimoorthy et al. proposed an adaptive linear kernel 
SVM algorithm with higher prediction accuracy than traditional ML 
algorithms such as KNN, Random Forest (RF), Adaptive Weighted 
Probabilistic, and other k-SVMs [185]. Kambhampati et al. also pro
posed a fundamental heart sound segmentation algorithm based on 
sparse signal decomposition. They tested the algorithm’s performance 
using various ML algorithms (hidden semi-Markov model, multilayer 
perceptron (MLP), SVM, and KNN) on real-time phonocardiogram (PCG) 
and PCG in a standard database. The results showed that their algorithm 
outperformed traditional heart sound segmentation algorithms [186]. 

Furthermore, Saeedi et al. used a genetic algorithm to find the filter 
bank parameters for feature extraction. They achieved an accuracy of 
100% in classifying normal and pathological voices when the tests were 
performed on two databases [97,98]. Qian et al. [134] and Huang et al. 
[187] tried the popular end-to-end models in speech recognition and 
Transformer-based models for pathological speech signals processing. 
Their recognition results were very consistent with the evaluation scales 
of the patients. Fig. 21 is the framework diagram of pathological 
speech-based diagnosis designed by Wahengbam et al. [183]. First, a 
deep pathological denoiser (DPD) block is obtained by training the 
silence and noise features using CNN and has an inverse STFT operation 
to revert the spectrum of the voice signal to the time domain. The DPD 
block is the first step of the group decision analogy. Then, the three kinds 
of features of the denoised pathological speech obtained from the 
wavelet transform of Amor, Bump, and Morse are sent to three 
decision-making subsystems, respectively. Each subsystem uses multiple 
3D convolutional network models for predictions. Finally, the fusion and 
decision-making are performed using the proposed group decision 
analogy strategy, and the accuracy was increased from 80.59% to 97.7% 
[183]. 

The studies mentioned above have made innovations in the pro
cedures of speech technology and brought us many inspirations. In
novations in data include using different types of voice signals, 
integrating data of multiple modalities such as SVs, continuous speech, 
cough, breath, finger tapping, EGG, and disease symptoms, and utilizing 
transfer learning to train models to avoid the problem of insufficient 
data. For feature selection, these studies try genetic algorithms, DL 

Fig. 19. Diagram of a COVID-19 detection system by fusion processing of 
speech and other signals [138]. 
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Fig. 20. An overview of an ensemble-based COVID-19 detection system [139].  

Fig. 21. Graphical workflow of group decision analogy showing the multiclass pathology identification framework [183].  
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algorithms, recursive feature reduction methods, fractal dimension 
approach, etc. In terms of classifiers, in addition to improving ML, these 
studies also try group decision strategy, end-to-end models, etc. 

5.4. Summary and discussion 

SV and SS are the two main types of speech signals used for patho
logical speech-based disease diagnosis and evaluation. In addition, 
cough is also considered indispensable in diagnosing respiratory dis
eases and is usually treated as an SV. The SV method mainly uses the 
abnormality of the patients’ pronunciation as the basis for judgment, 
which is relatively less complicated in the process of experiment and 
application. However, the SV method ignores that the patient’s speech 
differs from that of healthy people. On the other hand, SS utilizes the 
entire sentence as the judgment basis and can more accurately identify 
the obvious abnormal speech of the patient. However, the training of the 
algorithm model and the procedure of this method are relatively 
complicated. 

In addition, Bhosale et al. [188] and Casanova et al. [189] also used 
cough sounds to diagnose COVID-19. Moreover, Gosztolya et al. utilized 
SS to distinguish schizophrenia from bipolar disorder [190]. No matter 
what kind of speech data is adopted, researchers try to find more 
effective speech signal features based on different speech signals for 
disease diagnosis and evaluation and choose a more suitable recognition 
algorithm according to the actual effect [15]. 

Using voice technology for disease diagnosis and assessment can 
effectively reduce the burden on doctors and improve the efficiency of 
medical resources. The traditional diagnosis methods rely on medical 
instruments combined with the doctors’ experience. However, the 
application of speech technology only depends on the patient’s speech 
and a pre-training algorithm model incorporating medical experience, 
which is more objective than the traditional methods [192]. In addition, 
the combination of pathological voice recognition technology with the 
IoT [103], telemedicine technology, and other technologies [193] al
lows patients to diagnose anytime and anywhere, reducing medical costs 
dramatically. We can also integrate pathological voice recognition 
functions into wearable devices to monitor patients’ health during daily 
activities [194,195] to diagnose a disease early and prevent its deteri
oration [196]. 

