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Abstract 

Background  Epigenetic variants carried by circulating tumor DNA can be used as biomarkers for early detection 
of hepatocellular carcinoma (HCC) by noninvasive liquid biopsy. However, traditional methylation analysis method, 
bisulfite sequencing, with disadvantages of severe DNA damage, is limited in application of low-amount cfDNA 
analysis.

Results  Through mild enzyme-mediated conversion, enzymatic methyl sequencing (EM-seq) is ideal for precise 
determination of cell-free DNA methylation and provides an opportunity for HCC early detection. EM-seq of methyla-
tion control DNA showed that enzymatic conversion of unmethylated C to U was more efficient than bisulfite conver-
sion. Moreover, a relatively large proportion of incomplete converted EM-seq reads contains more than 3 uncon-
verted CH site (CH = CC, CT or CA), which can be removed by filtering to improve accuracy of methylation detection 
by EM-seq. A cohort of 241 HCC, 76 liver disease, and 279 normal plasma samples were analyzed for methylation 
value on 1595 CpGs using EM-seq and targeted capture. Model training identified 283 CpGs with significant differ-
ences in methylation levels between HCC and non-HCC samples. A HCC screening model based on these markers 
can efficiently distinguish HCC sample from non-HCC samples, with area under the curve of 0.957 (sensitivity = 90%, 
specificity = 97%) in the test set, performing well in different stages as well as in serum α-fetoprotein/protein induced 
by vitamin K absence-II negative samples.

Conclusion  Filtering of reads with ≥ 3 CHs derived from incomplete conversion can significantly reduce the noise of 
EM-seq detection. Based on targeted EM-seq analysis of plasma cell-free DNA, our HCC screening model can effi-
ciently distinguish HCC patients from non-HCC individuals with high sensitivity and specificity.
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Introduction
Hepatocellular carcinoma (HCC) is a common malig-
nant tumor of the digestive system and one of the lead-
ing causes of tumor death worldwide [1, 2]. Symptoms 
in patients with early stage HCC are not quite obvious. 
Liver ultrasound and serum alpha-fetoprotein (AFP) 
examination are commonly used for HCC screening [3]. 
Randomized controlled trials have shown that improv-
ing early detection of HCC by monitoring hepatitis B 
virus carriers can significantly reduce HCC mortality [4, 
5]. However, the sensitivity of AFP and liver ultrasound 
for early stage of HCC is relatively low [6, 7]. Therefore, 
there is an urgent need to develop a sensitive, reliable, 
and minimally invasive assay to detect early stage HCC 
for timely intervention.

Plasma cell-free DNA (cfDNA) refers to the degraded 
DNA fragments that are released into plasma after cell 
necrosis or apoptosis [8, 9]. In cancer patients, a portion 
of cfDNA is derived from the tumor cells, also known as 
circulating tumor DNA (ctDNA) [10, 11]. Next-gener-
ation sequencing (NGS) can analyze a variety of tumor-
specific signals carried by the ctDNA, including somatic 
gene mutations [12], methylation modifications [13, 14], 
end motif [15], fragment length profiles [16], etc. Among 
them, methylation modification analysis is widely used 
for detection of HCC [17], colorectal cancer [18, 19], and 
even pan-cancer [20] due to its advantages of reflecting 
the early changes of tumors and the origin of tumor cells.

Bisulfite sequencing (BS-seq) is considered the gold 
standard for DNA methylation analysis because it pro-
vides quantification of methylation signals at single-base 
resolution [21]. However, the harsh conditions of the 
bisulfite treatment can cause huge damage to the DNA, 
which leads to generally poor sequence diversity, target 
enrichment bias, and also high sequencing errors [22, 
23]. These shortcomings limit the application of BS-seq 
for methylation analysis of low-input DNA (e.g., cfDNA).

The limitation of BS-seq drives the development of 
new methylation detection techniques. TET-assisted 
pyridine borane sequencing (TAPS) utilizes the combina-
tion of biological enzymes and chemical methods to dif-
ferentiate cytosine (C), 5-methylation of cytosine (5mC), 
and 5-hydroxymethylation of cytosine (5hmC) without 
damaging the DNA [24]. Enzymatic methyl-seq (EM-
seq) uses enzymes including ten–eleven translocation 
dioxygenase 2 (TET2), T4 phage β-glucosyltransferase 
(T4-βGT), apolipoprotein B mRNA editing enzyme, 
catalytic polypeptide-like (APOBEC3A) to achieve the 
similar conversion to bisulfite treatment for methylation 
analysis. That is, unmethylated C is converted to T (Thy-
mine), without any change in 5mC and 5hmC [25]. Com-
pared with BS-seq, the EM-seq method based on mild 
biological enzyme conversion has obvious advantages 

including improved coverage and more even GC distri-
bution [25].