In the future, to achieve better diagnosis and evaluation results, in 
addition to exploring more effective features and recognition algo
rithms, it is crucial to design multimodal data fusion methods [115,184, 
191,197,198] and build richer pathological voice datasets. 

6. Speech recognition for human-medical equipment interaction 

Doctors need to operate various equipment in their work. In addi
tion, patients often require equipment to assist in treatment and reha
bilitation. Integrating voice technology into medical equipment can 
bring great convenience to doctors and patients in many medical sce
narios [199]. For example, smart medicine boxes remind patients to take 
medicines on time, intelligent ward round systems help doctors collect 
patient information [200], and voice systems perform automatic post
operative follow-up visits [201,202]. This section discusses related 
studies on medical device control using IST and how they can help 
doctors and patients in different scenarios. Finally, we discuss the re
quirements and future directions for the application of voice technology 
in smart medical equipment and devices. 

6.1. Doctor and patient assist 

6.1.1. Doctor assist 
With the rapid development of medical speech technology, many 

studies have attempted to use it to assist doctors in operating equipment. 
For example, intelligent minimally invasive surgical systems have been 
put into clinical use, and doctors can control the robotic arm to perform 

precise operations through voice [208]. Ren et al. tried to embed speech 
recognition in the laparoscopic holder [209]. The holder with the speech 
command recognition function can replace the assistant and give cor
responding feedback according to the instructions of the chief surgeon 
[209]. In addition, Tao et al. proposed an intelligent interactive oper
ating room to solve the problem that the attending doctor must be in a 
sterile and non-contact environment and cannot view the lesion image 
in time during the operation [210]. The doctor can remotely control the 
display instrument using speech commands to locate and observe the 
image of the lesion quickly. 

Furthermore, as shown in Fig. 22, Yoo et al. presented an intelligent 
voice assistant for the problem that the surgeon needs an assistant to 
check information during surgery continuously [211]. The voice assis
tant could recognize the proofreading speech of the attending doctor and 
compare it with the pre-input surgical information to ensure the smooth 
progress of the operation. Moreover, it also can remind the attending 
doctor of the length of the operation. 

All these studies use IST to reduce the burden of inefficient labor on 
doctors and make the medical process more standardized and efficient. 

6.1.2. Patient assist 
In addition to using voice technology to assist doctors, many studies 

embed it in assistive devices for patients to help them have a better life 
quality. For example, intelligent wheelchairs integrated with voice 
technology are comprehensively studied. Li et al. designed a voice- 
controlled intelligent wheelchair that determines specific commands 
by comparing the appropriate distance of characteristic parameters 
[212]. As shown in Fig. 23(a), Atrash et al. added a computer, a display, 
a laser rangefinder, and an odometer to the wheelchair to realize an 
intelligent wheelchair that can navigate autonomously according to 
voice commands [203]. Al-Rousan et al. realized the movement direc
tion control of an electric wheelchair using voice command recognition 
based on wavelets and neural networks [213]. Wang et al. developed an 
intelligent wheelchair that used a brain-computer interface and speech 
recognition for coordinated control for mentally ill patients with 
dysarthria [214]. 

Moreover, as shown in Fig. 23(b), Almutairi et al. proposed smart 
glasses that can navigate visually impaired patients to destinations 
based on Global Positioning System, Global System for Mobile 
communication, Google maps, and speech recognition [204]. The smart 
glasses designed by Punith et al. can also help a person with a visual 
disability to read printed notes, which works with Optical Character 
Recognition and Text to Speech technology [215]. 

Many studies also focus on using speech recognition technology as a 
communication method for deaf patients or patients with speech dis
orders. For instance, Jothi et al. proposed a knowledge-based system to 
analyze the unstructured words pronounced by the patient and trans
form them into meaningful text [216]. Balaji et al. attempted to help 
dysarthric persons overcome difficulties in interacting with others by 
mapping their distorted speech to normal or less severe dysarthric 
speech [217]. As shown in Fig. 23(c), Lee et al. designed an assistive 
agent system to help the hard of hearing person understand others. 
When the patient is talking to others, the assist device uses IST to 
recognize other people’s speech as text and utilizes speech synthesis 
technology to convert the text into speech, helping the patient to 
communicate normally [205,218]. 

Furthermore, Fontan et al. experimentally found that using speech 
technology can improve the gain of hearing aids and maximize speech 
intelligibility and hearing comfort [206]. Akbarzadeh et al. employed 
reinforcement learning to personalize compression settings of hearing 
aids for patients to avoid loudness discomfort [219]. In addition, as 
shown in Fig. 23(d), LAPUL utilizes voice technology to make the pre
conditioning trainer easy to use [207]. All these studies use IST to help 
patients live and overcome the problems caused by diseases, which is 
conducive to the recovery of patients. 
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6.2. Medical process optimization 

In addition to assisting doctors and patients, IST will also bring 
changes to healthcare. Recently, COVID-19 has highlighted the impor
tance of non-contact healthcare in the pandemic, and telemedicine is 
also an essential application of IST in healthcare [220]. For example, 
Amazon’s Alexa Medical Dialogue systems have been widely used [221]. 
Nuance also has developed mature telemedicine solutions [222]. Liu 
et al. designed a low-cost cognitive tool to help children with autism 
exercise communication and color cognition skills [223]. As shown in 
Fig. 24, Bu et al. utilized virtual reality technology to design a system 
with functions of oral expression, auditory comprehension, cognition, 
and comprehensive application to help post-stroke aphasia patients to 
perform rehabilitation training [224]. They conducted a clinical trial 
using the system, and the subjects affirmed the rehabilitation training 
effect of the system’s language skills. In addition, Jokić et al. proposed a 
contact-free cougher recognition approach using smartphone audio re
cordings and metric learning [153]. Pahar et al. also designed cough 
spotting and cougher identification methods for long-term personalized 
cough monitoring [225]. They also proposed an automatic non-invasive 
cough detection method based on audio and acceleration signals of a 

smartphone [225,226]. These non-contact cougher identification 
methods are helpful during the COVID-19 pandemic and promote the 
development of IST-based healthcare-monitoring technology. 

Patient care is also a vital application scenario [231,232]. For 
example, Olami developed a smart speech-based hospital bed card 
[227]. Doctors can use the card to enter and manage patient informa
tion, allowing them to read it conveniently. Patients can also utilize the 
card to communicate with nursing stations easily. There are also studies 
using robots for patient care. With the help of speech technology, 
nursing robots can meet patients’ needs according to their instructions 
[233]. Zorarobotics’ designed an intelligent healthcare robot to help the 
elderly fight against loneliness and cognitive decline [229]. As shown in 
Fig. 25(a), Zhang et al. designed the Pepper rehabilitation medical robot 
for patients with cognitive and motor function decline disorders. This 
robot can interact with patients to help them practice language skills and 
remind them to take medicine [230]. Some studies have been applied in 
traditional medical scenarios, such as guiding robots for patient 
admission consultation [234]. Fig. 25(b) shows the guidance robot from 
Shen Zhou Yun Hai [228], which can provide consultation and guidance 
services for patients seeking medical treatment and reduce the burden of 
the consultation desk. 

Fig. 22. A smart speaker to confirm surgical information in ophthalmic surgery [211].  

Fig. 23. Examples of smart devices integrated with voice technology for patients to live better. (a) Robotic wheelchair platform [203]. (b) Smart glasses prototype 
[204]. (c) A user interfaces for the hearing-impaired person [205]. (d) Preconditioning trainer [207]. 

Fig. 24. Virtual reality and voice technologies for rehabilitation training [224].  
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Optimizing the medical process makes the medical system more 
intelligent and efficient. People can entrust the work requiring less 
knowledge of medical experts to intelligent devices and improve the 
medical process through IST. 

6.3. Summary and discussion 

Embedding speech recognition, interaction, and synthesis into the 
devices can make them smarter. However, due to the particularity of the 
medical scenario, the research on speech recognition of intelligent 
equipment needs to pay attention to some issues.  

a) A low misrecognition rate should be regarded as a prerequisite of the 
speech recognition system because misrecognition in medical sce
narios costs high.  

b) The methods for rejection recognition of a non-device user’s voice 
also must be taken to ensure a low misrecognition rate.  

c) The missed recognition rate will seriously affect the user experience. 

Technically, speaker-dependent recognition can be used to ensure a 
low misrecognition rate. Speaker identification techniques [225] should 
be utilized to monitor the speaker who controls the equipment through 
voice commands in a noisy environment. In addition, the IST utilized for 
assisted control of medical equipment should ensure the highest priority 
of human intervention and the safety of medical operations. 