In this study, we investigated incomplete conver-
sion of EM-seq in hypomethylated control DNA and 
minimized the methylation signal noise by filtering the 
incomplete converted sequences. We confirmed the 
high sequencing quality of EM-seq for the analysis of 
low-amount DNA samples. Using EM-seq and target 
capture methods, a total of 596 clinical plasma cfDNA 
samples were analyzed in our study to develop an HCC 
screening model with good performance.

Results
Profiling and minimizing incomplete conversion of EM‑seq
To investigate the performance of EM-seq, we used it 
to analyze methylated and unmethylated DNA control 
and compared with BS-seq. Among hypermethylated 
CpG sites, the methylation value detected by EM-seq 
was comparable to that by BS-seq (Additional file  1: 
Fig. S1a). Among the hypomethylated CpG sites, the 
methylation value detected by EM-seq was significantly 
lower than that by BS-seq (Fig.  1a, 0.1% V.S. 0.59%, P 
value < 0.0001). However, approximately 1.67% of hypo-
methylated CpGs (103 CpGs) had higher detection 
values in EM-seq than in BS-seq (Fig.  1b), and abnor-
mal hypermethylation signals of > 1% were observed 
at 20 CpGs in EM-seq, accompanied by hypermethyla-
tion signals at adjacent CH sites (CH = CC, CT or CA, 
Additional file 2: Table S1). This suggests that EM-seq 
is prone to incomplete conversion in specific context, 
resulting in methylation signal noise, probably due to 
the substrate specificity of APOBEC3A deamination 
[26].

Non-CG methylation is rare in most human cells and 
can therefore be used as an internal unmethylated con-
trol for methylation detection [27]. To further investi-
gate the incomplete conversion, reads containing CH 
were extracted from BS-seq and EM-seq data. More CH 
reads were observed in BS-seq data than in EM-seq data 
(Fig. 1c). Both sporadic and clustered CHs were observed 
in EM-seq, and the reads with ≥ 3 CHs accounted for 
18.71% of all CH reads in EM-seq (Fig. 1c, d, Additional 
file  1: Fig. S1b). In contrast, CH was mostly distributed 
sporadically in BS-seq, and the proportion of ≥ 3 CHs 
reads was only 6.43% of CH reads in BS-seq (Fig. 1c, d, 
Additional file  1: Fig. S1b). A larger proportion of ≥ 3 
CHs reads was also observed from EM-seq data than BS-
seq data from previous study with human genomic DNA 
(Additional file 1: Fig. S1c) [25].

We next considered if the performance of EM-seq 
could be improved by filtering reads with incomplete 
conversion. Filtering reads with ≥ 3 CHs significantly 
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reduced EM-seq value of hypomethylated CpGs while 
not affect that of hypermethylated CpGs (Fig. 1a, Addi-
tional file 1: Fig. S1d). In contrast, filtration had limited 
impact on the result of BS-seq (Fig.  1a, b), consistent 
with previous report [28]. Furthermore, the number of 
CG sites with EM-seq values higher than BS-seq values 
decreased by approximately 45.5% (Additional file 1: Fig. 
S1e), suggesting that filtering of ≥ 3CHs reads can further 
improve the accuracy of EM-seq.

Methylation marker selection and targeted EM‑seq
Because deep sequencing of the whole human methyl-
ome would be prohibitively costly, we used EM-seq com-
bined with targeted capture to analyze plasma cfDNA 
from HCC patients and non-HCC controls (Fig.  2a). 
Briefly, plasma DNA was ligated to the methylated adap-
tor before enzymatic conversion and amplified using 
primers with dual index. Multiple samples were pooled 

together and enriched for target region by the designed 
probe panel before deep sequencing.

To find potential biomarkers for HCC detection, we 
analyzed the expression profile data and methylation 
data of HCC and non-HCC tissues and screened CpGs 
with relatively high methylation from low-expression 
genes in HCC. Then, the methylation data of whole 
blood DNA were used to eliminate the CpGs whose 
average methylation level in blood was higher than that 
in HCC (Fig.  2b). To cover the CpGs associated with 
HCC as much as possible, other CpGs suitable for HCC 
detection were also included in our analysis, accord-
ing to previous studies [29–36]. Finally, we designed 
a probe panel covering 1595 CpGs for subsequent 
analysis.