In the future, smart medical devices can upload patient voices to the 
hospital’s private cloud through IoT technology. The voice recognition 
model uses cloud computing technology to overcome the influence of 
different scenarios and language styles and improve speech recognition 
performance. In addition, Extended Reality technology integrated with 
voice technology will make telemedicine more realistic, effective, and 
acceptable [235]. 

7. Case study of intelligent speech technologies for stroke 

Based on the above reviews of IST applied in the three medical 
scenarios, we conducted a case study for stroke recognition and reha
bilitation assistance. In addition, we propose an IST application frame
work for stroke patients. In addition, we performed speech data 
collection and recognition experiments. 

7.1. Speech technology for stroke patients 

The medical system will become more intelligent with the develop
ment of IST, which enables the smart hospital to improve the efficiency 
of disease diagnosis, evaluation, surgery, and rehabilitation training. As 
depicted in Fig. 26, we take the medical process of a stroke patient 
treatment as an example to introduce the application of IST. IST com
bined with 5G communication technology connects hospitals and pa
tients. Furthermore, early symptoms of stroke patients can be 
recognized by wearable devices integrated with speech recognition 
technology, such as smart wristbands, smartphones, smart glasses, and 
home smart monitoring devices, which are. These smart devices can give 
an early warning and make an emergency call after recognizing the 
symptoms. 

In addition, there will be speech-based medical transcription systems 
in ambulances and the emergency department, which can help record 
the entire treatment process and complete documentation of the pa
tient’s information. Moreover, in the operating room, medical equip
ment understanding doctors’ voice commands can help them to view 
patient lesions, proofread surgical information, record, and remind in 
real-time, which improves the standardization and efficiency of the 
surgical process. Furthermore, rehabilitation training is a vital treatment 
scenario for stroke patients. The patients can control smart wheelchairs, 
rehabilitation robots, and other equipment by using voice commands to 
help themselves in rehabilitation training and daily activity assistance at 
hospitals or homes, improving their quality of life. At the same time, 
voice technology is utilized to quickly evaluate the rehabilitation effect 
and record it in the patient’s EMR system to help doctors adjust reha
bilitation training strategies. 

7.2. Data collection and speech recognition experiment 

In this work, we conducted a pathological speech recognition 
experiment on stroke patients. A data collection system was developed 
for the pathological voice collection of stroke patients. The experimental 
protocol was approved by the Medical Research Ethics Committee of 
Guangdong Provincial People’s Hospital (approval number: KY-Z-2021- 
431-02). Stroke patients and healthy people read the sentence “People’s 
Republic of China” in the data collection experiments. The recorded 
audio was stored as.wav files. The audio signal had a sampling frequency 
of 16 kHz and a sampling accuracy of 16 bits. The hardware adopted in 
the data collection system was a laptop with the Ubuntu 20.04 operating 
system and a Hikivision microphone (Portable Speaker Phone (DS. 

Fig. 25. Examples of voice technology in intelligent healthcare. (a) Cognitive-motion rehabilitation medical robot [230]. (b) Guidance robot [228].  
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65VA300B). Table 5 shows a dataset including 101 pathological sounds 
of stroke patients (male: 73, female: 27) and 101 healthy sounds of 
healthy people (male: 49, female: 52) used to validate stroke speech 
recognition. 

The stroke speech recognition experiment was conducted under 
Anaconda. Hardware platform information: the CPU was Intel (R) i7- 
9700, and the Memory was 16 GB. Software environment: Python 
(3.7.13), librosa (0.9.0), sklearn (0.24.2). 22-dimensional features con
sisting of energy, perturbation, rhythms, 18-dim MFCC, and funda
mental frequencies were extracted by librosa. 

Finally, the features were utilized to perform five-fold Cross Vali
dation using RF, KNN, linear kernel SVM, and Naïve Bayes. Table 6 
shows the results. TP, FN, TN, FP, ACC, and F1 are the average of five 
rounds. RF algorithm achieves the best F1 and recognition accuracy of 
0.87. Correspondingly, the prediction time is the longest, about 55.4 ms. 
Nevertheless, this time is acceptable for the actual applications. The 
results verify the feasibility of using speech technology to recognize the 
voice of stroke patients. 

7.3. Voice assistants for stroke diagnosis 

Voice assistants, such as Applications running on smartphones based 
on voice technology, can be used at home, in hospitals, and in com
munity clinics. The voice assistants are helpful for the early recognition 
of stroke patients at home. Patients can diagnose by themselves or be 
assisted by family members. In addition, for the limited inspection 
equipment in community clinics, voice assistants can use the recognition 
model trained by the diagnostic data of large hospitals to better assist 
doctors in stroke diagnosis, which realizes the sharing of medical re
sources. Moreover, advanced voice assistants are also valuable in large 
hospitals. For example, with the development of AI technologies and the 
enrichment of speech datasets, voice assistants with more intelligent 
speech recognition algorithms can better adapt to complex environ
ments and convert data accumulation into the accumulation of diag
nostic experience. These voice assistants could achieve higher 

recognition accuracy than doctors in some cases and assist them in 
achieving the goal of smart hospitals. 

8. Limitations and future directions 

8.1. Limitations 

Nowadays, speech technology is essential to traditional healthcare 
methods and systems. However, the application of speech technology in 
the medical system faces more challenges and needs to be continuously 
improved in the future. Therefore, we summarize some common issues 
in this section as potential future research directions. 

8.1.1. Low adaptability and robustness 
Most research on medical solutions based on voice technology is still 

under ideal conditions. However, the actual medical scenario is more 
complicated, and there will be more background noise, such as the 
sounds of the doctor’s conversation and equipment beeping. Moreover, 
pronunciation differences from different doctors and the mixture of 
identifying results from multiple speakers are all potential factors that 
will degrade the performance of the speech recognition system. Medical 
application scenarios have high requirements for the adaptability and 
stability of the system, which is one considerable challenge to speech- 
based medical solutions. 

8.1.2. Lacking high-quality pathological speech datasets 
Although IST has excellent performances in some medical scenarios, 

pathological speech research lacks high-quality data for disease diag
nosis and assessment of patients. Speech technologies are not transfer
able between different languages, thus slowing the study of pathological 
speech. Moreover, pathological speech datasets are even rarer due to 
patient discomfort and difficulty in speech data collection. The existing 
open-source pathological speech datasets are limited, small, and 

Fig. 26. Scenario of IST for early stroke recognition, rehabilitation assistance, and intelligent assessment.  

Table 5 
Subjects participated in the speech data collection experiments when they read 
“People’s Republic of China.”.  

Subject Male Female Total 

Stroke Patients 74 27 101 
Healthy People 49 52 101  

Table 6 
Speech recognition results in healthy people and stroke patients pronouncing 
“People’s Republic of China.”.  

Recognition algorithm TP FN TN FP ACC F1 Time (ms) 

RF 17.4 2.6 17.6 2.8 0.87 0.87 55.4 
KNN 19.6 6.2 14 0.6 0.83 0.85 10.6 
SVM (Linear Kernel) 15.2 6.2 14 5 0.72 0.73 1.5 
Naïve Bayes 14.2 5.2 15 6 0.72 0.72 <1  
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collected by different criteria. These limitations make it challenging to 
use DL methods to obtain high-accuracy recognition models. 

8.1.3. Medical voice data privacy protection 
In the digital age, IST brings ethical and legal issues while playing an 

essential role in medical scenarios. The speech data may be stolen or 
used to extract personal information, such as users’ identities, emotions, 
and other privacies. With the development of digital medical solutions, 
this problem will become prominent and challenge the popularization of 
speech-based medical solutions. Joint efforts from both legal and tech
nical aspects should be made to protect the private speech data of pa
tients and doctors. New privacy protection policies and techniques 
should be investigated comprehensively for the collection, transmission, 
storage, sharing, and use of medical speech data. 

8.1.4. Conflict with traditional solutions 
Applying IST in medical scenarios will inevitably change some 

traditional medical solutions. The resulting resistance of medical staff 
and patient acceptance are all issues that need to be considered. These 
problems also need to be resolved to promote the application of IST in 
smart hospitals. 

8.1.5. Lacking unified and effective evaluation methods 
The application of IST in medical scenarios must introduce perfor

mance indicators concerned in medical scenarios rather than evaluating 
the application effect only from the speech technical indicators. In the 
three scenarios described in this paper, medical transcription should 
focus on improving efficiency. Pathological speech recognition should 
emphasize the correct diagnosis rate and reduce misdiagnosis to di
agnose patients’ diseases safely. In medical equipment control, it is 
necessary to pay attention to the recognition effect in the actual scenario 
due to its complexity. While emphasizing the recognition rate, the 
recognition time, rejection rate, and rejection-recognition rate also need 
to be considered. Therefore, the speech-based medical solution should 
be evaluated in terms of its effectiveness in real-world medical scenarios, 
focusing on the actual experiences of doctors and patients. 