We used HepG2 cell DNA and plasma DNA to evalu-
ate the performance of the targeted EM-seq. Relatively 
high DNA recovery was achieved in targeted EM-seq, 
with 60–70% of reads uniquely aligned to the designed 
panel region (target ratio) and median unique read 

Fig. 1  In complete conversion in EM-seq. a Methylation values on hypomethylated CpGs acquired by EM-Seq and BS-seq, before and after ≥ 3CHs 
filtration. Hypomethylated CpGs are those with BS-seq detection values of < 1% on λ DNA. b Dot plot compares individual methylation values in 
hypomethylated CpGs acquired by EM-Seq and BS-seq. Percentages indicate the fraction of CpGs that differed between conditions. c Pie charts 
compare the proportion of reads with 0, 1, 2, and ≥ 3 CH sites in all EM-seq and BS-seq sequencing reads. d. Genome plot for unmethylated 
control λ DNA (pos: 30,000–35,000) compares CH reads between EM-seq and BS-seq datasets. Boxes represent reads, and unmethylated (blue) and 
methylated (red) CHHs are indicated
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depth of over 800 × with 20  ng fragmented cell DNA 
(Additional file 1: Fig. S2a, Additional file 2: Table S2). 
In addition, we confirmed the consistency of methyla-
tion levels detected by two Targeted EM-seq techni-
cal repeats (Additional file  1: Fig. S2b) along with the 
consistency of coverage depth (Additional file  1: Fig. 
S2c). EM-seq analysis of a representative donor cfDNA 
showed the length characteristics of cfDNA including 
the main peak of about 167 bp and small peaks spaced 
by 10 bp (Additional file 1: Fig. S2d) [37].

HCC detection using plasma samples
To develop a predictive model for the HCC screening, 
596 plasma samples were analyzed by Targeted EM-seq 
(Additional file  2: Table  S3). These samples were ran-
domly divided into training set (n = 417, normal con-
trols = 195, liver disease = 54, HCC = 168) for the model 
training; and test set (n = 179, normal controls = 84, 
liver disease = 22, HCC = 73) for the model testing. 

We confirmed the consistency of methylation levels of 
20 plasma samples detected by two technical repeats 
of hybridization capture (Additional file  2: Table  S4, 
r > 0.99). The study design is depicted in Fig. 3. Detailed 
patient characteristics are summarized in Additional 
file 2: Table S5.

GDBT (gradient boosting decision tree) machine 
learning analyses were applied to the training cohort of 
168 HCC and 195 normal controls to generate a HCC 
versus normal model (HN model) with 37 markers. HN 
model achieved a sensitivity of 87% and a specificity of 
97% ( area under the curve, AUC = 0.977) in the train-
ing set and a sensitivity of 90% and a specificity of 94% 
(AUC = 0.959) in the test set (Fig. 4a). The same analysis 
of 168 HCC and 54 liver diseases obtained a HCC ver-
sus liver disease model (HL model) with 264 markers. HL 
model achieved a sensitivity of 90% and a specificity of 
72% (AUC = 0.915) in the training set and a sensitivity of 

Fig. 2  Targeted EM-seq and marker selection. a Overview of targeted EM-seq of plasma cell-free DNA. b Unsupervised hierarchical clustering of 89 
methylation markers selected for panel design
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92% and a specificity of 84% (AUC = 0.948) in the test set 
(Fig. 4b).

A total of 283 markers were obtained after the two sets 
of markers were combined and deduplicated (Additional 
file 2: Table S6). The methylation levels of these markers 
were significantly different between HCC and non-HCC 
samples in both training and test sets, and the intensity 
increased with advancing disease stage (Fig.  4c, Addi-
tional file 2: Table S7).

Using a logistic regression method, we next con-
structed a stack model for HCC screening with these 283 
markers using the predictive values generated from HN 
and HL models. Overall, the stack model yielded a sensi-
tivity of 92% and a specificity of 94% in the training/five-
fold cross-validation set (AUC = 0.980, 95% confidence 
interval [CI] 0.968–0.991; Fig.  4a), and a sensitivity of 
90% and a specificity of 97% in the test set (AUC = 0.957, 
95% CI 0.925–0.989; Fig.  4b). The classification accu-
racy was highly consistent between these two sets (AUC 
0.980 versus 0.957), which confirms appropriate control 
of overfitting risks. HCC tumor score (t-score), the out-
puts of the stack model, can efficiently distinguish HCC 
patients from non-HCC individuals (Fig. 5a).