8.2. Future directions 

Speech technology has great potential in the field of healthcare. With 
the progress of research and clinical application testing, traditional 
healthcare systems will be reshaped. For example, as shown in Fig. 27, 
with the help of IoT technology, smart terminal devices such as micro
phone arrays, wearable devices, and medical assistive equipment can be 
connected to provide users with intelligent speech services such as 
transcription, diagnosis, and interaction. Meanwhile, these smart de
vices upload users’ speech data into a database for storage over the 
network and use cloud computing technology to organize and analyze 
the speech to improve recognition accuracy further. 

As a result, doctors and patients can utilize smart devices for initial 
diagnosis and telemedicine to improve the accessibility and quality of 
healthcare [236]. Intelligent sensors, devices, and robots can assist in 
monitoring patients and rehabilitation. Doctors can view patients’ EMR 
and historical data collected by the sensors to analyze their health status 
systematically with speech-based auxiliary diagnosis systems. The in
telligence of medical devices ensures the efficiency and standardization 
of surgical procedures. Researchers can use more comprehensive med
ical speech data to continuously optimize the recognition methods and 
improve the performance of the medical speech recognition systems. We 
can make efforts in the following four aspects to promote the develop
ment of smart hospitals and smart medicine to better serve patients, 
doctors, and researchers. 

8.2.1. Improve the adaptability of IST 
As illustrated in Fig. 27, improving the adaptability of speech 

processing-based smart equipment in different medical scenarios is a top 

priority because most current medical speech recognition systems are 
vulnerable to noise interference in practical application scenarios [19, 
20,183]. We can use a multi-channel microphone array and noise 
reduction algorithm to improve the quality of collected sound. There
fore, speech noise reduction algorithms and sound source identification 
algorithms related to microphone arrays [20] are popular research di
rections. Moreover, designing lightweight deep learning models [237] 
and selecting more critical features [147] will improve the real-time 
performance, adaptability, and robustness of the voice system in some 
medical scenarios, such as wearable devices-based patient monitoring. 
Furthermore, the ability to automatically switch personalized identifi
cation models based on the beeping of medical devices in different 
scenarios or patient-doctor interaction information is also worth 
exploring. 

8.2.2. Explore the potential of multimodal signals and DL methods 
DL accounts for only a small part of the current pathological voice 

recognition methods because a large amount of data is unavailable [92, 
93,101,104,110,119–124,129,145,146]. However, researchers can 
continuously explore the potential of DL methods such as 
Attention-based LSTM [45,47], end-to-end models [134], and Trans
former models [187] and try advanced recognition algorithms to 
improve the performance of IST for medical applications. Moreover, the 
fusion of voice signals with signals of other modalities such as electro
acoustic gate signals, EMR, X-ray images, and ultrasound [4,5] will be 
more valuable for disease diagnosis in smart hospitals. For example, 
combining the chest X-ray images and cough sounds-based COVID-19 
non-contact classification methods will minimize severity and mortality 
rates during the pandemic [5,6,188,189]. Furthermore, algorithms in 
other domains can be used in speech signal processing, such as AlexNet, 
VGGNet, GoogLeNet, and ResNet in image recognition can be adopted in 
the spectrum of speech signals. In addition, it is worth studying how to 
extract more effective speech signal features using DL with the help of 
medical experts and use few-shot learning methods to deal with the 
problem of limited pathological speech data. 

Fig. 27. Future intelligent healthcare speech technology in smart hospitals 
with smart equipment for speech data collection and human-computer inter
action, novel system frameworks for medical voice data safe storage, sharing, 
and analysis, and intelligent recognition methods with self-learning and opti
mization capabilities. 
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8.2.3. Integrate with emerging technologies 
As illustrated in Fig. 27, state-of-the-art information technologies 

such as IoT, 5G communication, cloud computing, virtual reality, and 
blockchain can facilitate voice-based medical solutions in smart hospi
tals and healthcare. IoT can provide solutions for distributed data 
collection and real-time monitoring. Audio coding, 5G, and cloud 
computing can reduce data transmission latency and computation delay, 
deal with big-data issues, and drive telemedicine services forward [10]. 
Virtual reality technology can make voice-assisted diagnosis and reha
bilitation systems more fun and increase patient engagement. In addi
tion, blockchain technology can protect users’ privacy, facilitate the 
sharing of medical voice data, and promote the creation of open-source 
and high-quality voice datasets. Moreover, the voice analysis system 
should have self-learning and automatic optimization capabilities to 
obtain more intelligent and accurate recognition performance. 