Subgroup analysis and comparison with AFP/PIVKA‑II
The stack model for HCC screening achieved high sen-
sitivity and specificity in different groups. Sensitivity 
improved with advancing disease stage and achieved 85% 
in stage I (35/41), 89% in stage II (8/9), and 100% in stage 
III-IV (23/23) patients in the test set (Table 1). Similarly, 
there is good correlation between the t-score and tumor 

stage. Patients with early stage disease (I, II) had substan-
tially lower t-scores compared to those with advanced 
stage disease (III, IV) (Fig.  5b). The specificity was 99% 
for normal controls (1/84) and 91% for liver disease sam-
ples (2/22) in test set (Table 1).

In HCCs, the stack model achieved higher detection 
accuracy than AFP for both early and advanced HCC 
(Fig.  5c) and achieved high detection accuracy in AFP-
negative patients (25 of 28 patients for AFP < 20 ng/mL, 
89.29%, Additional file  1: Fig. S3a). Protein induced by 
vitamin K absence-II (PIVKA-II) is another potential 
screening marker for HCC [38]. The stack model also 
achieved higher detection accuracy than PIVKA-II for 
both early and advanced HCC (Fig.  5d) and achieved 
high detection accuracy in PIVKA-II-negative patients 
(8 of 10 patients for PIVKA-II < 40 ng/mL, 80.0%) (Addi-
tional file 1: Fig. S3b).

Discussion
Diagnosis of HCC patients at early stage can effectively 
reduce HCC mortality. Tumor-specific methylation in 
cell-free DNA provides the possibility for noninvasive 
liquid biopsy of tumor detection and monitoring [10, 39, 
40]. In this study, we used the targeted EM-seq method, 
replacing the traditional BS-seq, for methylation analysis 
of the plasma DNA from HCC patients and non-HCC 
controls, and constructed a highly sensitive and specific 
HCC screening model.

EM-seq has significant advantages over BS-seq. First, 
compared with BS-seq, EM-seq result in less DNA loss 
than BS-seq, achieving better sequencing coverage, espe-
cially in the analysis of low-input DNA samples. Second, 
EM-seq contains fewer conversion errors than BS-seq. In 
particular, our data in this study showed that the incom-
plete converted CHs in EM-seq cluster in one read, 
which can be easily removed by filtering. Minimizing 
the methylation noise caused by the incomplete conver-
sion is important to accurately detect trace methylation 
variation from limited ctDNA in early stage samples [41]. 
Finally, EM-seq library can be prepared by ligating the 
adaptor before conversion without obvious DNA loss. 
The library obtained by this method can retain more 
physiological characteristics of cfDNA and has the poten-
tial to analyze methylation, end motif, and fragmentation 
profiles simultaneously.

Due to the substrate specificity of APOBEC3A deami-
nation, incomplete conversion of EM-seq occurs in a few 
specific context, leading to false increase of > 1% in meth-
ylation rate. Including APOBEC enzymes with sequence 
specificity other than APOBEC3A may further improve 
conversion efficiency of EM-seq. Besides, sequence-
specific incomplete conversion in a few specific sites 

Fig. 3  Workflow chart of building a stack HCC screening model
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can offset each other across clinical samples during bio-
marker selection. So it does not deny the results of this 
study.

The HCC screening model constructed by machine 
learning analysis can clearly distinguish HCC and non-
HCC samples with 90% sensitivity and 99% specificity 
in the test cohort. Cancer is a rare disease, and the inci-
dence of HCC is low in the population. Only extremely 
specific tumor screening methods can minimize the risk 
of overdiagnosis and achieve effective screening for the 
HCC [42]. In addition, the HCC screening model in this 
study has different sensitivities to HCC samples of dif-
ferent stages. The sensitivity of advanced stage samples 
is higher than that of early stage samples, indicating that 
tumor burden has a certain influence on the prediction 
results of the HCC screening model. This model holds 
potential for monitoring of HCC treatment.

This study has some limitations as well. First, fewer 
liver disease samples were recruited in this study and the 
inclusion of more high-risk samples would help to clarify 
the specificity of the screening model in high-risk popu-
lations. Second, the median age of the non-HCC control 
group in this study was 46 years, which was lower than 
that of the HCC group (median 57 years). Methylation is 
correlated with age [43]. Therefore, the inclusion of age-
matched non-HCC controls helps to eliminate the inter-
ference of age-related methylation variation.

Conclusions
This study demonstrated that incomplete conversion of 
EM-seq is characterized by CH clustering in sequencing 
reads. Filtering of reads with ≥ 3 CHs can significantly 
reduce the noise of methylation detection of EM-seq. A 
predictive model for HCC screening based on targeted 

Fig. 4  Development and validation of the HCC screening model. a, b ROC of the three models with methylation markers in the training dataset 
(a) and test dataset (b). c Unsupervised hierarchical clustering of 283 methylation markers selected for HCC screening model development in the 
training and test datasets
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EM-seq analysis of plasma cell-free DNA can efficiently 
distinguish HCC patients from non-HCC individuals and 
perform well in the detection of early stage patients. It 
provides a noninvasive method for HCC screening with a 
very high specificity. Given that epigenetic variations are 
common in the development of most tumors, this strat-
egy could be modified for the early detection of other 

cancer types or of multiple cancer types from a single 
tube of blood.

Methods
Study design
Patients with HCC or liver disease that were treated at 
the Zhongshan Hospital, Xiamen University, between 
November 2020 and December 2021 were selected for 
this study. The HCC stage was determined using the 
China liver cancer staging system [44]. Healthy individu-
als undergoing routine health care maintenance were 
randomly selected as controls in this study. Detailed 
patient characteristics are summarized in Additional 
file 2: Table S1. The present study was performed under 
the Helsinki Declaration and was approved by the Ethics 
Committee of the Zhongshan Hospital, Xiamen Univer-
sity (reference number: 2020-015). Informed consent was 
obtained from all participants or their families.

Blood sample processing and cfDNA purification
Samples from all cases and controls were processed by 
the following method. Peripheral blood was collected 

Fig. 5  Further evaluation of the stack model for HCC screening. a The t-score of the stack model in normal controls, individuals with liver diseases 
and HCC patients. b The t-score in HCC patients with early and advanced stages. c Proportions of positive calling by the stack model and AFP (> 20 
in HCC patients with early and advanced stages in the test set). d Proportions of positive calling by the stack model and PIVKA-II in HCC patients 
with early and advanced stages in the test set

Table 1  Performance of the stack model for HCC screening in 
the test set

Groups Total Predicted Sensitivity 
(%)

Specificity (%)

Non-HCC HCC

Healthy 84 83 1 99

Liver disease 22 20 2 91

Non-HCC 106 103 3 97

I 41 6 35 85

II 9 1 8 89

III-IV 23 0 23 100

HCC 73 7 66 90
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in cfDNA Blood Collection Tube (Zhixuan Biotech). 
Plasma was separated by centrifugation at 1600×g for 
10  min and transferred to microcentrifuge tubes. After 
then, centrifugation was done at 16,000×g for 10  min 
to remove cellular debris. The supernatant was divided 
into 2-ml aliquots and stored at − 80 °C until the time of 
DNA extraction. cfDNA was extracted from 2-ml plasma 
for each participant using Plasma Cell-Free DNA Extrac-
tion Kit (Concert). cfDNA concentration was measured 
using Qubit dsDNA High Sensitivity Assay Kit (Thermo 
Fisher).

Enzymatic methyl conversion
EM-seq library preparation was performed using VAHTS 
Universal DNA library Prep Kit for Illumina V3 (Vazyme) 
and EM-seq Conversion Module (New England Bio-
Labs) according to the manufacturer’s instruction with 
minor modifications. In brief, mechanically fragmented 
methylation control DNA (CpG methylated pUC19 and 
unmethylated λ DNA) alone or combined with cell-free 
DNA fragments was treated with VAHTS Universal DNA 
library Prep Kit (New England BioLabs) for end-repair, 
A-tailing, and ligation of EM-seq adaptor (New England 
BioLabs). The ligated samples were methyl-converted 
with EM-seq Conversion Module (New England Bio-
Labs) per the manufacturer’s protocol. Methyl-converted 
DNA was purified and amplified using NEBNext Unique 
Dual Index Primers (New England BioLabs) and KAPA 
HiFi HotStart Uracil + ReadyMix (KAPA biosystems).