As shown in Fig. 28, we propose a novel medical voice analysis 
system architecture based on active perception. With active hardware, 
active software, and human-computer interaction, this framework re
alizes the active data collection and recognition of medical speech, as 
well as the closed-loop optimization of the recognition model to improve 
the intelligence of the medical system. Furthermore, the framework 
integrates knowledge reasoning and self-learning into speech-based 
systems, promoting the evolution of more powerful voice assistants. 

8.2.4. Think from the points of view of doctors and patients 
When applying speech technology to healthcare, it is necessary to 

clarify the auxiliary role of speech technology because there are un
certainties in speech recognition, such as noise interference, language 
differences, pronunciation differences, etc. We also need to think about 
problems from the perspective of patients and doctors. For example, a 
patient with multiple diseases should be treated by doctors first. At the 
same time, IST combined with image processing [6] and other tech
nologies can assist doctors in their work to address the uncertainties and 
improve the robustness and acceptability of AI-based medical systems. 
In most cases, with techniques such as semantic reasoning and knowl
edge mapping, machines can better understand the intentions of the 
speaking of doctors and patients. Meanwhile, a friendlier and ergo
nomically excellent voice assistant system can be designed according to 
the specific application scenario to reduce the difficulty of using speech 
technology. In the face of resistance from traditional healthcare, speech 
technologies with customer-oriented and user-friendly interfaces and 
multimodal human-computer interaction capability can be more 
persuasive and welcomed. 

Moreover, the methods for assessing the effectiveness of IST should 
be designed by integrating the objective results from transcription, 
disease diagnosis, and medical equipment control, as well as the ques
tionnaire results of the subjective experience of doctors and patients. 
Furthermore, in addition to doctors, patients, and scientists, the gov
ernment, medical industry, and legal departments need to work together 
to build standardized application procedures and assessment systems for 
IST used in smart hospitals to alleviate the shortage and imbalance of 
medical resources. 

9. Conclusion 

The COVID-19 pandemic has made us realize that the traditional 
medical system struggles to provide high-quality care due to a lack of 
staff and other medical resources. IST has brought unprecedented op
portunities for health systems to address this issue. This paper first 
comprehensively reviews the application of IST in smart hospitals, 
including electronic medical document transcription, pathological voice 
recognition, and medical process optimization through human-medical 
equipment interaction. Then, we discuss how a speech-based health
care system facilitates the early recognition, rehabilitation assistance, 
and intelligent assessment of stroke patients and introduce the diagnosis 
results of 101 stroke patients using their pathological speech data. The 

literature review shows that the study of IST in medical scenarios has 
attracted more and more scholars’ attention and achieved promising 
results. State-of-the-art AI models, such as models based on Attention or 
Transformer, are applied to speech recognition. Moreover, the multi
modal fusion of speech and other signals improves recognition accuracy 
and system robustness. However, these results are mainly from pilot 
projects or small datasets. Therefore, adequate research and validations 
are needed before clinical applications. 

Furthermore, we discuss some limitations to the development of IST 
in the medical field, such as the scarcity of available high-quality 
datasets, privacy issues, and lack of unified and effective evaluation 
methods. Finally, we present some future directions for medical speech 
technology. We also propose a novel active perception concept-based 
medical voice analysis system architecture, which employs active 
hardware, active software, and human-computer interaction to realize 
an intelligent and evolvable speech recognition system for smart 
hospitals. 

The comprehensive review of the applications in smart hospitals 
provides helpful information for researchers on this topic. In addition, 
the summarized limitations and proposed future directions could give 
inspiration for future studies. Moreover, the case study of IST for stroke 
gives a reference for a full-process application of IST in various medical 
behaviors. Furthermore, the proposed active perception concept and the 
speech analysis system architecture can advance the IST applications in 
smart hospitals and offer an opportunity to apply IST in other scenarios 
with noise interference, such as airports, railway stations, and shopping 
malls. 
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