Bisulfite treatment
Methylation control DNA or DNA fragments were 
ligated with the EM-seq adaptor as mentioned above and 
then subjected to the bisulfite conversion using EZ DNA 
Methylation-Lightning Kit (Zymo Research) according to 
the manufacturer’s protocol.

Targeted capture and sequencing
EM-seq libraries from up to 24 samples were pooled 
together for hybridization enrichment using the Custom-
ized NAD probes (Nanodigmbio). The capture reaction 
was performed with Nadprep Hybrid capture Reagents 
(Nanodigmbio) following the manufacturer’s instruc-
tions. Captured libraries were obtained using on-bead 
PCR amplification with VAHTS HiFi Amplification mix 
and PCR primer mix3 for Illumina (Vazyme). The librar-
ies size was determined using the Bioanalyzer 2100 (Agi-
lent Technologies). The target-enriched library was then 
sequenced on the NovaS4 NGS platform (2 × 150  bp, 
Illumina) following the manufacturer’s instructions.

Panel design
Methylation and expression profile data of 357 HCC and 
50 non-HCC tissue were downloaded from The Cancer 
Genome Atlas (TCGA) [45]. Differential analysis was 
performed both on expression profiles of all genes except 
for those on sex chromosomes and methylation data of 
the gene-related CpG islands. The screening thresholds 
for differential gene expression were set as FDR < 0.05 
and |log2 (fold change)|> 1. The screening thresholds 
for differential methylation were set as FDR < 0.05 and 
|β|> 0.2, and the methylation sites with high methyla-
tion and low expression were selected. The methylation 
dataset GSE69270 of 184 non-HCC blood was down-
loaded from the Expression Omnibus database [46, 47]. 
The CpG sites with an average methylation level in non-
HCC blood higher than that in HCC tissues (> 0.1) were 
removed. A group of five probes of 120  bp length was 
designed for each CpG site, including NO.1 the original 
unconverted sequence, NO.2 and NO.3 the converted, 
methylated Watson and Crick strands, NO.4 and NO.5 
the converted, unmethylated Watson and Crick strands. 
Multiple probes were used to reduce the effect of the 
original methylation state on the capture efficiency.

Data processing
The raw sequencing FASTQ files were processed using 
Fastp (0.21.0) to trim Illumina-specific adapters with 
default parameters and low-quality sequences with 
parameters of -u 20 and -q 20 [48]. Mapping of the pro-
cessed sequencing reads was performed using the bis-
mark (0.23.0) [49]. Deduplicate_bismark (bismark) was 
used for deduplication. Incomplete converted reads with 
more than 3 CHs were removed. Finally, methylation 
level is estimated using bismark_methylation_extrac-
tor (bismark) to calculate methylation frequencies for 
all CpGs using parameters -comprehensive --bedGraph 
--counts --cytosine_report --CX --buffer_size 20G --par-
allel 16.

Development of HCC screening model
A custom module was built to classify samples using 
two layers of models: (i) two GDBT model: A HCC ver-
sus normal model (HN model) and a HCC versus liver 
disease (HL model) [50]. Both models were trained by 
GDBT model. RFECV (recursive feature elimination with 
cross-validation) method was used to select the optimal 
features in HN model [51]. In HL model, all features with 
importance greater than 0 were selected as the optimal 
features. GridSearchCV (grid search with cross-vali-
dation) method was used to optimize models’ param-
eters [52]. (ii) A multinomial logistic regression model: 
two models of the first layer were stacked into a logistic 
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regression model to obtain a HCC/non-HCC assignment 
as a final prediction [53]. The predictive score h (t-score) 
is calculated as: h = wTx + b, where w is the coefficient 
of each feature, and x is the output from models in the 
first layer. The L2 penalty parameter λ was determined by 
GridSearchCV method. To optimize model performance 
and avoid overfitting, iterative fivefold cross-validation 
was performed in the training dataset. The performance 
of the final stacked model was evaluated in the independ-
ent test cohort.

Statistical analysis
Differences between the groups were calculated using 
the Student’s t test. Statistical analysis was done by R (v. 
4.0.5). The performance of prediction model was evalu-
ated using the AUC statistics (95% CI), and the values 
were calculated by the pROC (v. 1.18.0) package [54]. 
The sensitivity [True Positive/(True Positive + False 
Negative)] and specificity [True Negative/(True Nega-
tive + False Positive)] thresholds under 95% CI are 
obtained by the formula: p± 1.96×

√
p(1− p)/n [55].
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